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Modeling of diffuse reflection via billiards
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Method of modeling of diffuse-mirror reflection of beams using microscopic billiards is
offered. It is shown, that such modeling is possible using topologically unusual disseminat-
ing %hbilliards on the cylinder. Qualitative changes of dispersion indicatrix are discussed
with variation of the parameters characterizing the form of a billiard.

B pabore mpennokeH MeTOa MOAEJIHPOBAHUA AUPPY3HO-3€PKATILHOIO OTPAKEHUS JIyden
WCIIONIb3YsS MHUKPOCKOIMUYecKue Ousamapabl. IlokasaHo, 4TO TaKoe MOIEJIMPOBAHNE BO3MOIK-
HO IIPY KCIIOJb30BAHUHU TOIOJOIMYECKM HEOOBIUHBIX PACCEHBAIOIINX OMJIINAPLOB HA I[MJINHI-
pe. OGcy:KmeHBl KaueCTBEHHbIe H3MEHEHHUS HHAWKATPHUCCHI PACCESHUS IIPU BaPbUPOBAHUU
mapamMerpoB, XapaxkTepuayomux Gopmy Ousauapaa.

1. Introduction

Mathematical billiards - one of classes of dynamical systems actively studied now. Elementary billiards
already generate dynamics leading to occurrence of determined chaos [1], [2]. It is well-known, that any
difficult enough system usually shows chaotic behavior. Therefore studying of laws of chaotic regimes is
important. Mathematical billiards are one of the most simple systems on which it is convenient to study
mechanisms of occurrence of chaos and features of chaotic behavior. In physics billiards are applied to
modeling of properties of many real systems.

One of the most natural and known applications of billiards to real physical problems, is modeling
by means of billiards of distribution of light in scintillation crystals [3], [4]. Distribution of light in
a crystal corresponds to rectilinear movement of a beam in billiards, and to reflection of light from
crystal border there corresponds reflection of a beam from billiards border. At the description of light
harvesting in scintillation crystals the detector is identified with a corresponding billiard. Dynamics of
light beams is reduced to research of billiard trajectories, and the associated with them topological and
metric characteristics. The picture of light harvesting in general is defined by properties of a billiard.
Studying of them allows clarifying the general physical laws of light harvesting and, as a result, more
effectively optimize this process [5].

However, modeling of such processes face a problem connected with type of reflection of beams from
border. In mathematical billiards reflection strictly follows the mirror law, while in real crystals light is
reflected from crystal border diffusively. Real indicatrix of reflection has narrow maximum in a direction
of mirror reflection and essential diffuse part [6]. Distribution of energy of falling light between mirror
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and diffuse reflection components depends on the angle of incidence, while the form of diffuse parts of
indicatrix of dispersion, as a rule, is considered independent from the angle of incidence [6].

In this work it is shown, that light distribution in scintillation crystals even taking into account diffuse
part of reflection can still be simulated via specific billiards in which reflection of a beam from borders
occurs strictly under the mirror law.

2. Problem statement

Let’s show how it is possible to model diffusive reflection component using billiards. For modeling of
propagation of light in scintillation crystal we will use a billiard which as a whole has the form of crystal.
However, its border is arranged so only on large scales. On small scales it consists of «microscopic» open
billiards of some definite form (as on Fig. 1 for example) so that in general the billiard modeling a crystal
will look like shown on a Fig. 2. The choice of the form of a microscopic billiard plays important role. In
the chosen example the border of a microscopic billiard has disseminating site. Presence of such site in the
closed billiard guarantees chaotic behavior of beams in it. The idea of modeling of diffusive component
of dispersion is based on it.

The form of a microscopic billiard defines shape of indicatrix of dispersion. Even for the presented
simple example the form of a microscopic billiard is defined by three dimensionless parameters. Having
accepted as unit of length the distance between lateral walls { and normalize on it all distances, we
will choose as billiard parameters height h = H/I, length of a horizontal part of the border adjoint to
the wall @ = A/l, and radius of curvature of a convex part of border » = R/l. Three dimensionless
parameters create wide opportunities for control of form of dispersion indicatrix by variation of the form
of microscopic billiards. Thus, for diffuse component of reflection to appear we will use as microscopic -
billiards with chaotic behavior of the beams, in particular disseminating billiards [1]. Certainly, to provide
access of beams to an interior of a corresponding billiard, we will consider the billiards belonging to a
separate class - open billiards [8]. In this work we will consider only two most simple forms of microscopic
billiards for demonstration of the basic idea of modeling of diffuse and mirror dispersion components.
Let’s start with microscopic billiard with border on the average convex, i.e. disseminating open billiard
shown on Fig. 1. The size of «microscopic» billiard, and, accordingly, number of such billiards in unit
length of a wall of global billiards, we will choose so that the size of microscopic billiard was small in
comparison with width of the beam of light which distribution will be modeled, but much greater than
the wavelength.

Let’s notice, that the chosen form of billiard automatically provides the mirror component of reflection
arising due to reflection from the top flat part of the border. The part of energy, corresponding to this
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Fig .1. Example of form of «microscopic» billiard, forming large-scale border of a billiard. Such
«microscopic» billiard is characterized by three dimensionless parameters h = H/l, a = A/l and r = R/l
Here R - radius of curvature of a convex segment.
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Fig. 2. General view of billiard and its border, which consists of «microscopics» billiards. In a circle the
small-scale structure of border is shown.

a) b)

Fig. 3. Indicatrixes of dispersion for microscopic billiard which has lateral walls, with parameters a)
h=066,r=1,a=03and b) h =0.66, r =1, a = 0.46, received as a result of numerical simulation.
By the arrow the direction of an incident bunch of beams is shown. The length of indicatrix in the
specified direction is proportional to number of the reflected beams in this direction.

part of reflection does not depend on the angle of incidence of beams. Besides, if we make the chosen
microscopic billiards closed, having put the size of an entrance window equal to zero, such billiards
obviously will be chaotic, due to presence of a convex disseminating part of border. One of properties of
chaotic movement is «loss of memorys about initial conditions. Therefore for the beams which stay long
enough in microscopic billiard, the probability to exit from it in a certain direction practically will not
depend on position and angle of the beam, which it has entering billiard. Existence of trajectories with
such property will provide diffuse reflection component. These simple reasons also define character of
quantitative changes of diffuse component with change of the size of an entrance window and curvature
radius r.

3. Properties of dispersion indicatrix

Using the border consisting from introduced above microscopic billiards (Fig. 1), it is possible to
simulate reflection of beams from such border. Received as a result of numerical simulation typical
indicatrixes of dispersion, generated by microscopic billiards, are shown in a Fig. 3. The characteristic
form of indicatrix has maximum in a direction, close to the opposite direction of a falling bunch of beams.
Collateral local maxima and diffuse part are also observed.

Distribution of energy between diffuse part and local maxima of reflection essentially depends on the
form of microscopic billiard. In particular, if the size of an entrance window is small in comparison with
characteristic size of billiard [, and the beam which has got into billiard suffers significant number of
collisions before leaving it, than indicatrix of reflection will mainly be diffusive (see rice 3 b). It is possible
to see comparing indicatrix of dispersion with narrower window and wider entrance window in Fig. 3 a.
Respective alterations of dispersion components are well appreciable.

If the entrance window is wide enough, comparable with the characteristic size of billiard, than most
part of falling beams will leave billiard after only several reflections from its walls. In this case the number
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Fig. 4. With big enough entrance window reflection mainly occurs in several depending on angle of
incidence directions. Indicatrix of dispersion for billiard with lateral walls and parameters h = 0.66,
r=1,a=0.13 is shown.

of reflections will be insufficient for the mechanism of loss of memory of initial conditions to work, therefore
the dispersion indicatrix will consist of several major directions of reflection (see Fig. 4). The number of
such directions depends on the angle of incidence. For understanding of the mechanism of formation of
these directions we will consider the beams leaving a microscopic billiard after fixed number of reflections.
In this way the falling bunch of beams is divided into sub bunches each leaving billiard after some certain
number of reflections from border of microscopic billiard. This sub bunches form corresponding splashes
of the indicatrix of dispersion, each occupying some range of angles of reflection. With the increase of
number of reflections before exit from the billiard, as the memory loss grows, the directions start to be
distributed more and more homogeneously.

Following these representations we will consider the trajectories leaving billiard after one collision
(Fig.5). It is easy to understand, that there is some critical angle .., such that if the bunch of beams
falls under an angle ¢ < ., than trajectories leaving after one collision do not exist, and at § > ¢ > ¢,
they are obviously present. For definition ¢, we will notice, that if such bunch exist, it necessarily
contains a trajectory reflected from the center of a convex part of border, i.e. from a point with co-
ordinates (%7 7). The critical angle is defined by a trajectory touching right edge of an entrance window
and passing through the central point of a disseminating segment (Fig. 5). It allows to calculate a critical
angle ¢, = arctan It A

reflected in the range of angles containing an angle of mirror reflection. Hence, the part of beams leaving
billiards after one collision brings the contribution in mirror reflection component.

 from simple geometrical reasons. Thus, the considered bunch always is

Let’s estimate now, what part of energy of falling beams has this bunch. As a measure characterizing
this energy, we will choose the attitude of width of a bunch reflected after one collision to width of
entrance window. It is easy to see, that this share is equal %, where = - dimensionless distance from
a right edge of an entrance window to the beam which after reflection gets to a windows left edge (see
Fig. 5). It reduces research to a simple geometrical problem. After calculations we will receive, that at
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Where ¢4 it is set implicitly by the equation:

1 1
(5 - a) sin(2¢1 — @) + rsin(e; — @) + (h +4/72 — Z) cos(2¢1 — ) =0

If an angle of falling bunch is ¢ > arctan bt e — than right one of beams which are passing through

ol

an entrance window does not leave billiard after one collision any more. Taking this into account, for a
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Fig. 5. The bunch of trajectories leaving billiard after one collision with its border. This bunch always
contains a direction of the mirror reflection, corresponding to reflection from the central point of a
concave segment. By a dotted line the trajectory defining a critical angle is shown.

part of the energy of a bunch leaving after one reflection when ¢ > arctan other analytical
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The received relationships (1), (2) define a part of energy of beams leaving billiard after one collision in

all range of directions of the falling initial bunch. It is possible to prove, that at ¢ = arctan s ——+ the

maximum of dependence of energy of the considered reflected bunch is reached. The received analytlcal
dependence (1) is difficult enough so for visual demonstration we will show this dependence at Fig. 6.
The bunch leaving after one reflection is one of the most essential on indicatrix of dispersion and exists
for any admitable choice of parameters of billiard. It can be used for establishment of some qualitative
criterion, and with its help it is possible to break all of billiards in the considered class into two subclasses:
billiards with purely diffusive indicatrix of dispersion and billiards with mixed indicatrix of dispersion,
containing more or the less obviously expressed directions of targeted reflection. As billiards with diffusive
indicatrix of dispersion we will consider billiards, which energy density of a bunch leaving after one

reflection o ogy At angle of incidence when energy of this bunch has its maximum, much less than the
1-2a 2a

corresponding densrcy of energy in case of purely diffusive reflection type

The received relations (1), (2) also define an energy part of beams close to mirror reflection and are
in agreement with results of numerical simulation. Similarly, it is possible to estimate analytically an
energy part of the bunch of the beams, a leaving billiard for two collisions and so on. These beams also
form corresponding splashes in indicatrix of dispersion. The bunches corresponding to high numbers of
reflections can be found numerically.

However, let’s pass to more important question. We will pay attention, that indicatrix of dispersion
has the essential contribution from return dispersion (see Fig. 3). Presence of such type of dispersion is
characteristic for superconducting systems with Andreev reflection type [7], but is not observed in usual
crystals. Indicatrix of dispersion in scintillation crystals contains only mirror and diffuse parts [6], without
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Fig. 6. Dependence of the part of energy of falling beams, corresponding to the bunch leaving after one
collision, from angle of incidence 0 < p < 7/2, for billiard with parameters h = 0.4, » = 0.63, a = 0.17.

Thig ) ‘ a)

\. \& .
. L
~ N
. S, -
~ Y
N &, \\
-
. - e e T, .
M ) e B, .
B Nt %4 F v

Fig. 7. Indicatrixes of dispersion for microscopic billiards without lateral walls with parameters
a) h=066,r =1, a = 03 and b) h = 0.66, r = 1, a = 0.46. By an arrow the direction of falling
bunch of beams is shown.

reflection in the opposite direction. For elimination of this effect we will use the possibility of management
of the form of microscopic billiard. First of all we will notice, that reflection in the opposite direction is
a consequence of reflection from lateral walls of a microscopic billiard. Therefore for reflection modeling
in scintillation crystals it is necessary to modify considerably microscopic billiard, having lateral walls
removed. From the physical point of view it means change of topology from billiards with transition to
billiards on the cylinder. Such billiard can be received sticking together lateral walls with each other.
Typical indicatrix of reflections of the modified billiard received numerically is shown in Fig. ??. It is
visible, that such indicatrix has corresponding maximum in the direction of mirror reflection. Analytical
parities (1), (2) and dependence (Fig. 6) from the angle of incidence for the part of energy of unitary
reflection remains the same for a billiard on the cylinder. It is connected with absence of influence of lateral
borders on these beams. Thus, the mirror part of reflection appears to have two pieces: reflection from
the top flat part of border of billiard and the mirror reflection generated by the interior of microscopic
billiard. In this way the part of energy of the falling bunch, reflected in the mirror direction appears
to be dependent on an angle of incidence. It is necessary to notice, that presence of flat sites between
entrance windows of microscopic billiards is not necessary. Thanks to topology of a microscopic billiards
it is possible to make all border of a billiard only from windows. Basically it does such border even more
realistic than it is in case of presence of periodic structure of flat sites between entrance windows. In this
case mirror component will mainly be defined by beams with unitary reflection. Thus the energy part
of mirror component will be defined by the relation /(1 — 2a). Thus it is shown, that for modeling of
indicatrix of dispersion qualitatively corresponding to observed in scintillation crystals, it is necessary to
use microscopic billiards of certain topological type. Selection of quantitative characteristics needs to be
carried out after detailed research of influence of change of characteristic parameters of such billiards on
indicatrix of dispersion.
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MoaenroBauusa andy3ifiHoro BiAOUTTS 3a JOIIOMOTOK Oiabsapay
.M. Hanaexos, A.B.Typ, B.B.dnoscvrui

V poboTi 3aIpOOHOBAHT MEeTOM MOJEMIORAHHS AUDY3HO-T3ePKATBHOTO BiAGUTTS TPOMEHIB BUKO-
PHUCTOBYIOUN MiKpOCKOMIHI Ginbapan. [lokazaHo, mo Take MOZETIOBAHAS MOXKJINBO TTPH BUKOPUCTAHHI
TOMOJIOTIYHO HE3BHYAKHMX GiJBAPMIB Ha IMUIIHAPI IKi TPOCIOIOThL TpoMeHi. BusiB/ieHO SKicHI 3MiHM
IHAWKATPUCH PO3CIIOBAHHAS 31 3MiHOIO TapaMeTpiB, MO XapaKTepU3yIoTh (hopMy GiTLIapy.
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