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In this work, we consider the simple model for Fermi acceleration of a particle between
two periodically oscillating walls. The law of wall movement is continuous but not smooth.
Exact mapping for this system has been obtained. A fractal set of trajectories with
infinitely increasing speed is shown to exist. The main characteristics of such trajectories
are discussed. A comparison with high-energy approach has been carried out. Qualitative
differences in behavior of exact and approximate description have been found. For exam-
ple, in high-energy approach, there are no trajectories with unlimited speed increase.

B pabore paccMmoTpeHa mpocTad MoAeNb YecKopeHUA @epMu YacTUIBI MeKIY ABYMSA IIE€PU-
OIWYECKU KOJIEOJIONIUMUCSA CTeHKaMU. 3aKOH IBUIKEHUS CTEHOK fABJAETCA HeIpPepPBLIBHBIM,
HO He TyagKkuM. IlosryueHo ToOuHOe oTOOpasKeHMe IJA 9Toil cucteMbl. IloKasaHo cyIllecTBOBA-
HUe ()PaKTaJHHOTO MHOJKECTBA TPAEKTOPHUil ¢ HeOTpPaHWUEHO BO3pacTaiomieil ckopocthio. O6-
CY'KJAIOTCA OCHOBHBIE XapaKTEPUCTUKU TaKUX TpaeKTopuii. IIpoBeseHo cpaBHEHUE C BEICOKO-
sHepreTuyecKuM npubiam:xenueM. OGHAPYKeHBI KAUEeCTBeHHBLIE OTJIUYUSA B MOBEJEHUU TOUHO-
ro m OpubIMIKEeHHOTO onmucaHusA. Tak B BHICOKODHEPTeTUUECKOM IPUOIMIKEHUU OTCYTCTBYIOT
TPaeKTOPUM € HEOTPAHWUYEHHBLIM POCTOM CKOPOCTH.

To explain an origin of high-energy space beams, Fermi has proposed in 1949[1] a mechanism for
acceleration of particles by moving magnetic clouds. In later works, the models realizing the Fermi
acceleration mechanism by means of collisions of a particle with oscillating wall have been introduced.
The most common of those is the model in which the particle moves freely between two walls. One of
these walls moves under some law, usually a periodic one, the second wall is motionless [3-6]. The particle
dynamics is described by means of mapping, which is usually achieved by neglecting the change of the wall
position. Further, the particle speed is considered to exceed considerably the characteristic wall speed,
that is why such approach is referred to as the high-energy one. This approach simplifies essentially the
system mapping. Another popular model is the particle falling in gravitation field onto the oscillating
wall [7]. These models, due to their simplicity, the possibility of numerical modeling of their behavior on
extended times and to their practical applications, became standard models for the analysis of nonlinear
Hamilton systems. The main subject to be studied in these models is the process of energy gain by the
particle.

If the wall movement law is a random one, then the particle energy will increase as an average [1]. The
case when the wall movement law is determined, e.g.,periodic, is less unequivocal. Numerical modeling
for a case of smooth periodic movement of the wall carried out by Ulam [2] has shown that the particle
movement is stochastic, but its energy is restricted by an upper limiting value. These Ulam results have
been explained using analytical and numerical methods by Zaslavsky and Chirikov [3] and more completely
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by Brakhich [4], Lichtenberg and Liberman [5], Pustylnikov [8] and others. Those authors have proved
that when the time dependence of wall speed is smooth enough, there is always some speed limit that
the particle cannot exceeed. The speed limit value for particles with low initial energy is independent of
initial conditions.

In this work, the case is studied when the wall movement follows a sawtooth law. This means that
the collision phase is not random but the time dependence of the wall speed is not smooth. In [9] a single
unbounded trajectory has been specified for such a system.

Let us consider a particle being between two mobile walls. Let walls move periodically first at a fixed
speed from the system center, then at the same speed towards the system center. Thus,the walls move
in an antiphase under the sawtooth law. This system is equivalent to that including one moving and
one stationary wall. However, it is convenient to keep this insignificant technical complication assuming
a further studying of inphase movement of walls. Collision of the particle with the wall will consider to
occur instantly and absolutely elastically, in intervals between collisions the particle moves at constant
speed and rectilinearly. Let denote the wall period movement as T and its speed as wu.

It is convenient to describe the evolution of such system by means of mapping which connects the
particle coordinates at n 4+ 1-th collision with the wall with the particle coordinates at n-th collision.
Thus, knowing mapping and coordinates of a particle at the initial collision, it is possible to find those at
the second collision, etc. As the coordinates, we shall choose the particle speed v, prior to collision with
the wall, expressed as a multiple of the wall movement speed, and the collision phase £,. As the collision
phase, we shall understand time counted from the start of the corresponding motion cycle of the wall,
expressed in the wall movement periods. For the left wall, all times including phase of collision will be
considered as negative. For the unit of distance, we shall accept the wall oscillation amplitude.

The introduced coordinates are optimal for the specified system, since they allow to determine (along
with speed with sign and phase of collision) with which of the walls a collision is occurred.

The particle changes its speed when colliding with the wall. If the particle and the wall moved towards
each other before the collision, then the particle will change its movement direction after collision, its
speed module will be increased by the doubled wall speed. If before the collision the particle and the wall
moved in the same direction, then the particle speed will be reduced by decrease for the doubled wall
speed. After collision, the particle may either change the movement direction or will continue to move in
the former direction, depending on its speed before collision; in both cases, its speed module will decrease.
If the particle speed before collision with the wall exceeds the doubled wall speed, then after collision the
particle will change the movement direction to opposite. If the particle speed is intermediate between the
doubled and single speed of the wall, then the particle movement in the former direction will continue,
and if the particle speed is less than the wall speed, the particle cannot collide with the wall. In this case,
the second collision will occur after the wall will change its speed to the opposite following the law of its
movement.

Thus, the wall can repulse a particle by one or two collisions. Two collisions occur, if at collision the
particle runs down the wall, but its speed is less than doubled wall speed. In this case, the particle changes
its movement direction at the second collision, and its speed module increases by the doubled wall speed.
Two collisions occur also in the case when at collision the particle runs down the wall, its speed exceeded
doubled wall speed (but is less than Triple one), but after the first collision the wall, having changed
its speed according the movement law, has drived to the particle moving away from it (that has lost its
speed at the first collision down to a lower value than the wall speed). This case is to distinguish from
that when the particle speed before the first collision was less than the wall one. The difference is that in
the case of two collisions, the wall runs down the particle, while in case of one collision, the wall and the
particle move towards each other. Though the particle speed module before collision in these two cases
may be the same, it will be different after collision. To distinguish these cases, the particle speed less than
the wall speed before the first collision we shall consider positive, while the particle speed less than the
wall one in case of two collisions, negative. Therefore, the particle speed before collision can take values
from —1 to infinity.

Thus, if before collision with the wall the particle speed module is less than the wall one, it is just
the collision phase sign that defines, with which of the walls a collision occurs; the speed sign, the first
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or the second collision occurred, and, accordingly, either the particle moves towards the wall or escapes
therefrom.

It is easy to see, that necessary (but not sufficient) condition for the case of two collisions is: |¢,| < §
and 1 < v, < 3, i.e. the particle before collision should have a speed exceeding the wall one to drive
to it, while after the collision, it should be less than the wall one, so that the wall could drive to the
particle. If 1 < v, < 2, the particle after the first collision will not change its movement direction, while
if 2 < v, < 3,1t will change (only in this case, under condition of two collisions, the particle speed before
collision is negative).

The mapping considering all cases in the compact form has the following form:

—(vn = 2), |§n|<2,vn<2+ma
Unt1 = (1)
v+ 2sign([&a] — 3), 1€l > 3 or (&l <3 v > 24 smie)

é’ +w |€n|<2’vn<2+

m
€n+1 — . s;g:§n+sign(| C(n)_;lg—nﬁn _%) (C(n)+ Szg;ﬁn)
n)y | oz Vnt1 sign(én)—€n
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signé, | _ 1y(e _ signéa 1_
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Here § is a system parameter defined as the ratio of the oscillation amplitude of walls to average
distance between them. Using this mapping, various properties of trajectories of a particle moving between
walls will be investigated. This mapping is exact.

When studying properties of exact mapping, the main point of interest is the process of energy gain by
the particle. In exact mapping (1), (2) trajectories with unlimited speed increase are observed. In principle,
all trajectories in phase space of exact display, can be subdivide into two types. The trajectories of the
first type have a boundary speed, which particle cannot exceed. In particular, all periodic orbits get into
this class. Trajectories of the second type have no such boundary and eventually energy increases beyond
all bounds. This class of trajectories is observed at all possible values of parameter § < 1.

A certain difficulty in studying of these trajectory types is due to low informativity of the exact
mapping phase portrait. The typical phase portrait of unlimitedly growing trajectory is shown in Figure
5. The cause is the mapping discontinuity for speed. In dimensionless Variables, the speed changes by
+2 at each step of discrete time. This complicates the qualitative analysis of a phase flow (cascade) and
requires to make use of less traditional analytical methods

Let us consider as an example a trajectory belonging to unlimitedly growing speed type. In Fig. 1,
dependence of the particle speed on number of iteration is shown. The important conclusion consists in
observation of a significant speed reduction at the initial stage of evolution with its subsequent unlimited
increase.

Thus, the particle speed can decrease considerably at the initial stage of evolution. In other words,
during evolution, the applicability limits of high-energy approximation are overrunned. Any arbitrary
high initial particle speed cannot guarantee that the particle will not descend to low speed region. For
example, we may take an unlimitedly growing trajectory and change the particle and the wall movement
directions to the opposite ones. Then the particle will start to descend along the same trajectory along
which it ascended. This is equivalent to consideration of a growing trajectory in back-going time. In this
way, the particle can reduce its speed down to a minimal possible one. Then, it will be «reflected» and
will start to gain energy again.
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Fig. 1. Dependence of the particle speed on Fig. 2. Dependence of number of collisions of
number of collision in log-log scale for trajectory the particle during one wall movement period
& = 0.04, vg = 931.5, § = 0.1, N = 7500000. onthe periods number for trajectory & = 0.04,
The linear section at late evolution stage is clearly v = 931.5 and parameter § = 0.1.

visible. For convenience, the straight line with

slope 1/2 is included.

Let us discuss the asymptotic rate of speed increase after its decrease stage. For convenience, the
speed dependence on number of collisions n is shown in Fig. 1 in log-log scale. The Figure evidences a
linear dependence with proportionality factor of 1/2. This means the square root type of speed increase
vy, ~ y/n. However, it is important to transform this dependence to that on «real» time. For this purpose,
it is necessary to consider how the number of collisions with walls varies in time. It is found that the
number of collisions per unit time increases in such a manner that the particle speed eventually grows
linearly, i.e. for each period of the wall movement, the particle speed increases by the same value.

That is possible to see from dependence of number of collisions per one period on the period number
brought in Fig. 2. It is of interest to note that this dependence shows periodic oscillations against the
background of monotonous increase. In a certain sense, this is an additional reason for preservation of the
speed increase mode for unlimited time. Thus, the particle speed in this mode increases in proportion to
the time. It is a rather unusual mode of speed increase. Usually, for example at chaotic wandering, speed
increases more slowly, proportional to v/¢. In this sense, it is possible to state abnormal increase of the
particle speed. Phenomenologically, this means presence of average effective force acting on the particle.
At the fixed parameter §, the value of this force may not be the same for different infinite trajectories.
Its dependence on parameter ¢ is rather complex.

Thus, either the particle energy is limited, or the particle eventually unlimitedly increases its energy.
We shall establish a fixed system parameter d, place the particle near the bottom speed (vo < 20) and
determine at which initial data the particle can ascend to the certain energy (v, > 100) for the certain
number of steps (n < 10°) and with which it will be limited. Choosing initial data in some area of phase
space, it is possible to construct a pool of trajectories with unlimited speed increase.

It appears that the set of points belonging to the pool (v, — oo with n — o0) has fractal structure.
The fractal dimension of this set is close to two. Informational and correlation dimensions have also been
calculated and are also essentially equal to two. Thus, infinitely growing trajectories are distributed at
a high homogeneity over the whole phase space.This does not mean, however, that all trajectories are
infinitely growing. At the parameter value § = 0.1, on the average only 37 trajectories from 100 are
infinitely growing. The number of infinitely growing trajectories depends on the system parameter. With
increase of the latter, the percentage of growing trajectories increases. So, at § = 0.33, on the average 81
of 100 trajectories are growing.

There is also another way to make sure of sensitivity of trajectory type. For example, choosing the
same initial conditions and studying influence of the mapping parameter ¢ variation on the trajectory
type. Let a particle be placed near the bottom speed, fixing its initial speed (v < 20) and phase. Now
let us determine, what values of parameter results in particle having energy higher than (v, > 100) after
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Fig. 3. To determination of the fractal dimension of set of parameters at which the particle with the
fixed initial data reaches the predetermined energy. The fractal dimension is Dp = 0.745.

the specified number of steps (n < 10°%) and what corresponds to bounded particles. The initial speed of
the particle and the collision phase do not vary, the parameter of system changes only. Therefore, the
actually obtained data show how properties of a single trajectory vary with the parameter variation. Such
sensitivity is related with reorganizations of the system phase portrait at small changes of the parameter.
Other trajectories pass effectively through the point of phase space fixed by initial conditions.

The structure of parameter values at which the particle with fixed initial data reaches the pre-specified
energy looks like bar code. The black stripe correspond to such value of § at which the particle reaches the
pre-specified energy, the white, to that where it appears bounded. Characteristic line structure is preserved
at change of scales. Each stripe at scale enlargement becomes split into more small-scale structure of
stripes.

A minor change in the system parameter results in an essential change of the trajectory. Thus, a very
weak, perhaps even infinitesimal, change of the system parameter or of initial data is sufficient for the
closed particle becomes free and vice versa.

The obtained set of stripes, has fractal structure, as well as the set of initial data. To be convinced
of that, let the set of all possible values of parameter § be subdivides into segments of equal length, and
plot the dependence of number of segments in which at least one strip has got on the length of single
segment, in logarithmic scale (Fig.3). The obtained dependence is linear, thus allowing to estimate the
fractal dimension of the given set as Dp = 0.745.

For other initial conditions, set of the system parameters which allow the infinite gain of particles
energy also has fractal structure. Thus, a specific fractal dimension of the system parameter set
corresponds to every initial data defining the trajectory.

Let us prove that in the trajectories considered above, the particle speed increases really indefinitely,
i.e. that the speed gain will never stop. As all the trajectories obtained by means of the numerical
calculations are finite, this could be proved only analytically.

Let us introduce a certain transformation F. This transformation will influence the part of the
trajectory contained in one period of the wall movement. The transformation will result in the set of
collisions which is also contained in one period of the wall movement and is a part of some, maybe another,
trajectory. Both trajectories correspond to the same value of the system parameter §. The transformations
will be different for different J. Thus, the transformation translates a part of one trajectory in an equal
in time part of another trajectory. The average speed of particle, number of collisions within the period
of the wall movement at the initial part of the trajectory and the transformed part of the trajectory will
be different. The transformation F will also keep difference of number of speed-increasing and speed-
reducing collisions of the particle with the wall. Thus, if in the initial part of the trajectory the particle
has increased speed by some value per period, in the transformed part of the trajectory the particle
will increase its speed by the same value. Applying sequentially the transformation F', it is possible to
transform the part of a trajectory lying on successive periods of wall movement, including the whole
trajectory.
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It is possible that the initial and transformed parts of the trajectory are different parts of the same
trajectory. This case is realized if coordinates of the collision following the last collision in the initial
trajectory part coincide with those of the first collision in the transformed one. This condition can be
named a «sewing» condition. If this condition is met, the part that is the transformation result follows
immediately after the initial trajectory part. The transformed part of the trajectory, in its turn, also
can be transformed. It appears that if the sewing condition for the initial and transformed parts of the
trajectory is satisfied, it is sufficient for the same condition to be satisfied for the transformed part of
the trajectory and the part transformed twice. Thus, applying repeatedly the transformation F to some
initial part of the trajectory, it is possible to obtain infinite number of different parts of the trajectory.
Those all will be sewed consecutively into a unique trajectory, if first two parts can be sewed. It is easy
to see that the trajectory obtained in this way will be infinitely growing.

Thus, beyond an unrestrictedly growing trajectory consists of parts, each of which under action of
transformation F' gives the following one and each of which increases speed of the particle by the same
value.

For each system parameter §, we will search for transformation F in the form F = f(m) o g(n),
where f and g are two elementary transformations, m and n are natural numbers. We will define the
transformation f as follows. Let us consider a part of the trajectory laying on one period of the wall
movement. Let us distinguish a time interval at the the period center including two collisions of the
particle with the wall. Let the interval duration be selected so that the particle got into it and left it at
the same distance from the center of system. It is always possible to make. Let us note that one of these
allocated collisions reduces speed of the particle by doubled wall speed, while the second increases by the
same value. Thus, both the particle speed and distance to the system center at exit from the allocated
zone will be same as on entrance. This means that, having thrown out the selected part from the center of
the wall movement period being considered and having connected together two remnants, we will obtain
again the integral part of the trajectory laying on one wall movement period. This part of trajectory will
correspond to another parameter of system and will include fewer collisions than the initial one. But the
difference of collisions increasing and reducing speed at the part of the trajectory obtained by action of
transformation f will be the same as at the initial part of the trajectory.

Considering the particle speed to be much higher than the wall one, it is possible to estimate the

selected interval duration to be equal to the time of two particle collisions with a wall, i.e. 4ULAJ/‘[”I‘]‘VX , where

Larax is the maximal distance from the wall to the system center; vasrn, the particle minimal speed in the

2Lpax
UMIN

wall movement period being considered. After transformation f, Larax will decrease by AL; = U,

where u is the wall movement speed.

It is possible to carry out the actions described above in the opposite sequence, i.e. to take the
transformed part of the trajectory and to add two additional collisions into its center, in order to obtain
the initial part of the trajectory. Such a transformation f—1 will be opposite to transformation f. The
transformation ¢ is similar to f—1, except for that it adds two collisions not to the center, but to the onset
of the wall movement period. Since one collision increasing the particle speed and one reducing it are
added, transformation g as well as f keeps the difference between collisions increasing and reducing the
particle speed. The particle speed before the first speed-reducing collision at the transformed trajectory
part will be double wall speed higher than the similar speed in the initial trajectory part.

Applying repeatedly the transformations f and ¢ on an initial part of the trajectory, we will obtain
parts of trajectories corresponding to various system parameters. For any system parameter §, it is
possible to find such m and n values that the trajectory part obtained by transformation f(m)og(n) will
correspond to the same system parameter é as the initial one. Let us consider the part of the system
trajectory laying on one wall movement period. Each action of transformation f reduces the maximum
distance from the wall to the system center Layrax by AL;. Each action of transformation g reduces the

— 2Lmin

minimum distance from the wall to the system center by AL, = MLy, (Fig.4).

If the transformed part of the trajectory corresponds to the same system parameter d, as the initial
one, then:
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ALf

Fig. 4. One period of wall movement is shown. before (solid line) and after (dashed line) [ transformation.

5 — Lyrax — Ly~ (Lmax — mALy) — (Lyrv — nALy)

 Lyax + Lvrnv - (Lsrax — mALy) + (Lyry — nALy)

from where it follows:

LMAX o nALg

LMIN a mALf
Substituting ALy and AL,, we get:

m  UMIN

n VMAX

Before, we have obtained that v = —COZ”, wherefrom Larrnvarax = Lamraxvmin, and since
Lyin =3 —land Lyax = 5+ 1, then
m _1-9¢
n 146

Thus, having taken the minimal natural numbers m and n, satisfying the obtained formula, we obtain
the transformation F' to be sought. The trajectory part resulting from transformation F' on the initial
part will have the same difference between the number of speed-increasing and speed-reducing collisions
as the initial one; it will correspond to the same system parameter § as the initial trajectory part; it will
have the first collision speed exceeding by 2n wall speed than that at the initial part of the trajectory.
The number of collisions will be larger by 2(n — m) than at the initial trajectory part.

It is easy to see that if we worked with the values having a dimensiality, the wall movement period
would change. The new period would be equal 73 = T — AT. However, as we have taken the wall
movement period as a unit time, the wall movement period after transformation F, as well as prior to
it, is equal to one. The collisions phases at the transformed trajectory part thus should be measured
in the new wall movement periods. So, if the first collision phase before transformation F was &g, after
transformation it will be equal to &) = foTll = &)%. Now let the initial trajectory part be supposed
to possess the following property: the first collision has coordinates (g, vg), and one of following collisions
has coordinates (£ = & T_TT, vp, = vg). In other words, coordinates of the first collision of the initial
trajectory part after transformation coincide with coordinates of another collision of the initial trajectory
part. If coordinates of a collision from one trajectory part coincide completely with those from other
part of the trajectory, then coordinates of all previous and subsequent collisions coincide also, i.e. the
considered parts of trajectories are different parts of the same trajectory. Let the transformed trajectory
part be subjected once again by transformation F. The collision with coordinates (£, vo) will pass to

( :)TT__2AAT%,U0) = (fn%,vo). It is easy to see that coordinates of this collision coincide to within
infinitesimal values of the order of AT? with coordinates (&T_TW, vo) of unitary transformed collision
(én, o). Thus, if coordinates of unitary transformed collision (&g, vg) coincide with coordinates of collision
(én,v0), then coordinates of twice transformed collision (£o,v0) coincide with coordinates of one-fold

transformed collision (£, vg), etc. It means, that all parts of the trajectory obtained by transformation

F on the initial part of the trajectory belong to the same trajectory as the initial part, forming a unique
trajectory.
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Fig. 5. Phase portrait of infinitely growing trajectory with the greatest possible acceleration. {,=0.0002,
vo=134.0, § = £, N=200000

This proof cannot be considered to be mathematically strict, however, it provides understanding how
infinitely growing trajectories are constructed. Besides, the laws obtained in this way are proved to be
true by numerical calculations. So, for example, the calculated size the particle speed gain for one period
of trajectory increase coincides completely with observed one.

Let us exemplicify the use of such transformation to search for an accelerating trajectory. Let the
parameter of system § be equal to % It is easy to see that the system parameter will not be changed by
the combination of one transformation f_5 and two transformations fi2. Thus, at the specified parameter,
an infinitely growing trajectory increases its speed by 4for one wall period. Let us consider a trajectory
with the initial phase close to one. This trajectory will be an infinitely growing one if after a number of
collisions again will hit the wall at a collision phase close to one, but at speed exceeding the initial one
by 4. It is easy to see that two speed-increasing collisions of the particle are enough for this purpose. For
the initial particle speed of Vj, we have:

d+1
| =2 8
Vo+4
Having solved this system of equations, we get Vo = 0. Thus, if the system parameter § = %, the
trajectory with the initial phase & = 0.9999 and initial speed V5 = 0,4, 8... will be infinitely growing,
and for each wall movement period the particle will increase its speed by 4. The phase portrait of this
trajectory is shown in Fig. 5. This is most fast-growing trajectory of all infinitely Growing ones.

It is similarly possible to consider the case at other parameters of the system. For example, if § = 1

k)
the system parameter is not changed by the combination of three transformations of the first type alfd
five transformations of the second type, and an infinitely growing trajectory increases its speed by 10 per
period. For this purpose, the trajectory period should be not less than three the wall movement periods;
accordingly, the greatest acceleration of the trajectory possible at the specified parameter is equal %.
Having made and solved the system of 17 equations corresponding to such trajectory, it is possible to
obtain the phase and speed of the initial collision for this trajectory.

Similarly, it is possible to obtain the maximum accelerations values for the particle at various values
of §.parameter

Let us consider the limiting case when the parameter § is close to 1. Physically, it means that walls are
closely approach to one another during the period. This limiting case is opposite to often used limiting
case when the wall movement amplitude is neglected in comparison with distance between walls.

Neglecting the difference between the wall oscillation amplitude and distance between the walls, i.e.
considering § = 1 and assuming the particle speed to be high enough, we obtain a simplified mapping:

Upg1 = Up + 2
€n+1 == gn =+ Qi

Un41

(3)

It is easy to see that the mapping (3) has an invariant
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I, = u, (1 —&,) = const (4)
Let us consider the value of this invariant on n + 1-th step and transform it using the mapping (3):

1—¢&, 2

a1 = Eug1) = (1 + 2)(1 = & = 2278) = (1= €)1+ 2)(1 = —

)=

Un

= (1= &) + 22

) = un(l— &)

Thus,

In+1 =1,

and this value is preserved at iterations. Hence, each orbit of the mapping is evolved remaining in the

curve.
const
Up 1-5) (5)

Here, the value const = ug(1 —&p) is defined by initial conditions. It means that in this limiting case,
the mode of explosive acceleration of the particle is observed. Therefore, in this limiting case, the system
phase space is stratified by invariant curves along which all trajectories move. At § # 1, I, is not the
exact invariant of the mapping, but gets the sense of adiabatic invariant.

The considered system can be described not only exactly, but also using high-energy approximation.
In this approach, the particle speed is considered high enough to neglect the effects observed at low
speeds, such as double collisions. The distance between walls is considered to be large enough, so it is
possible to neglect displacement of the wall in comparison with it. In this approximation, the wall speed
is considered to be the same as in an exact case. Under this approach, the mapping describing the system
is essentially simpler as compared to the exact one, and has the form

1
vy + 2sign <|§n| - §> ‘

6rs1 == (& +signl€n) 52— ) (mod 1)

Un+1 =

This mapping, despite its simplicity, has an essential Shortcoming that hinders its use. During
evolution, the particle can lower its speed, so that the system can fall outside the limits of the mapping
applicability. In advance, it is not known, whether the particle will descend to inadmissibly low speeds
or not. Therefore, to neglect the displacement of the wall is not trivial and demands an additional
comparative analysis.

Cosidering trajectories under high-energy approach, it is possible to establish that the main difference
from behavior of trajectories in exact mapping is reduced to disappearance of trajectories with infinitely
increasing speed. So, if to take the initial data corresponding in exact mapping to an infinitely growing
trajectory, that data in high-energy approach will correspond to a limited trajectory.

This conclusion remains its validity for all trajectories under high-energy approximation. In other
words, in high-energy approximation, all trajectories are limited. This circumstance demands a cautious
approach to use of high-energy approximation. The physical reason of presence of such fundamental
distinction is connected with preservation of adiabatic invariant (similar to (4)) in high-energy approach
and its infringement in the exact one.

Thus, the particle speed gain is considered at the walls movement being continuous and periodic, but
not smooth. The one-parametrical family of exact mappings for description of particle behavior in such
systems has been obtained. The main characteristics of particles in such systems have been studied. The
existence of fractal set of initial conditions at which of the particle speed increases infinitely has been
demonstrated. The absence of of particle speed limit in such trajectories has been shown analytically.
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Dependence of the particle average acceleration factor on the system parameter is analyzed. The mode
of «superacceleration» of particles in some area of system parameters is revealed. In this mode, an
explosive particle speed increase is observed. Comparison with high-energy approximation is carried out.
Qualitative difference in the particle behavior in comparison with exact mapping is shown. So, in high-
energy approach, there are no trajectories with unlimited growth of speed.
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MinimajgbpHa Mozaeab Pepmi

.M. Hanaexos, A.B.Typ, B.B.Anoscoruti

VY poboTi posrasayTa mpocta Momeas DepMi MPHCKOpEHHd YACTHHKHA MIK JBOMa CTIHKAMM, AKI IIe-
PIOINYHO KOJIMBAIOTHCA. 3AKOH PYXY CTIHOK € HENEPEBHBIM, aje He raatkuMm. OTpuMaHo TOYHE Bimo-
bpaxkeHHs jjida el cucremu. JloBeneHo icHyBaHHA ppakTaabHOI MHOXKHUHA TPAEKTOPIH 31 MBHUIKICTIO,
AKa HeoOMeXKeHO 3pocTae. PosryIaHyTo ToI0BHI XapaKTepPUCTHKNA TaKux TpaekTopiii. IlpoBeaeno mopie-
HAHHSA 3 BHCOKOEHEPTETHYHHM HabJIMKeHHAM. JHalideHo AKICHI BIAMIHHOCTI y IOBEIIHIN TOYHOIO Ta
HabIMyKeHHOTo onuciB. Tak y BHCOKOEHEPreTHYHOMY HAOJMKEHH] BIJICYTHI TpaeKTopil 3 HeOOMeKEeHHM
3POCTAHHAM MIBHIKOCTI.
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