Functional Materials 17,No. 3,(2010) © 2010 — STC "Institute for Single Crystals™

Dynamic properties of antiferromagnets
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The dynamics of domain walls in external alternating magnetic and electric fields has been
studied in antiferromagnetic materials with linear magnetoelectric interaction. The features of
vibrational and drift motion of domain walls depending on the parameters of external fields and
the material characteristics are discussed.

Mayuena nuHamMuka JOMEHHBIX I'PAHUIL BO BHEIIHUX ITEPEMEHHBIX MATHUTHOM U 3JIEKTPH-
YECKOM ITOJIAX B aHTU(EPPOMATHUTHBIX MaTepHasaaxX C JUHEHHBIM MaTHUTOIJIEKTPUYECKUM
B3aumogericteueM. OOCyskIal0TCsI O0COOEHHOCTH K0JIE0ATEIBHOTO M JApeipOoBOTO JIBUKEHUS
JIOMEHHBIX TPAHUI[ B 3aBUCHMOCTH OT IIApaMEeTPOB BHEIIHUX II0JIel U XapaKTePUCTHK
Marepuasa.

1. Introduction

The investigations of magnetic domain structure and domain walls (DW) in magnetic materi-
als which combine ferromagnetic and ferroelectric properties (multiferroics) are of great interest
now both from theoretical and applied standpoints [1, 2]. There is a growing attention to the inves-
tigations of dynamical properties of magnetic inhomogeneities [3-7]. The influence of magnetic field
on the DW dynamics has been studied best of all. The effect of other factors (electrical field, etc.)
has been less investigated. The influence of stationary electrical field on the density of DW surface
energy and the velocity of its motion in ferroelectromagnetics were studied in [8]. In the case of spin
reorientation first order phase transition of Morin type in rhombic ferroelectric antiferromagnetics,
the magnetoelectric interaction excites vibrations of 90-deg DW. The vibration amplitude of such
DW is proportional to the electric field amplitude [9]. The drift of 180-deg DW occurs in magnetics
with a linear magnetoelectric interaction under the influence of external alternating electric and
magnetic fields [10]. The drift speed in this case is proportional to the square of the alternating
field amplitude.

At the same time, the controlled DW displacement under the influence of stationary electrical
field in garnet ferrite films was observed experimentally in [11]. The direction of DW displacement
is reversed as the electric field polarity changes. We have proposed the non-uniform magnetoelectric
effect as the mechanism of the observed phenomenon. The experimental observations of dynamical
transformations in a magnetic stripe domain structure in a bilayer thin film ferromagnetic-Ni/fer-
roelectric-lead zirconate titanate heterostructure in electric field are presented in [12]. In this work,
the nonlinear dynamics of 180-degrees DW in antiferromagnetic with linear magnetoelectric inter-
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action is studied analytically. As the study object, two-sublattice model of antiferromagnetic (AFM)
[4] is used which can describe the magnetic subsystem of rhombic ferroelectromagnetics [13].

2. The model and equations of motion

Let the Lagrange density function L (1) of a two-sublattice AFM be expressed in terms of the
unit antiferromagnetic vector 1, 12 =1 [3, 4]:

\2
L(l): Mg %(l) —%(V])Z —[%lzz +B?2l§]_wme (1)+ 1)
4 . 2 2
+6gMo(h'[lX1D_€(l'h> ’

where 1 denotes the derivative with respect to time; Mg = (Mf‘ +M % ) / 2; My is the length of the
sublattice magnetization vector; ¢ = gM, M / 2, the minimum spin-wave phase velocity; 6 and o,
the homogeneous and inhomogeneous exchange coupling constants, respectively; &, the gyromag-
netic ratio (the same for each sublattice); 31 and B9, the effective constants of rhombic anisotropy;
h=H/M,; H=H, cos(wt+x), the external alternating magnetic field with frequency w and
phase shift X .

The magnetoelectric interaction energy density w,,, (1) have the same form as for the mag-
netic anisotropy one but with other phenomenological constants:

o (1) = E, (t).[%zg +%z§], @

where b; and by are the magnetoelectric interaction constants.

Let the external electric field E(t) = Eq cos(wt) be directed along the pyroelectric axis, which
is considered to be directed along the Y-axis.

Let the dissipative function be introduced which takes into account the dynamic stopping of
the DW:

_ M,
C2g
where X\ i1s the dimensionless Gilbert damping constant.

Since the components of the vector 1 are connected by the relation 12 =1 , it 1s convenient to

rewrite the Lagrange density function (1) in terms of two independent angle variables 6 and ¥ which
parameterize the unit vector 1:

F 2, (3)

I, +il, =sin® exp(iy), l, = cosf. (4)

Taking into account the parametrization from Eq. (4) and relaxation attenuation, we obtain from
the Lagrange density function (1) the following equations of motion for the angle variables 0 and ¥:

(®)

u[A@%é]Jrsin@cos@ Q

C

CLZW (w)z] +(By + b, ) -

—(Bl + blEy>sin2 @} _ %((hx cosp+h, Sin&p)sine + hy coge).
(hx cosfcosp —hy, sinb + h, cosfsin @) +

+

6,

fzx singp — fLZ cosp +h,psin20 + 2¢ sin? 0(h, sinp + h, cos &p)} =
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.9 oad(. .9 .2, .
OLV((VKP)SID 9)—6—2E(¢s1n 9)—(61 +b1Ey)sm fsinpcosy +
+%[(hx cos ¢+ h, sinp)sin + h,, cose](hz cosp — h, sinp)sin6 +
(6)
_l’_

m (hx cos + h, sin up)smecose -

a'psin2 0.

—iiy sinZ 0 —hyé sin 20 — 20 sin2 9<hz sin + A, cos @)] = p ;40

In the case of B; > B9 >0, the DW is stable in the absence of external fields. This DW cor-
responds to ¢ =%0 =0 and the angle variable 6 = 6 (y) satisfies the equation

a8}/ + By sin by cosby =0 (7

and boundary conditions 6, (j:oo) = +7/2. Let the magnetization distribution be considered to be
inhomogeneous along the Y-axis (the prime denotes differentiation with respect to this coordi-
nate).

The solution of Eq. (7) that describes the static 180-deg DW with the rotation of the vector
1in the xy plane has the following form:

Y
Yo

0} Z—LCOSGO (y):—icosh_l[l]’ sinf (y) = —tanh , ®)

Yo Yo Yo

where Yo =+ o/By is the DW thickness.
3. Induced motion of domain walls

To describe the nonlinear macroscopic DW dynamics, let one of perturbation theory versions
be used for solitons [5-7]. Let a collective variable Y(¢) be introduced which has the meaning of the
DW center coordinate at the point of time ¢, the derivative of which defines the instantaneous ve-
locity of DW V(t) = Y(t) . The DW drift speed is defined as the instantaneous DW speed V(t) aver-
aged over the oscillation period Vg, = V(t) (the bar denotes averaging over the external-field oscil-
lation period). Assuming the amplitude of external electric Ey and magnetic h fields to be small,
we represent the functions 6(y,t), ¢(y,t) and V(t) by series in powers of the field amplitude

0(y,¢) =00 (€) + 0, (€ t)+0g (€, 8)+...,
e(yt)=¢1 (6 1)+ o2 (& t)+.ns 9)
V=V (t)+Va(t)+...,

where £ = y—Y(t); subscripts n=1,2,... denote the smallness order of the quantity to the field
amplitude 6,, Pn, V, ~h". The function 6 (£) describes the motion of an undistorted DW. The
functions of higher orders 6,, (i, t) and ¢, (&, t) , n=1,2,... describe the distortions of the DW shape
and the excitation of spin waves.
Let the expansions (9) be substituted in Egs. (5)-(6) and terms of different orders of smallness
be separated. Obviously, in the zero approximation we get Eq. (7) which describes a DW at rest.
The perturbation theory first-order equations can be written in the form

AA b ) 4 . coseo(i) .
L+T|0; (&,t)=-2E, sin6, cosf, — h V Vi),
+T16; (£:1) 5, 5 sin 0 cos b S0 My o ( 1+w 1) (10)
LiotT by (€, t):ﬁh +L[ﬁ cos0p (&) — hy sinfg (€)] (11)
Bed © ' Badg Myl Y ’

Functional Materials, 17, 3, 2010 357



V.S. Gerasimchuk, A.A. Shitov / Dynamic properties of ...

where we denote

A 2
(&)= (€ t)sinby (), T = 1 9 +w—;i, o= (B —Bg)/Bg,
8t wl 8t

wy =¢/yg =8 My,/Bs0 / 2 is the activation frequency of the lower spin-wave mode, and
w, =X0g M,/4 is the characteristic relaxation frequency.
The operator L has the form of a Schrodinger operator with a non-reflecting potential:
A d? 2
L=- yg 5T l—-———
dg ch? (g/ yo)

A
The spectrum and the eigenfunctions of L are well known. It has one discrete level with

eigenvalue Xy =0 corresponding to a localized wave function

- 1
()= V20 ch(&/3)

and also a continuous spectrum X\, =1+ p2 yg corresponding to the eigenfunctions

—1ipYy

exp(ipt) ,

b=

where bp =41+ pzyg ,and L 1s the crystal length.
We seek the solution of the system of equations of the first approximation (10)-(11) as an

expansion over a complete orthonormalized set of the eigenfunctions {fo (€), fe (ﬁ)}:

o 60) = Rel S, (€ )+ e () exli(iy— wtﬂ]

p

o1(6) = RelZ[dS’fp (€)+d§fo (€ )] expli(hy t)]]

p

For a monochromatic external magnetic field of frequency W, with all three components dif-
ferent from zero, we obtain

[91 (62) = ar (£)Gr (€) +az (1) Gy (€), (12)
i (6.) = as £)costly (€) + ay (1)siny ().
Here we introduce the following notations:
by 2 4h
t)=—2 - . x
—4h
1) = ~

BogMob[L +0—qy +igs]
+00 .
Gl(£>:y0fcos(pﬁ).th(g/yo) (pyo)sin(pt) dp

ch(rpyy/2) Y (pw)’
f sin p& th i/yo) (pyo)cos(pﬁ) dp
Y0 sh(ﬂpyo/z) ApSh (p,w) ’

where

Q= (W/%)Z: 92 = (wwr/w%),
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Y (pw) =X, —q +igy, (pw)=X,(\,+0-q +igy).

Basing on the requirement of vanishing of Goldstone mode amplitude (d(()l) = 0) [14], we
come to the equation for defining the DW speed

M, -
% h, . (13)
The solution of this equation describes the DW vibrations in an external oscillating field and
has the form

‘71 +wr‘fl =

™ Yo8M, .
Y (t) = Re ;ﬁh% expli(wt +x.)]. 14)

Let the real part in the expression (14) be separated. Then the solution can be rewritted in
the following form:

Y (t)= Acos(wt+xg), (15)
™ Y08 Mohg,

2w, 41 +<w/wr)2

The DW drift motion is a second-order effect relative to the field amplitude. Consequently, the
DW drift velocity is defined from the equation of the second order of perturbation theory:

where A = is the DW vibration amplitude, and Xo is the initial phase shift.

ANAN

LT cosf

. 0!
Gz(i,t): V2—|-w V2 +_l
o 2T

cos 20

(16)

(Vi +w, W1 )+

2V; .
+5-0 +
w1

4
[szyel - ghxhy] +

sin 26
2

V_f_i(

: . . 9
(uplhx + 21 h, sin” 0 ) + 2 By

— hZ —h?)-
B0 g M * y)

. \2

8
—(o+1 2+(@1) _y2 ’2_262+—
( ﬁﬁ w% o(@ﬁ 1 By08 M,

hykp]_ )

where a prime denotes the differentiation with respect to variable £ .

Since we are interested only in forced motion of DW, then for the determination of the veloci-
ty V, (t) , it 1s sufficient to find the coefficient (;\orresponding to the Goldstone mode in the expansion
of 65 (€, t) by eigenfunctions of the operator L and to equate it to zero. Substituting the functions
0; (€, ¢) and ¢; (€ ¢) (12) into Eq. (16), averaging it over the vibration period and integrating, we
get the following expression for the drift speed Vg, =V :

Var =vo4; (w;X)HOxHOy + 7oAy (w;Xz)HOZEOy. 17
Here

A (w;x) = —2%[@ cosX _(BlBZ —&—q%)sinx],

)

2 2 2 2 .
A2 (w;Xz): [ql (nlwl +w nQ)COSXZ 7(wrn3 +w (1+ql))51nxz

7&0
480y
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Q :[(1+0—q1)(0—q1)+ q%}z +q2, Q@ :[(l—ql)2 + q%}.(wz +wr2),

2 . b - . . .
vy = &0 and Vg = —21/0 are the DW motilities; X = Xx — Xy is the comparative phase displace-
W, B2
ment; M ~2.5 n,~0.1, n3=2.6,
It should be noted that Aj (w;x) is dimensionless quantity, and Ag(w;X,) have the units

Oe.
4. Discussion

1. First, let certain features of solutigns (12) and (14) of the first-order equations (10)-(11) be
discussed. The eigenfunctions of operator L were obtained by Winter [15] in the problem on spin
excitations of magnetics. In a 180-deg DW, spins may be involved in the vibrations of two types. The
first vibration type is associated directly with DW. These vibrations are referred to as the intra-wall
vibrations and are corresponded to the localized wave function fy(£). The second vibration type is
the analog of common spin waves inside the domains. These vibrations correspond to the continu-
ous spectrum which is described by the wave functions f, (€).

It follows from the relationships (12) and (14)

that the components of an external magnetic field A, "
hy and h, and the electric field component E, 1) 5 18 @107 s
excite the second type vibrations (while the com-
. . 05
ponent A, excites only the state with p =0). The a)
components h, and h, also excite the first type T
vibrations. The features of DW vibratory motion -1
are the consequence of the fact that the electric
field in the linear approximation does not cause o5k
any DW motion (see also [10]), while a variable
electric field excites vibrations of 90-deg DW near A (m;kn /4)

the spin-reorientation phase transition [9]. From 05 14 16 18 ®10Ms
the relationship (15), it is easy to find the vibra-
tory motion speed of DW: V =wA . Note that the
amplitude of DW vibrations (A) has a relaxation
drop that is in agreement with [16].

2. Now let the features of DW drift motion
be considered. For an estimation of the DW drift
speed for different values of the frequency and
phase shift, we will use the characteristic values
of the parameters of ferroelectromagnetics [13]:
c=2, My=100e, y,=10"cm, g=2-10" c)

(s0e)’, w,~10%s1, w~10ts, —~1o*4. 10

Then the DW moblhty is v ~ 4 cm/(s Oe% (accord- 0.5
ingly, ¥ ,is four orders less). Let the DW dynam-

b)

-0.5
ics in the magnetic field H,H, be considered. The

dependence 41 (N;X> on the external magnetic
field frequency is presented in Fig. for different

-1.0
-15L

values of phase shift [Xzo, E, g] in the field

Fig. Dependences of A; (w;X ) on the external field
Hy, =Hj, =1 Oe. ()

frequency at y =0 (a), x =7/4 (b) and X = /2
(c).
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Two typical resonances at the frequencies = wl\E and w=wivo+1 take place in the

case x =0. Thus, A, wl\/(;;o ~_1.6 and A4; (w1v0+1;0) ~ —2.4 which provides the absolute
values of DW drift speed 6.3 cm/s and 9.4 cm/s, respectively. In the case X = /4 | the peculiarities
of “resonance-antiresonance” type arise at the same frequencies. The resonances in those regions
of the dependence which took place at x =0 (the area of function A; negative values) remain
pronounced. The width of the resonance-antiresonance region in this case is Aw~1.4- 10° s. The

0.2 —-2.0
function A4; (w;ﬂ/4) possesses the values A; [wlx/;;g]%{ 13’ Ay [w1\/0+1;£]%{ e The

maximum drift speed (8 cm/s) in this case is attained at the frequency wivo+1.
In the case x =7/2, the resonance-antiresonance behavior of the function A; (w;=/ 2) holds,
and 4; [wlx/g;a ~+0.8 and 4, [w1\/c+ ,g] ~ F1.2. The absolute values of drift speed 3.2 cm/s

and 4.7 cm/s correspond to these values, respectively. Near these frequencies, the DW changes the
motion direction into the opposite one. The transition between the resonance and antiresonance
behaviors occurs in a narrow frequency region which is of the same order for both peculiarities and
is equal to Aw~ 107 s

Let us consider now the features of DW dynamics in electric and magnetic fields HE,. The
dependence A, (w;XZ) has the only resonance at the frequency w = w; . At the resonance frequency
for the values H, =1.0 Oe, Ej, =0.1 CGSE units, the DW drift speed is 12 cm/s, 61 cm/s, 1 m/s

for the phase shifts X =0, x =1/4, X = ©/2, respectively.
5. Conclusion

The nonlinear dynamics of DW in magnetic materials with linear magnetoelectric interaction
in external alternating fields has been considered. It is established that, against the background of
DW fast vibrations, a slow component of translatory (drift) motion of DW exists. The drift motion of
DW can be caused either by the crossed alternating magnetic field polarized in the XY plane or by
the crossed electric Eg, and magnetic H, fields.
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JInamamiuHi BJ1acTuBocTi
aHTU(epoOMarHeTUKiB y SMiHHHUX MOJIAX

B.C. I'epacumuyk, A.A. Illumos

JlocomisxeHo MTUHAMIKY JTOMEHHUX MEK Y 30BHINIHIX 3MIHHAX MATHITHOMY Ta €JIEKTPUYHOMY
HOJIIX B AHTU(EPOMATHITHUX MaTepiajax 3 JIHIAHOK MAaTHITOCJEKTPUYIHOK B3AEMOJIIE.
OOTroBOPIOIOTHCST OCOOJIMBOCTI KOJIMBAJILHOTO Ta JIPEH(POBOro pyxXy JTOMEHHHUX MEK 3aJIeKHO BiJI
mapaMeTpiB 30BHIITHIX ITOJIIB 1 XapaKTEePUCTUK MaTepiasia.
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