- Влияние концентрации и зернистости композиционного наполнителя на прочностные характеристики матриц алмазных буровых коронок / В. П. Бондаренко, А. М. Исонкин, Н. А. Юрчук и др. // Породоразрушающий и металлообрабатывающий инструмент – техника и технология его изготовления и применения. – К.: ИСМ им. В. Н. Бакуля НАН Украины, 2011. – Вып. 14. – С. 44–51.
- 5. Влияние легирующих микродобавок на долговечность вольфрамовых твердых сплавов / В. П. Бондаренко, М. Г. Лошак, Л. И. Александрова и др. // Породоразрушающий и металлообрабатывающий инструмент – техника и технология его изготовления и применения. – К.: ИСМ им. В. Н. Бакуля НАН Украины, 2007. – Вып. 10. – С. 478–481
- 6. Панов В. С., Чувилин А. М., Фальковский В. А. Технология и свойства спеченных твердых сплавов и изделий из них. 2-е изд., доп. и перераб. –М.: МИСИО, 2004. 464 с.
- 7. Фальковский В. А., Клячко Л. И. Твердые сплавы. М. : Руда и металлы, 2005. 416 с.
- 8. ГОСТ 9391-80. Сплавы твердые спеченные. Методы определения пористости и микроструктуры.
- 9. Чапорова И. Н., Чернявский К. С. Структура спеченных твердых сплавов. М.: Металлургия, 1975. 248 с.
- 10. ГОСТ 20018-74. Сплавы твердые спеченные. Метод определения плотности.
- 11. ГОСТ 20017-74. Сплавы твердые спеченные. Метод определения твердости по Роквеллу.
- 12. ГОСТ 24916-81. Сплавы твердые спеченные. Метод определения коэрцитивной силы. Поступила 05.06.12

УДК 622.23.051.7

Г. Д. Ильницкая, А. П. Закора, Р. К. Богданов¹, кандидаты технических наук; С. А. Ивахненко¹, д-р техн. наук; О. А. Заневский¹, канд. хим. наук; А. А. Каракозов², канд. техн. наук; М. С. Попова²

¹Институт сверхтвёрдых материалов им. В. Н. Бакуля НАН Украины, г. Киев, ²Донецкий национальный технический университет, Украина

ИССЛЕДОВАНИЕ И РЕКОМЕНДАЦИИ ПО ОСНАЩЕНИЮ БУРОВОГО ИНСТРУМЕНТА КРУПНЫМИ СИНТЕТИЧЕСКИМИ АЛМАЗАМИ

Приведены результаты экспериментальных и аналитических исследований возможности использования в разрабатываемых конструкциях однослойных буровых коронок крупных кристаллов синтетического алмаза с разными прочностными характеристиками, определяемыми совершенством структуры кристаллов алмаза, морфологией поверхности граней и магнитными свойствами.

Ключевые слова: синтетические алмазы, дефектность поверхности, удельная магнитная восприимчивость, однородность, однослойные алмазные буровые коронки.

Введение

Синтетические сверхтвердые материалы все шире применяют в оснащении буровых породоразрушающих инструментов.

В целях оснащения инструмента для бурения скважин в крепких породах используют синтетические монокристаллические алмазы с зернистостями 250/200–630/500 мкм. Для бурения скважин в мягких породах и средней крепости используют инструмент, оснащенный элементами из алмазных поликристаллических композиционных материалов и

крупных природных алмазов. С разработкой в ИСМ им. В. Н. Бакуля НАН Украины крупных синтетических алмазов размером до 7 мм появилась возможность использования этого сырья в буровом инструменте, для бурения скважин в породах средней твердости. Однако вопрос термостойкости таких алмазов и оптимизации процесса их производства для целевого использования в буровом породоразрушающем инструменте детально не изучали.

Синтетические алмазы (СА), которые используют в буровом инструменте, должны прежде всего иметь стабильно высокие прочностные характеристики – исходную прочность (статическую и динамическую) и термопрочность. Специфические особенности синтетических алмазов определяются главным образом скоростью увеличения кристаллов алмаза во время их синтеза, что влияет не только на внешнюю, но и на внутреннюю морфологию кристаллов.

Дефекты поверхности существенно влияют на прочностные характеристики кристаллов алмаза.

Ранее были проведены исследования по разделению методом адгезионно-магнитной сортировки по дефектности поверхности шлифпорошков алмаза марки AC200 зернистостью 400/315 мкм, полученных в различных ростовых системах. При этом после разделения определяли физико-механические характеристики полученных шлифпорошков – статическую прочность P, и дефектность поверхности, которую оценивали по коэффициенту поверхностной активности K_a . Содержание объемных дефектов в зернах алмаза определяли по измеряемой удельной магнитной восприимчивости порошков χ [1]. Результаты этих исследований показаны на рис. 1.

Рис. 1. Зависимости прочности высокопрочных шлифпорошков алмаза зернистостью 400/315 мкм от дефектности поверхности кристаллов (1) и удельной магнитной восприимчивости (2)

Как следует из рис.1, наблюдается устойчивая тенденция снижения прочности шлифпорошков алмаза зернистостью 400/315 мкм по мере повышения степени поверхностной дефектности кристаллов (кривая 1). С увеличением удельной магнитной восприимчивости шлифпорошков алмаза их прочность снижается (кривая 2).

Результаты анализа изменения свойств алмазных порошков зернистостью 400/315 мкм, полученных адгезионно-магнитной сортировкой, показали, что разделение алмазных кристаллических частиц по дефектности поверхности сопровождается изменением основных характеристик алмазных порошков, таких как уровень объемных дефектов χ , и

прочностных характеристик. Полученные результаты подтверждают высказанное ранее предположение, что состояние поверхности кристаллов алмаза является одной из основных характеристик качества алмазного порошка.

Объемные дефекты обусловлены в основном присутствием в кристалле алмаза включений сплава-растворителя и поэтому количественно тесно связаны с удельной магнитной восприимчивостью χ [2].

При этом включения и примеси становятся объемными дефектами и непосредственно влияют на прочностные характеристики алмазных порошков [3; 4]. Результаты ранее выполненных исследований показали, что кристаллы алмаза с высокой удельной магнитной восприимчивостью, как правило, характеризуются низкой термостабильностью [5; 6]. В этой связи для повышения прочностных характеристик кристаллов алмаза и износостойкости бурового инструмента необходимо из общей массы порошка отделить кристаллы алмаза с высокой удельной магнитной восприимчивостью.

Исходя из изложенного, цель настоящей работы – исследование возможности использования в конструкции буровых коронок крупных кристаллов синтетического алмаза с различными прочностными характеристиками, определяемыми совершенством структуры кристаллов алмаза, морфологией поверхности граней и магнитными свойствами.

Методика эксперимента

Исследовали монокристаллы алмаза двух партий зернистостью 1250/1000 мкм, которые получили методом стимулированной спонтанной кристаллизации с использованием мелкодисперсных смесей графита и растворителя на основе сплава железо-кобальт при давлении 5,8-6,2 ГПа и температурах 1450-1480 °С в аппарате высокого давления типа «тороид». Алмазные порошки получили из продуктов синтеза путем химической обработки, сортировки и классификации после выращивания кристаллов. Общий выход кристаллов размером 1000–1600 мкм составлял ~70 % общей массы алмазного продукта; выход отсортированных кристаллов внутри этой зернистости составил ~20 %. Эти кристаллы дополнительно разделили на две партии (В28 и В29) с помощью классификационного вибростола для дальнейшей работы. Габитус обеих партий можно характеризовать как кубооктаэдрический, однако степень площадного развития граней куба и октаэдра для образцов партии В28 составляла ~50 % / 50 %, в то время как для образцов партии В29 степень площадного развития граней октаэдра составляла не менее 80 %. Кристаллы алмазов каждой из этих партий дополнительно разделяли в магнитном поле на несколько фракций. В каждой фракции определяли выход и измеряли удельную магнитную восприимчивость у, по методике, разработанной в ИСМ [6]. Для изучения свойств от каждой фракции и исходных порошков в обеих партиях отбирали по 10 кристаллов. Для оценки однородности порошков по магнитным свойствам определяли удельную магнитную восприимчивость каждого отдельного кристалла алмаза [7; 8].

Результаты исследований и их обсуждение

Кристаллы алмаза двух партий (B28 и B29) разделили в магнитном поле: партив B28 – на четыре фракции, B29 – на три. В каждой разделенной фракции определяли массовый и процентный выход кристаллов алмаза, измеряли их удельную магнитную восприимчивость и рассчитывали однородность по магнитным свойствам. Результаты разделения кристаллов алмаза приведены в табл. 1 и 2.

Номер фракции,	Выход,		Удельная магнитная	Однородность по
разделенной по			восприимчивость	магнитным
магнитным свойствам	карат	%	χ,×10 ⁻⁸ , м ³ /кг	свойствам <i>К</i> _χ , %
1	1,955	7,8	327,1	43,0
2	4,2115	16,8	125,2	58,0
3	5,0075	20,0	40,4	61,0
4 (немагнитная)	13,854	55,4	6,0	68,1
Исходная	25,028	100,0	57,9	20,0

Таблица 1. Результаты разделения кристаллов алмаза партии В28 в магнитном поле

Как следует из данных табл. 1 кристаллы алмазов партий B28 с удельной магнитной восприимчивостью 57,9·10⁻⁸ м³/кг разделены в магнитном поле на четыре фракции, различающиеся магнитными свойствами. Удельная магнитная восприимчивость крайних фракций разделения – магнитной 1 ($\chi = 327, 1\cdot 10^{-8}$ м³/кг) и немагнитной 4 ($\chi = 6, 0\cdot 10^{-8}$ м³/кг) отличается приблизительно в 50 раз. При этом однородность по магнитным свойствам в сравнении с исходным сырьем повышется примерно в три раза.

Tuomidu 2. Tesymbra pusidentenini Aprietanto bankasa naprini D2> b karinini karine								
Номер фракции,	Выход,		Удельная магнитная	Однородность по				
разделенной по			восприимчивость	магнитным				
магнитным свойствам	карат	%	χ,×10 ⁻⁸ , м ³ /кг	свойствам <i>К</i> _{\lambda} , %				
1	0,662	2,7	53,2	61,1				
2	5,022	20,0	19,6	65,3				
3 (немагнитная)	19,326	77,3	0,31	79,4				
Исходная	25,010	100,00	5,6	47,3				

|--|

При разделении в магнитном поле кристаллов партии B29 с удельной магнитной восприимчивостью 5,6·10⁻⁸ м³/кг получено три фракции. Удельная магнитная восприимчивость крайних фракций разделения – магнитной 1 ($\chi = 53,2\cdot10^{-8}$ м³/кг) и немагнитной 4 ($\chi = 0,31\cdot10^{-8}$ м³/кг) различается более чем в 170 раз. При этом однородность по магнитным свойствам в сравнении с исходным сырьем повышается в 1,3 раза.

На основании анализа результатов измерения удельной магнитной восприимчивости кристаллов алмаза отбраковали кристаллы с высокой удельной магнитной восприимчивостью. В результате отделились фракции кристаллов алмаза с высокой удельной магнитной восприимчивостью (1 магнитная) в каждой партии. После этого рассчитали выход и удельную магнитную восприимчивость оставшихся после отбраковки кристаллов алмаза. Результаты расчетов приведены в табл. 3 и 4.

Таб.	ица 3. Характеристики кристаллов	алмаза	партии	B28 (с учетом	проведен	ной
отбј	раковки						

Номер фракции	Выход,		Удельная магнитная	Однородность по	
разделенной по	ной по карат %		восприимчивость	магнитным свойствам K_{χ} , %	
магнитным свойствам			χ,×10 ⁻⁸ , м ³ /кг		
2	4,2115	18,2	115,4	62,5	
3	5,0075	21,7	37,2	69,0	
4 (немагнитная)	13,854	60,1	5,5	78,1	
Исходная	23,073	100,00	32,4	31,0	

Таблица 4. Характеристики кристаллов	в алмаза партии	В29 с учетом	проведенной
отбраковки			

Номер фракции	Выход, карат %		Удельная магнитная	Однородность по магнитным свойствам К _{\lambda} , %	
магнитным свойствам			χ,×10 ⁻⁸ , м ³ /кг		
2	5,022	19,1	19,1	69,7	
3 (немагнитная)	19,326	79,4	0,30	81,3	
Исходная	24,348	100,00	5,3	52,4	

Графические зависимости коэффициента однородности по магнитным свойствам K_{χ} кристаллов алмаза зернистости 1250/1000 мкм исследуемых партий от их удельной восприимчивости χ показаны на рис. 2, 3.

Рис. 2. Зависимости коэффициента однородности по магнитным свойствам К_х кристаллов алмаза зернистостью 1250/1000 мкм партии 28 исходных (1) и после отбраковки (2)

Рис. 3. Зависимости коэффициента однородности по магнитным свойствам K_{χ} кристаллов алмаза зернистостью 1250/1000 мкм партии 29 исходных (1) и после отбраковки (2)

Из графических зависимостей следует, что отбраковка кристаллов с высокой удельной магнитной восприимчивостью существенно повышает однородность по магнитным свойствам одновременно двух партий алмазов. При этом очевидна значительно большая однородность по магнитным свойствам после отбраковки кристаллов алмаза партии B29 относительно кристаллов алмаза партии B28.

Анализируя результаты выполненных исследований, следует отметить, что алмазы партии B28 с большей степенью площадного развития граней куба, в силу особенностей роста секторов (100), по-видимому, захватывают большее количество микровключений растворителя. В этой связи магнитная восприимчивость кристаллов этой партии, характеризующая, по сути, общее удержание микровключений в кристаллах, имеет большее значение, чем этот показатель алмазов партии B29. Монокристаллы алмаза партии B28 менее однородны по магнитным свойствам и поэтому в меньшей степени пригодны для использования в буровом инструменте.

В целях определения возможности использования всей массы оставшихся после отбраковки алмазов обеих партий провели аналитические исследования по определению

динамических нагрузок, воспринимаемых в процессе бурения кристаллами алмаза при контакте инструмента с горной породой.

Полученные результаты можно использовать при проектировании однослойных алмазных коронок, результаты аналитических исследований которых показали, что нагрузка на алмазы в секторе и на линии резания распределяется неравномерно и зависит от схемы размещения алмазов. Наиболее нагружены всегда алмазы первого рабочего ряда. Это связано с тем, что расстояние на одной линии резания между первыми алмазами сектора и последними алмазами предыдущего сектора l_{κ} превышает расстояние между алмазами внутри сектора l_{a} (рис. 4). Нагрузка на алмазы первого рабочего ряда может превышать нагрузку на последующие ряды сектора в 2–5 раз (табл. 5).

Таблица 5.	. Результаты аналитиче	еского исследования	взаимодействия	алмазов коронки
с породой	в процессе бурения			

нки, мм	кладки	кторов I	мазов в 1ния		h _{max} /h _a		$h_{I'}$	/h _a	h_2/h_a	$h_{I}/$	h_2
Диаметр корон	Тип схемы рас	Количество се коронки	Количество ал линиях реза	l^{κ}/l^{a}	1 рад. ряд	2 рад. ряд	1 рад. ряд	2 рад. ряд	3 и следую щие ряды	1 рад. ряд	2 рад. ряд
		8	3	2,66	2,	11	1,	71	0,64	2,6	56
	T	12	2	4	1,	87	1	,6	0,4	4	
	1	24	1	1		1	1		_	_	
59		8	2	3	1,	1,74		49	0,49	3	
		6	4/3	2,33	2,22	2,73	1,53	2,18	0,65	2,33	3,33
	II	10	3/2	4	2,17	2,5	1,66	2,08	0,41	3,99	4,99
		8	3/2	2	1,96	2,37	1,25	1,87	0,62	2	3
		14	2	2,33	1,	75	1,3	396	0,59	2,3	34
	Ι	26	1	1		1		1	—	-	
9		10	2	3	1,	75	1,4	199	0,499	3,0	03
7		8	4/3	2,33	2,22	2,73	1,53	2,18	0,65	2,33	3,33
	II	10	3/2	3	1,96	2,37	1,49	2	0,499	3	3,77
		10	3/2	2	1,6	2,16	1,25	1,87	0,62	2	3
		12	3	2,66	2,	11	1,	71	0,64	2,6	66
93	т	12	3	5	2	2,6		14	0,42	5	
	1	38	1	1	-	1		1	_	_	
		8	3	4	2	,6	-	2	0,49	4	
		10	4/3	2,33	2,22	2,73	1,53	2,18	0,65	2,33	3,33
	II	14	3/2	2	1,6	2,16	1,25	1,87	0,62	2	3
		8	4/3	3	2,22	2,73	1,64	2,26	0,61	2,66	3,66

Примечание: h_a – углубка алмазов коронки в породу при статическом вдавливании; h_{max} – максимальная толщина слоя породы, срезаемого алмазом при неустановившемся режиме разрушения породы на забое; h_1 и h_2 – соответственно, толщина слоя породы, срезаемого алмазами первого рабочего ряда, а также второго и последующих рядов при установившемся режиме разрушения породы.

Рис. 4. Схема торца алмазной коронки: • – алмазы первого и второго рабочего ряда

Неравномерность распределения нагрузки ведет к неравномерному износу алмазов и, как следствие, к аварийной работе коронки. С учетом этого, при конструировании рабочего торца однослойной буровой коронки целесообразно использовать в качестве резцов алмазные монокристаллы с различной магнитной восприимчивостью. В первом рабочем ряду сектора нужно использовать алмазы из партии с меньшей магнитной восприимчивостью, т. е. более прочные, а для последующих рядов можно алмазы с большей магнитной использовать восприимчивостью. Таким образом, будет обеспечиваться рациональное не только использование алмазного сырья, но И эффективность работы коронки.

Наведено результати експериментальних і аналітичних досліджень можливості використання в розроблюваних конструкціях одношарових бурових коронок великих кристалів синтетичного алмазу з різними характеристиками міцності, обумовленими досконалістю структури кристалів алмазу, морфологією поверхні граней і магнітними властивостями.

Ключові слова: синтетичні алмази, дефектність поверхні, питома магнітна сприйнятливість, однорідність, одношарові алмазні бурові коронки.

The article presents the results of experimental and analytical studies investigating the applicability of large synthetic diamond crystals in the design of single-layer drill bits. The different strength characterictics of diamond crystals are considered taking into account the perfection of the crystal structure of diamond, the surface morphology of faces and magnetic properties.

Key words: synthetic diamonds, defective surfaces, magnetic susceptibility, uniformity, single-layer diamond drill bits.

Литература

- 1. Влияние качественных характеристик высокопрочных алмазов на работоспособность бурового инструмента / Н. В. Новиков, Г. П. Богатырева, Р. К. Богданов и др. // Породоразрушающий и металлообрабатывающий инструмент техника и технология его изготовления и применения. К., 2007. Вып. 10. С. 160–168.
- 2. Физические свойства алмаза. Справочник. К.: Наук. думка, 1987. С. 85–89.
- Невструев Г. Ф. Включения в алмазах как источник информации об условиях роста кристаллов и их качества // Изменение свойств материалов под действием высоких давлений. – К.: ИПМ АН УССР, 1986. – С. 13–16.
- Получение высокачественных алмазных шлифпорошков / Г. Д. Ильницкая, Г. П. Богатырева, Г. Ф. Невструев // Синтез, спекание и свойства сверхтвердых материалов. – К.: ИСМ им. В. Н. Бакуля НАН Украины, 2005. – С. 63–71.
- 5. Повышение износостойкости бурового инструмента, оснащенного синтетическими алмазами / Н. В. Новиков, Г. П. Богатырева, Г. Д. Ильницкая и др. // Сверхтвердые материалы. 2009. № 1. С. 83-92.
- 6. Исследование физико-химических характеристик крупных синтетических монокристаллов для бурового инструмента / Н. В. Новиков, А. П. Закора, Г. Д. Ильницкая и др. // Породоразрушающий и металлообрабатывающий инструмент – техника и технология его изготовления и применения. – К. – 2011. – Вып. 14. – С. 249-254
- 7. М88 Украины 90.256–2004. Методика определения удельной магнитной восприимчивости порошков сверхтвердых материалов. К.: ИСМ им. В. Н. Бакуля НАН Украины, 2004. 9 с.
- 8. М 28.5-283:2009. Методика аналитической оценки магнитных характеристик порошков сверхтвердых материалов. К.: ИСМ им. В. Н. Бакуля НАН Украины, 2009. 16 с.

Поступила 21.06.12