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The processes of structure formation in an anisotripic system described by Kuramoto-
Sivashinsky equation with additive noise as a generalization of the Bradley-Harper model
for formation of surface structures induced by ion sputtering processes are studied. The
time stability of the periodic spatial structures in the linean regime is considered. For a
nonlinear model, the formation of various surface structures are studied, the power law of
the surface growth is established, the roughness index and correlation fractal dimension-
ality of the respective structures are determined.
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1. Introduction

Nanostructuring of solids has received
much attention due to its potential applica-
tion in electronics [1]. Among theoretical
investigations, there are a lot of experimen-
tal data manifesting a large class of pat-
terns appeared as a result of self-organiza-
tion process on the surface of a solid. Ion
beam sputtering is frequently regarded as a
process for the fabrication of various nano-
structured surfaces or interfaces. In the
past few years, the ion-sputter erosion tech-
nique has aroused new interest as a method
of producing nanodot/nanohole arrays on
solid surfaces (see e.g. [2—9]). When a high
energy ion enters a surface, several effects
occur, including implantation, damage, mix-
ing, electron emission, and chemical reac-
tions, in addition to sputtering. It was
shown experimentally that the main proper-
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ties of pattern formation and structure of
patterns (for example the size of nano-
dots/nanoholes or rows) depend on the ener-
getic ion beam parameters such as ion flux,
energy of deposition, ion dose, angle of in-
cidence and temperature. Rows formation
was studied on different substrates, i.e. on
metals (Ag and Cu) [10, 11] on semiconductors
(Ge [12] and Si [13—-15]) on Sn [16], InP [17],
on Cdy;Nb,O; pyrochlore [18] and other. As
was shown the height modulations on the sur-
face induced by ion-beam sputtering result in
rows formation having the typical size of 0.1
to 1 um and nanoscale patterns with the lin-
ear size of 3.5 to 25 nm [19].

It is well known that the incidence angle
has an influence on orientation of rows. Re-
ally, the wave vector of the modulations is
parallel to the component of the ion beam in
the surface plane at the incidence angles
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around %2, but perpendicular to that compo-
nent at small incidence angles (close to
grazing). In addition, the orientation of
rows can be controlled by a penetration
depth which is proportional to the deposi-
tion energy. A possibility of pattern forma-
tion control by both the incidence angle and
penetration depth was shown in [4, 5]. The
main theoretical models describing rows for-
mation are based on results of the known
works [3, 20—-22].The main mechanisms for
pattern formation were set to predict the
orientation change of the roughness, forma-
tion of holes and dots. These models were
generalized by taking into account additive
fluctuations leading to statistical descrip-
tion of the corresponding processes.

In this article we aim to study the row
(or generally pattern) formation processes
in anisotropic system governed by the corre-
sponding Kuramoto-Sivashinsky equation
which takes into account additive noise
caused by fluctuations of the beam flux. We
consider the linear and nonlinear models
separately and discuss the corresponding
phase diagrams in the space of main beam
parameters reduced to the penetration
depths in each direction and the incidence
angle. Moreover, we present results of the
scaling behavior study of the correlation
functions and discuss time dependences of
the roughness and growth exponents during
the system evolution as well as fractal prop-
erties of the surface. It will be shown that
in the system under consideration, seven
types of structures which can be formed
with varying in incidence angle and pene-
tration depths in each direction have fractal
properties. We shall discuss phase diagrams
and the scaling exponents in detail.

The work is organized in the following
manner. In Section 2, we present the model
for surface structures formation processes
with additive noise. In Section 3, we discuss
the stability analysis of the linear system.
The nonlinear stochastic model is studied in
Section 4. Here, we show the phase dia-
grams of patterning and consider the scal-
ing properties of the correlation functions.
The main results and prospects for the fu-
ture are presented in the Conclusions.

2. Model

Let us consider a d-dimensional substrate
and denote with r the d-dimensional vector
locating a point on it. The surface is de-
scribed at each time ¢ by the height z = h(r,?).
If we assume the surface morphology is
changed under ion sputtering, then we can
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use the model for the surface growth pro-
posed in [3] and further developed in [4].
We consider the system where the direction
of the ion beam lies in x—2z plane at an angle
0 € [0,n/2] to the normal of the uneroded
surface. Following the standard approach,
the average energy deposited at the surface
(let say point O) due to the ion arriving at
the point P in the solid is assumed to follow
the Gaussian distribution [3];

E(r) = s/((2n)3/26p2)exp(—22/202 - (22 + y?)/ 2u2);

¢ denotes the kinetic energy of the arriving
ion, o and u are the widths of the distribu-
tion in directions parallel and perpendicular
to the incoming beam. The parameters o
and u depend on the target material and can
vary with physical properties of the target
and incident energy. The erosion speed at
the surface point O is described by the for-

mula v :p_[ dr®(r)E(r), where integration is
R

provided over the range of the energy dis-
tribution of all ions. Here ®(r) is a correc-
tion for the local slope dependence of the
uniform flux J which for surfaces with non-
zero local curvature is defined by the gen-
eral expression [23]:

®(x,y,h) = Jeos(arctan[V(V h)? + (V, 1)2]).

The material constant p is defined by rela-
tion p=3/(4n2)(NU0C0)‘1, where Uy and C,
are the surface binding energy constants
proportional to the square of the effective
radius of the atomic interaction potential
[28—-25]. Hence, the dynamics of the surface
height is defined by the relation
Oh ~ —v(B - Vxh,V%h,Vgh) and is given by

26]. The linear term expansion gives

O;h = —vo+ YV h+ Vv, V2 h+ vyvgyh. Here v,

is the surface erosion speed; y=7y(0) is a
constant that describes the slope-depending
erosion; Vey = vx’y(e) is effective surface
tension generated by erosion process in each
direction.

If the surface current is assumed to be
driven by differences in chemical potential p,
then the evolution equation for the field A
should take into account the term -V -j in

the right-hand side, where j,=KV(V2h) is
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the surface current; K > 0 is the tempera-
ture-dependent surface diffusion constant.
If the surface diffusion is thermally acti-
vated, then we have K = Dslcp/n2T, where
D, = Dye “/r is the surface self-diffusivity,
E, is the activation energy for surface dif-
fusion, k¥ the surface free energy, p is the
area density of diffusing atoms, n is the
number of atoms per unit volume in the
amorphous solid.

Assuming that the surface varies
smoothly, we neglect spatial derivatives of
the height & of third and higher orders in
the slope expansion. Taking into account
nonlinear terms in the slope expansion of
the surface height dynamics, we arrive at
the anisotropic Kuramoto-Sivashinsky equa-
tion for the quantity &' = & + vyt of the form

[3, 4]

oh _ oh  Oh  O’h €]
ot Tox " Vxox2 T Vug,2
2 2
A0 My(oh
+ | +F | - KV +Ex,y,t),
2(axj 2| 2y &(x,y,t)

where we drop the primes for convenience
and include additive noise with properties:

(E(r,0)) =0 (2)
(E@,0) (1)) = 22 3(r — x)3(t — t),

where Z is the noise intensity. Coefficients
in Eq.(1) are defined in [4] and read

s
y = Fo—fzagaﬁcz(a(% - 1) — a4s?, 3

_ a_(27 4.4 4.,2,2,.2 (4)
Ve = F02f3{2acs - agagste® +

24262,2 _ 4.4
+ agagssc auc},

c2ac? 5
vy = —Fy 2 ()
Ay = Foziﬂ{agaﬁs‘l(S +2¢2) + (6)

64,452 4,64 2y —
+ 4a6auc 8 — asajc (1 + 2s2)
~f2(2a%s? — a2a(1 + 25?)) — aSajc?s? — f4},

¢
Ay = Foz—fz(aés2 + a%aﬁcZ - aéaﬁcZ - 2. (D
In the above expressions we have defined
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—a2a2c? 8
F() = JSpg_eXp G , (8)
opN2nf 2f
_a _a 9
oot 4=l ©)
§ = sin(0), ¢ = cos(0),

— 422 2.2
f=a3ss + ages.

Here all control parameters are defined by
the ion penetration depths a; and a,, the

incidence angle 0, the flux J and the kinetic
energy . Next, we suppose Fp =1, K =2 and

> —1.

3. Stability analysis of the linear
model

It is known that transitions between two
macroscopic phases in a given system occur
due to the loss of the state stability at cer-
tain values of the control parameters. In the
case of stochastic systems, the linear stabil-
ity analysis needs to be done for a statisti-
cal moment of the perturbed state. We will
now perform the stability analysis for the
system with additive fluctuations. To that
end, we average the Langevin equation (1)
over the noise and get

0 0 2 o2
— () =y by +v, Ry +v,_(h) +
o\ =g () v () vyay2< )

he (0nYD My (o) (10)
+ 7{5) )+ 7’%{@ ) = KV4(h),

where we take into account the noise prop-
erties (2). Now, we can rewrite the linear-
ized evolution equation for the average (h)
in the standard form:

0 » o 11
Z(h) = (Vep + Koplh), ()
with notations
~ 0 o2 @2 s 4 (12)
Vefzya—x+ Vx@"_ Vya—yz, Kef: -KV=,

Substituting solution
(h) = Aexp(i[k,x + kyy - ot] +rt)

into Eq.(11) we arrive at relations for the
frequency o and stability parameter r:

o = -Y(O)k,, (13)
r= v O)k2 - v,(O)k2 — K(k2 + k2)2.
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From Eq.(13) and Eq.(5) it follows that
average height (4) will be stable if v, > 0 .
In Fig. 1 we show stability diagram of lin-
ear model. Here curves I and 2 correspond
to dependences a(6) with a, = 1.5 and a, =
0.5, respectively. Curves I’ and 2’ denote
relations au(e) at a; = 1.5 and a; = 0.5, re-
spectively. We plot angle axes 0 in radians
(bottom) and in degrees (top) for conven-
ience. The domain of stable solutions de-
noted as v, > 0 is on the right of curves. It
is seen from Fig. 1 that increasing in a
restricts the stability domain (curves I and
2), whereas increasing in a, (curves 1' and
2") in contrast expands this domain. In the
insertion we show snap-shots in time 20,
100 and 500 (from top to bottom) of typical
structures in domains of stable and unstable
solutions. It is seen that in the domain of
stable solutions, there are well-defined peri-
odical structures stable in time, whereas if
v, < 0 , the structures have not periodicity
and well-defined orientation. In our simula-
tions, we have used Gaussian initial condi-
tions by taking (A(r,t =0)) =0, ((6h)2) =
0.1; integration time step is Af = 0.005,
space step is ell = 1.

4. Nonlinear stochastic model

Now let us consider the nonlinear system
behavior setting A,# and A, #0. In the
following study, we are basedy on the simu-
lation procedure, solving nonlinear stochas-
tic differential equation (1).

4.1. Surface morphology changing. We
shall consider an anisotropic system where
erosion constant y = 0. We have computed
phase diagrams for the nonlinear systems
illustrating formation of different patterns
shown in Fig. 2. Let us consider diagram
as(0) at a, = 0.25 shown in Fig. 2a. Here,
the whole plane (aH,G) is divided into 10
regions, denoted by A, B, C, D, E, F, G and
characterized by sign of v, A, A, (v, <0
for all regions due to Eq.(5)). In the Figure,
dashed lines correspond to a change of the
sign of A,, dot line defines condition v, = 0,
Xy equals zero in the dash-dot line and if
solid line is crossed then as A, as &, changes
its sign. It is important that at a < a,, one
has known phase diagram where v, A,
change sign and only three different do-
mains (A, B and C) are realized. At that
time, if a; > a,, then there are seven do-
mains which correspond to different struc-
tures. In Fig. 2b we show dependences aH(G)
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Fig. 1. Diagram of temporal stability for pe-
riodical structures of linear model (curves 1
and 2 correspond to dependences a_(0) with
a, = 1.5 and a, = 0.5, I' and 2' denote de-
pendences ap(e) with a; = 1.5 and a_ = 0.5).

at a; = 2.0. Here lines are defined as in a
previous graph. Figs. 2¢ and 2d illustrate
dependences au(ac) at small (8 =0.2) and
large (6 = v2 — 0.2) angles, respectively. In
Fig. 2¢, the dash-dot-dot line corresponds to
the condition v, =24, = 0. Comparing Figs.
2¢ and 2d one can see that an increase in
angle of incidence results in reduction of
region G and invokes large values of a, for
regions A and B. Typical structures in all
possible regions are shown in Fig. 3.

Let us consider a morphology changing
of patterns with respect to signs of v, A,
and ky. A linear stability analysis shows
that the sign of v, determines the stability
of solutions. In other words, v, <0 is a
condition of instability in x-direction exist-
ence (v, < 0 for always due to Eq.(5)). So,
the main criterion of a nanodots/nanocholes
formation is v, < 0 (see regions A, B, F, G).
Investigation of the noiseless anisotropic
Kuramoto-Sivashinsky equation shows that
when A,A, <0 a direction of rows being
rotated with respect to the ion direction
(see regions B, C, E, F). The additional cri-
terion of a nanodots/nanoholes formation is
Kx-ky > 0. Thus, a fabrication of nano-
dots/nanoholes is provided by conditions
v, <0 and Kx-ky > 0 (see regions G and A
and corresponding structures in Fig. 3, re-
spectively).

In contrast to the previous case, the
main condition of rows formation in x di-
rection is v, > 0 and the additional one is
kx-ky< 0 (see regions C and E and corre-
sponding structures in Fig. 8). For regions
B, D, and F the following nanodots/nano-
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Fig. 2. Phase diagrams for the nonlinear systems illustrating formation of different patterns at:
a, = 0.25 (a), a,=2.0 (b), 6 =0.2 (c), 6 =7n/2 - 0.2 (d).

holes formation criteria are valid, as row
and ripples formation ones do not satisfy:
structures B and F are characterized by
negative values of v, (existence of instabil-
ity in x- and y-directions) but different
signs of A, and A, become to rotating of the
row with respect to the ion direction; in
region D with positive values of v, the
product A, A, > 0 does not provide the for-
mation of well defined structures on sur-
face.

The shape of structures A and G, B and
F, C and E is topologically identical: struc-
tures A, B and C are concave and structures
E, F, G and D are convex. The type of a
structure (convex or concave) is determined
by the sign of ky. The system under consid-
eration does not generate concave-like struc-
tures, identically to structures from D re-
gion.

To prove that structures A and G in Fig.
3 are stable in time, we compute the num-
ber of nanodots/nanoholes vs time. Corre-
sponding dependences are shown in Fig. 4.
It is seen that as for process of nanodots
formation (see filled circles), as for process
of nancholes formation (see empty circles)
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the number n =N/N,,, of "islands™ in-
creases at small time (¢ < 400) that corre-
sponds to processes of "islands” formation.
At intermediate time (400 <t < 600), a
relative number of "islands” falling down
that relates to coalescence processes of "is-
lands”. At large time ¢ > 600, one has sta-
tionary behavior of a relative number of
"islands”. So, it follows that processes of
nanodots/nanoholes formation are station-
ary: when the growth and coalescence proc-
esses are finished the average number of
"islands” does not change in time.

4.2. Scaling properties of the surface
morphology. Using numerical data, it is pos-
sible to study the statistical properties of
the system considering the time-dependent
height-height correlation function, deter-
mined in the following manner: Cy(r,t) =
((Mx + ¥, t)-h(r',t))2). In the framework of
the dynamic scaling hypothesis, the correla-
tion function can be written in the follow-

ing form [27, 28]:
(14)
&)
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Fig. 3. Typical structures in regions A-G at
t =420, 1780, 1440, 40, 600, 700 and 320,
respectively.

where W2 = ((h(r)—(h(r)))2), W is the inter-
face width, and

2
o(u) ~ 14 o for u <<1, (15)
const, for u >> 1.

Early stages can be fitted by the function
Cp(r,t) ~ 2W2(#)[1 — exp[—(r/5)?**] [29]. The
dynamic scaling hypothesis assumes that
the following dependences are valid:
W2(t)=<t2B, {(t) 72, where B is the growth
exponent, z is the dynamic exponent for
which 2z = o/p. From another viewpoint, we
can assume [30]

i (16)
Cpy(r,t) = r2oy| = |,
st = w@
where
2B 17
wvy = IV for v <<1, (17)
const, for v >> 1.

Therefore, these two cases lead to the re-
sults Ch(t)o<t2[3 and Ch(r)o<r2°‘, allowing to de-
fine the growth exponent B and the rough-

ness exponent o. As was shown in [30, 31],
the roughness W(¢,L) can be related to the
structure function S(k) as follows

W2(t,L) =V 1Y S(k,b),
k=0

where Sj(k,t) = V’l(hk(t)h,k(t)). The strue-
ture function (%,t) has the form
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Fig. 4. Dependences of the relative number of
nanodots and nanoholes vs time.

Sy(k,t) = k(@200 (k2¢), (18)
with spatial dimension d = 2 where

Okt ~ {kmt?%, for k%t <<1,  (19)
const, for k%t >> 1,

and scales as Sj(k,t) « k~(@+20) for large t

and S,(k,t) = t2F for small .

In previous studies (see for example [6]),
it was shown that even in the isotropic sys-
tem with additive noise the scaling expo-
nents o, [ and z depend on the system pa-
rameters v, A and K. Moreover, these expo-
nents are the time-dependent functions, i.e.
its magnitudes can be changed in the course
of the system evolution. According to the
scaling hypothesis, the temporal evolution
of the quantity W = ((6h)2), where
6h = h — (h), can be represented through the
exponent f.

To characterize fractal properties of the
surface, we can study a pair correlation
function defined as follows:

C,(r3t) = (h(r + r',)h(r,1)). (20)

If there is no characteristic space scale,
then the introduced correlation function
should behave itself algebraically, i.e.,
Cp(rt) = 1/r2, where the scaling exponent A
relates to the fractal correlation dimension
Dy as A = d — Dy. The corresponding Fourier
transformation of the correlation function
Cp(r,t) scales as Sy(k,t) < kP2, From the
definition of the correlation fractal dimen-
sion Dy and the properties of the Fourier
component of the correlator (20) it follows
that at Dy = 0 there is no scaling behavior
of the structure function and
Sp(k,t)zconst. Hence, the surface at the
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fixed time ¢ can be considered as a Gaussian
surface with no correlation, i.e. white noise
in space with equal contribution of all wave-
numbers k; the corresponding spatial corre-
lator (20) is reduced to the Dirac delta-func-
tion, Cp(r) — &(r). In the case Dy =0, one
arrives at typical dependence S (k) « k2 for
diffuse spreading on the Welpl structured
surface. Here the topological dimension d
equals the fractal dimension D,.

We have performed calculations of the scal-
ing exponents for each structure in Fig. 3. We
have computed sets {o;} and {B;} at time win-
dow when the interface width W or the cor-
relation function C,(r) start to grow until
their saturation (i.e., when algebraic de-
pendences W2(t) « 2P and Cy(r) « r2® are
observed). We compute the corresponding
pair correlation function C,(r;t) and the as-
sociated fractal dimension D, specially for
each structure in Fig. 3. The corresponding
sets {0} and {B;} for each structure are
shown in Fig. 5. Fig. 5a illustrates set {B;}
(the top panel represents dependences {B;} vs

time for deterministic model with Z:O,
the bottom panel shows the same depend-
ences for stochastic model at Z =1.0); in

Fig. 5b, we plot the roughness exponents {o;}
(error bars represent the standard deviation
of the mean results).

It is seen from Fig. 5a that exponents B,
which define the growth law of correspond-
ing structures in time have different val-
ues. The time dependence means that at
early stages where growth processes are re-
alized there is a straight line for W2(¢) in
log-log plot. At large time limit where
coarsening processes start to play essential
role, there is a set of exponents {f;}. Such
set means that the local power-law approxi-
mation can be used for the smooth function
W2(t) where each exponent B; relates to the
fixed time interval At;: W2(At) = (At;)%P.
According to such assumption, the function
¢(-) in Eq.(15) should behave itself in a
more complicated form on a given time in-
terval A¢; than the simplest power law
shown above. The proposed approximation
allows to study at what time interval non-
linear effects are responsible for the system
evolution. It can be seen that as for deter-
ministic model (top panel) as for stochastic
one (bottom panel) initially f; start to in-
crease until a maximum is reached; then pB;
decreases. It takes maximal value more
later for structures B and C (time ¢~ 600
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Fig. 5. Scaling exponents for the structures
in Fig. 3: a) the set of the growth exponent
B, (top panel represents results for determi-

nistic system with Z = 0; bottom one shows

results for stochastic system with Z =1.0), b)

the roughness exponent o.

and ¢ ~ 800) than for structures A, E, F, G
and D (f ~ 150 + 800 and ¢ ~ 20). Comparing
results of {B;} for deterministic and stochas-
tic models we can conclude that during the
system evolution, P, grows faster for deter-
ministic system than it is for stochastic
one. It means that the coarsening processes
in deterministic case occur faster than in
the stochastic one. From physical viewpoint,
it means that additive noise promotes slow-
down of growth processes: they are delayed
in time (in a short time interval with small
B; <1). Moreover, coarsening processes are
accelerated without of noise: they occur
with 1 <B; <7. In stochastic system, the

growth processes occur later than at Z =0,

whilst coarsening ones are decelerated with
1 < f; < 38.5. Therefore, the additive noise
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in anisotropic systems is able to delay
growth and coarsening processes (it halves
values of the growth exponent at large time
interval) from one hand. From another one,
it is responsible for decreasing the time in-
terval where these processes are realized.

From Fig. 5b, it can be concluded that
the roughness exponents {o;} do not change
its values in time for each structure from
Fig. 8. Small deviations from a mean value
are within the bounds of error.

It is known that at large time intervals,
the exponents o can be determined from the
definition Sj(k) = B @d+20) where d = 2. We
have computed the spherically averaged
structure function defined on a circle

Sp(k,t) = 1/N,> Sk, t)
k<k<k+Ak

where N, is the number of points on the
circle of the width Ak. Comparison of re-
sults for the exponents o; and o obtained
from relations Cpy(r) = r2® and
Sy (k) = k(d+20)  regpectively, for all struc-

tures shows a difference in 0.5 + 1.5 %.
We have computed the fractal dimension
Dy for all structures in Fig. 3. We have
found that the fractal properties are well
pronounced for the structure A charac-
terizing by the fractal dimension
D,(4) ~ 1.891, whereas structures B and G
are well structural patterns with
Dy(B) ~1.996 and Dy(¢) ~ 1.995. Structures
C, D, E and F are characterized by light
fractal properties with D, = 1.952+1.989.

5. Conclusions

We have studied the patterns formation
processes induced by the ion sputtering
under stochastic conditions of illumination
in anisotropic system. The main assumption
was the stochastic nature of the beam flux.
We have discussed phase diagrams of dif-
ferent patterns in both linear and nonlinear
models. Within the framework of the linear
stability analysis, we have found critical
values of incidence angle at fixed values of
penetration depths which define surface
structures.

Studying the nonlinear model, we have
computed the phase diagrams illustrating
formation of different patterns (ripples,
holes and dots) which relates to the results
from the linear stability analysis. The main
properties of the pattern formation processes
were studied with the help of interface
width and correlation functions. We have
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shown that patterns, characterizing by
nano-holes and nano-dots are stable in time
(a number of holes/dots is a constant at
large time). To make a detailed analysis of
the pattern formation, we have examined
the scaling behavior of main statistical
characteristics of the system reduced to the
correlation functions and its Fourier trans-
forms (structure functions). We have com-
puted the scaling exponent for all possible
realizing structures. It was shown that the
additive noise in anisotropic systems is able
to delay the growth and coarsening proc-
esses and decreases the time interval where
these processes are realized. We have calcu-
lated the fractal (correlation) dimension. It
was shown that all patterns have fractal
properties.
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18, L75,

IIpouecu opMyBaHHA CTPYKTYP
NpM iOHHOMY PO3NMUJIEHHI B aHI3OTPONHIA cucTeMi
3 aTUTUBHUM IIYMOM

B.O.Xapuenko

Hocaimxeno mpoliecu (OpMyBaHHSA CTPYKTYDP y AaHIBOTPONHil cucreMmi, 10 ONUCY€EThCHA
piBaaaaamMm Kypamoro-CiBammHCbKOTO 3 aIWTHUBHUM IIYyMOM, SK y3arajJbHEHHSA MOJeJi
Bpepui-Xapnepa pia opMyBaHHS MOBEPXHEBUX CTPYKTYP, L0 iHAYKOBaHI IpoliecaMu iOHHOTO
posnunenHda. IIpoBegeHo aHanis yacoBoi CTiKOCTI IepioAUYHUX IIPOCTOPOBUX CTPYKTYP AJIA
ninifinol mogeni. Haa Heninifimoi mozmesi BuBUeHO Ipoliecu (DOPMYBaHHSA DPiBHUX IOBEpXHe-
BUX CTPYKTYDP, BCTAHOBJIEHO CTeleHEeBUH BaKOH pPOCTY MOBEePXHi, BU3HAUEHO NOKA3HUK
HMIOPCTKOCTL Ta KopeJAlifiny (ppakTanbHy PO3MipHiCTH BifNOBIAHUX CTPYKTYD.
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