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We present results of a collisional dynamics simulations of two types of polymer
brushes: one containing chains consisting of isotropic monomers ("flexible” brush) and
another with large anisotropy of monomers (“anisotropic”™ brush). Both unperturbed
brushes and brushes under shear deformation at constant shear rates were studied. The
height of the brush, the elongation and the inclination of the polymer chains in the brush
as well as order parameter were calculated at different grafting densities and shear rates.
The results are in accordance with available theoretical predictions.

IIpencraBieHbI pe3yabTaThl KOMIBIOTEPHOTO MOAEJNPOBAHUS METOJOM CTOJKHOBUTEJIbHOM
IUHAMHUKHU IBYX THUIIOB MOJMUMEPHBIX IIETOK: MEPBBIN TUI COMEPIKUT IEIIOYKU, COCTOAIINE U3
M30TPONHBIX MOHOMEepOB ('rubkasi mETKa"), TOrZa KAk BTOPOM THUII COOTBETCTBYET CHJIBHOMN
aHMB30TPONIMKM MOHOMEpPOB (ammsoTpomHasa IIéTKa ). MccieqoBaHbl KAK HEBO3MYINEHHBIE
MIETKYU, TaK ¥ IMETKU IOJ BO3AelCTBMEM CTAI[MOHAPHOTO CABUTOBOTO MOTOKa. JlJimHa, BhICOTA
¥ HAKJOH IMEéTKHU, a TaKKe IMapaMeTp MOPAAKA BBIUMCJIEHBI NPU PAa3JUUHBIX IJIOTHOCTIX
MPUIITUBKU. Pe3yabTaThl COTJIACYIOTCA C UMEIOIIUMUCSA TEOPETUUECKUMU MPEeNCKa3aHUIMU.

Introduction

Grafted polymer layers consisting of
polymer chains terminally anchored at sur-
faces have many important technological
applications [1-3]. Therefore such systems
have been studied theoretically since the
early 80-ties [4—10] (see also references in
reviews [11, 12]) as well as by computer
simulation methods. Both Monte Carlo and
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molecular dynamics methods were applied.
Theoretically, experimentally and using
computer simulations it was shown that at
sufficiently large surface coverage the
height of the polymer chains in the direc-
tion perpendicular to the surface depends
linearly on the polymer length. This regime
is usually called the polymer brush regime.
Most of computer simulation studies of
polymer brushes were devoted to flexible
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polymer chains, where the monomers of the
chains have a small anisotropy. The depend -
ence of the brush height on grafting den-
sity, the density profile and other charac-
teristics of the brushes were obtained by
different methods [11-12]. In our research
we have used Brownian dynamics (BD) [13-
16], self consistent BD [17], stochastic dy-
namics [18-20] and collisional dynamics
(CD) [21] methods. In a recent study the CD
method was applied for the first time to
investigate flexible polymer brushes con-
sisting of short chains only. In the present
work we study the behaviour of longer flex -
ible polymer brushes as well as brushes con -
sisting of anisotropic monomers (anisotropic
brushes).

The behaviour of polymer brushes af-
fected by different external forces (com-
pression, stretching, shear) is very impor -
tant for many practical applications. For
example the understanding of the behaviour
of polymer brushes under shear deformation
is very important for problems such as fric-
tion weakening. A theoretical analysis of
the behaviour of polymer brushes under the
action of tangential forces applied to the
ends of grafted chains has been performed
on the basis of a scaling approach [22-24]
and by analytical SCF theories [25-27].
Since theoretical studies need some simpli-
fying approximations, it is of great interest
to study this problem also by computer
simulations. Computer simulations of a
grafted polymer brush in shear flow were
done by Lai and Binder [28] using a non-
equilibrium Monte-Carlo method. However
the shear flow was introduced rather artifi-
cially (by different probabilities of steps in
the direction of shear and in the opposite
direction). Miao et al [29] used the off-lat-
tice Monte-Carlo method for the analysis of
extension and inclination of chains in the
brush under shear. However, the shear has
been introduced by the same way as by Lai
and Binder [28]. Brownian and stochastic
dynamics simulation of polymer brushes
under shear deformation have been pre-
sented by authors earlier [13, 16, 19, 20].
The model and the method were similar to
that used in our previous studies [30, 31]
for a polymer melt as well as to those of
Kremer and Grest [32]. Grest [33] applied
the same model for a large-scale molecular
dynamics study of the shear force between
two brushes consisting of long chains [11].
Theoretical (analytical) approaches to liquid
crystalline polymer brushes consisting of
polymer chains with anisotropic monomers
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("anisotropic brushes”) have been described
by Birshtein et al [34]. In this paper we
report results of collisional dynamics simu -
lations for polymer brushes consisting of
polymer chains subjected to shear deforma -
tion. Both chains consisting of isotropic and
anisotropic monomers were studied. We
briefly introduce our model and collisional
dynamics method in next part of paper. De-
scription of the process of equilibration of
brushes, results of simulations, discussion
and concluding remarks are presented in
last part.

Description of the Model

Polymer chains were simulated using a
bead-rod model, which is composed of N
identical mass points (beads) of mass m
linked by rigid bonds of length [ to a linear
chain. Hence, the position vectors rj, which
give the location of the beads with respect
to some fixed coordinate system, are sub-
jected to the following constraints

(rk+1_rk)2=l2, k:l...,N_l. (1)

In the case of anisotropic brushes each
N, beads (N,=5 in present paper) along
the chain are combined in new rod-like
monomer (see Fig. 1) by introducing the ad -
ditional harmonic potentials between all
pairs of beads inside each group of N, suc-
cessive beads:

Urpsi = 1) = K(rpsy = 13)% (2)
k=2, N, i=1,N, -k

If potential is strong enough the average
length of the new anisotropic monomer is
close to I' = (N,~1)*I. The number of these
monomers in a chain is N' = (N-1)/(N,1)
because each two successive anisotropic
monomers have one common bead (see Fig. 1).
New anisotropic monomers form freely
jointed chain but due to Lennard-Jones in-
teractions of second neighbouring beads
(around the bead belonging to both anisot -
ropic monomers) the "valence” angle be-
tween new anisotropic monomers can not be
smaller than about 60° (the similar limita-
tion of course exists for neighbouring bonds
in ordinary linear polymer chains consisting
of Lennard-Jones beads.

Contour length of the bead-rod chain is
constant and equal to (N—1)I both for flex-
ible and anisotropic brushes. All pairs of
mutually nonbonded beads interact through
a shifted, short-range repulsive Lennard-
Jones potential
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Fig. 1. Fragment of one chain in the brush
consisting of 4 anisotropic monomers. Each
monomer consists of 5 successive beads on
the rod. First bead of first monomer is at-
tached to rigid impenetrable plane.

Ug(r) = 4gol(c/ 112 = (0/1r)6] + ¢y, r< 2%0,

UR(I") =0, r> 21/60. 3)

Here r is the distance between the beads,
and & is the well depth associated with this
potential. In the case of end-grafted chain,
we assumed that the grafting surface (wall)
is chosen to be the z = 0 plane and the first
bead of first chain is fixed at one location
rl = (0, 0, 0.50). For the bead-wall interac-
tion, we used the same purely repulsive po -
tential as for the bead-bead interaction,
namely, Upg(z), where z is the distance from
the bead to the surface. This potential en-
sures that the beads do not cross the sur-
face and the chain occupies only the space
above the surface.

The effective polymer-solvent interaction
was simulated by the collisional dynamics
[21]. In this method, each bead of the poly -
mer chain suffers collisions with virtual
solvent particles. Each stochastic collision
is an instantaneous event. Collisions occur
in accordance with a Poisson process, which
is specified by the only parameter A, the
collisional frequency. Between the stochas-
tic collisions, the system evolves in accord -
ance with the equations of motion as in the
usual molecular dynamics. For the bead-rod
chain, the equations of motion satisfied by
bead i are given by

d*r; U
— t-_ Y 4R (4)
m 72 - + R,

In the case of the grafted chains, the
potential U is composed of two terms corre-
sponding to the bead-bead, U,, and bead-
wall, U, interactions. The constraint force
R;, acting on bead i is given by
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N-1 (5)
Ri = zyj(él_l] - 5”)(7”]_,_1 - I”j),
=

where y;» are N-1 undetermined Lagrange
multipliers associated with the constraints
given by Eq.(1), and 5ij is the Kronecker
delta. The Lagrange multipliers y; are deter-
mined by a set of nonlinear equations.

The result of each collision is an instan -
taneous change in the velocities of the chain
beads. Postcollision velocities are found by
the solution of the collisional problem. In
this problem, the velocity vy of a virtual
solvent particle is chosen at random from
the following distribution:

-3/2 , (6)
P(V r) _ DZTl'kBTE expg_ mo[VO - U)(r)] H’
0 DE' my o g 2kgT

where T is the solvent temperature, m is
mass of the virtual solvent panicle, while
w(r) is the hydrodynamic velocity of the sol -
vent at the position r. For steady shear flow
in the vicinity of the grafting wall, the flow
velocity components were taken as

w, =¥z, (M)

w, =w, = 0,
where y is the shear rate, and z is the dis-
tance from grafted surface.

Using the collisional dynamics technique
described above, we performed simulations
of flexible and anisotropic polymer brushes
at equilibrium and under shear flow. The
polymer brush model consists of M similar
polymer chains grafted to a surface Z =0
in a computational cell with periodic bound -
ary conditions in X and Y directions. The
first particle of every chain lies on a square
lattice in the grafting plane Z = 0 (center
of particles is at Z = 0.50). The wvalues
M, = M, are the numbers of grafted chains
in the X and Y directions thus total number
of chains M = M,M,. In the present simu-
lation the number of chains M = 100
(M, = M, =10) and the number N of beads
in a chain is 49. For flexible chains the
number of chain bonds ("monomers”) is
N-1 = 48. In the case of anisotropic chain
each anisotropic monomer in our model con -
sists of N,=5 beads (geometrical anisot-
ropy of monomer €= 4) and thus the num-
ber of such monomers in chain (consisting
of N = 49 beads as in flexible chain) is N' =
12. We took reduced units in which m =1,
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0=1, and & =1. We also assumed that
rigid bonds are of the length of [ = 0. The
equations of motion were integrated using
the velocity version of the Verlet algorithm
with a time step of 0.005 in reduced units,
where the reduced time is given by ¢* =
to~1(m/gy)"1/2. The mass of virtual solvent
molecules was fixed by my = m and a re-
duced collision frequency per bead was
taken as A" = Ao(m/gy)1/2 = 1.8. The simula-
tions were carried out at a reduced tempera -
ture T" = kgT/ €, = 1 and for a wide range
of reduced shear rates y* = yo(m/so)l/z. We
calculated both conformational properties of
the polymer chains and the shear viscosity.
The viscosity in corresponding reduced units
is N* = no2(mey)~1/2. Further in this work,
the reduced units are used exclusively, and
for notational simplicity, we drop the * su-
perscript. A more detailed description of
the algorithm can be found in ref.[21].

Results and Discussion

Equilibration of the System

In the beginning of each run we equili-
brated the system for a long time ¢; from
106 to 107 integration steps for different
values of grafting density and shear rate.
We calculated some properties of the chains
in the polymer brush (the end-to-end vector
and its projections, the end-to-end distance,
the average inclination of bonds and the
inclination of the chain as a whole with
respect to the grafting plane and other
quantities) during this time to be sure that
equilibration was achieved. The second part
of trajectory during time t, was used for
calculations of mean values, distribution
and correlation functions. The value of %,
was from 10% to 107 integration steps in
different calculations.

Brushes without Shear

The size and the shape of the chains in
the brush can be characterized by the mean
square end-to-end distance <h2> and its
components: <k, 2>, <h,?> and <h,2> (the
mean square projections on the grafting
plane (x and y projections) and height of
the brush (z projection), correspondingly).

Another quantitative characteristic of
the chain’s size and shape are the mean
square radius of gyration <R,2> and its
projections <Ry, 2>, <R, 2> and <R 2> Tt
is well known 6, 11, 15] that in good sol-
vents at big enough values of the grafting
density s (corresponding to significant over-
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Fig. 2. The mean square end-to-end distance
h of the chain I, I' and radius of gyration R,
2, 2' vs grafting density; N =49, M = 100.
The curves 1 and 2 are for anisotropic and
curves 1' and 2' for flexible brushes.

lapping of grafted chains) the height of the
brush h, = (<h 2>)1/2 and the value of
Ry, = (<R,,%2>)1/2 must be proportional to
the number N of monomers in the chain,
anisotropy of segment € as €1/3 and grow
with the grafting density s as sl/3. Thus,
due to excluded volume interactions the
chains in the brush are partially stretched
in the direction perpendicular to the graft-
ing surface.

With no shear applied the z projection of
the chain size give the main contribution to
the total chain size. The dependences of the
mean square end-to-end distance
h = (<h?>)1/2 and radius of gyration
R, = (<Rg2>)1/2 calculated in the present
work are plotted in Fig. 2 and charac-
teristics of the brush height %, and R, are
shown on Fig. 3. From these plots an d
from Table 1 one can see that both the total
size and the height of brushes consisting of
anisotropic monomers are near 1.6 times
larger than the corresponding values for
normal brushes in all cases. The theoretical
evaluation [6] gives for our brushes with
anisotropy € = 4 the ratio of brush heights
€l/3 = 1.6 which is close to values 1.3-1.4
obtained in simulation (see Table 1). Value
obtained in simulation can be a little bit
less because the anisotropic monomers in
our model actually not quite rigid but have
some small flexibility. At the same time the
qualitative behaviour of these charac-
teristics as function of grafting density s is
similar for both types of brushes (see Fig. 2
and Fig. 3). We obtained that in the brush
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Fig. 3. The mean thickness of the brush: 1, 1" —
the z component %, of the end-to-end vector,
2, 2' — the z component R,, of the square of
the radius of gyration of the chain vs graft-
ing density; 1, 2 for anisotropic and 1', 2' for
flexible brushes.

regime the slope of dependence of R,, on s
(Fig. 3) (in double logarithmic scale) for an-
isotropic brushes is equal to 0.34. For ordi-
nary brushes of the same contour length it
is about 0.32. Thus, both these values are
close to the theoretical value of 1/3 for
flexible polymer brushes. There was no sys-
tematic difference between the brushes with
respect to the dependence on grafting den-
sity when no shear was applied for both
types of brushes.

Orientational ordering of monomers in
the direction perpendicular to grafting sur-
face was compared for both brushes. It was
shown that ordering for anisotropic brushes
is higher at all grafting densities. Order pa-
rameter Sy increased gradually (see Table 1)
with grafting density for both type of
brushes in accordance with results of Chen
and Fwu.

Brushes under Shear

We studied the influence of shear flow
on the behaviour of both types of polymer
brushes at the high grafting density s = 0.44.
The mean square end-to-end distance of
chains in brush and their mean square gyra -
tion radius were calculated (Fig. 4) as well
as height of brush, Z-component of gyration
radius and average height of monomers
above plane (Fig. 5). Inclination of chains
relatively plane (Fig. 6) and intrinsic vis-
cosity (Fig. 7) were obtained also. The re-
sults show that at small shear rates up to
g = 0.001 both anisotropic and flexible
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Fig. 4. The mean square end-to-end distance
h of the chain 1, 1I' and radius of gyration Rg
2, 2' vs shear rate; N =49, M =100. 1,2 for
anisotropic and 1', 2' for flexible brush.
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Fig. 5. The mean thickness of the brush: 1, 1' —
2z component of the square of the end-to-end
vector; 2, 2' — z component of the square of
the radius of gyration of the chain; 3, 3' —
average z-coordinate of the chains beads vs
shear rate. 1, 2, 3 for anisotropic and 1', 2',
3' for flexible brush.

brushes are not influenced by shear flow
(see Fig. 4, Fig. 5 and Fig. 7). Both dimen -
sions and shear viscosity were practically
constant in this interval of g. At larger
shear rates g the total size of the chains in
a brush (k and R,) increases (Fig. 4). Shear
force causes additional stretching and incli-
nation of chains in the direction of shear.
At the same time the brush height %, (and
related value R,,) begin to decrease (Fig. 5).
Similar picture we observed earlier employ -
ing Brownian and stochastic dynamics as
well as collisional dynamics for shorter
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Fig. 6. The inclination of a chain as a func- Fig. 7. Intrinsic viscosity as function of
tion of the shear rate: 1 — for anisotropic shear rate: 1 — for anisotropic brushes, 1' —
brushes, 1' — for flexible brushes. for flexible brushes.
Table 1.
Grafting density
0.007 0.025 0.050 0.075 0.100 0.200 0.300 0.400
Ratio of
brushes heights| ; 34 1.38 1.37 1.34 1.31 1.28 1.25 1.18
Order parameter
Flexible brush 0.01 0.03 0.04 0.06 0.08 0.15 0.23 0.37
Anisotropic 0.05 0.09 0.12 0.16 0.20 0.36 0.51 0.71
brush
Table 2.
Shear rate
0 0.0003 0.001 0.01 0.1
Cosine of inclination angle
Flexible brush 0 0.06 0.21 0.72 0.88
Anisotropic brush 0 0.15 0.37 0.75 0.88
Order parameter
Flexible brush 0.37 0.37 0.38 0.67 0.89
Anisotropic brush 0.71 0.72 0.77 0.93 0.97

flexible chains. For anisotropic brushes
studied in this paper this decrease begin at
smaller values of shear rate g = 0.001 than for
flexible brushes where it occurs near g = 0.01.

The inclination of the brushes (Fig. 6
and Table 2) begins to increase at weak
shear even before the total dimension A2 and
brush height h, start to respond to the
shear flow. It means that at low shear de-
formation the inclination of the main axis
of the chains (Fig. 6) in the brush may
occur mainly due to an increase in the
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x-component of the dimension of the chains
without any variation in the z-component
(in the brush thickness). This type of behav -
iour of the brush under weak shear has
been predicted by Rabin and Alexander
[37]. At stronger deformation the effect of
finite extensibility appears and any further
inclination of the grafted chains must be
accompanied by a decrease in the brush
thickness. At very large shear rates when
the chains tend to completely extended con -
formation these dependences flatten out. At
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large extensions the h, component gives the
main contribution to the total chain size hA.
The decrease of the third component of the
chain size hy with shear is faster than for
the brush height £,. This can be understood
with the aid of simple arguments. Stretch -
ing of the chains in the x-direction results
in re-partitioning of steps of the corre-
sponding random walk so that the fraction
of steps in the direction hy perpendicular to
the chain axis decreases.

However, a decrease in the number of
steps in the z-direction results in a decrease
in the brush height and, consequently, in an
increase of the repulsive interaction be-
tween monomers of stretched chains that is
unfavourable. Thus the chain increases the
number of steps in the x direction mostly
due to a decrease of number of steps in the
y-direction while the number of steps in the
z-direction decrease more slowly. Due to
this fact and due to smaller initial (no
shear) values of the y component in com-
parison with the z component the final val-
ues of h, are very small. The order parame-
ter increase gradually with shear rate for
both brushes (see Table 2) but at all shear
rates its value is greater for brush consist -
ing of anisotropic monomers. The direction
of this orientation changes from direction
perpendicular to plane in the absence of
flow to direction almost parallel to plane at
high shear rates.

Dependence of the intrinsic viscosity n
on shear rate is presented on Fig. 7. One
can see that at small shear rates the value
of N for anisotropic brushes is essentially
higher than for ordinary flexible brushes.
In the case of flexible brushes the value of
N is nearly constant until shear rate near
0.001 while for anisotropic brushes the
value of n slightly decreases already at
lesser shear. At higher shear rates there is
stronger decrease of N with shear (especially
for anisotropic brushes) and at extremely
high shear rates (near 0.1) the viscosity of
both brushes become close to each other.
These behaviour is correlate with changes in
conformation and orientation of chains
(Fig. 4-6) and is in agreement with our pre-
vious Brownian dynamics simulation results
for flexible brushes in shear flow at differ-
ent grafting densities. The equal viscosity
of flexible and anisotropic brushes at large
shear rates was expected because at this
conditions chain in both brushes have near
the same structure: they are near com-
pletely extended and and inclined relatively
grafting plane (see Fig. 4-6).
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Conclusions

Results of collisional dynamics simula -
tions of two types of polymer brushes are
presented. We studied both unperturbed
brushes at different grafting densities and
brushes under shear flow. Both conforma -
tional properties of the chains in the brush
and intrinsic viscosity have been calculated.

The results show that the height of the
brush as a function of grafting density s
follows the same power law s1/3 in both
cases. The brushes consisting of anisotropic
monomers are more extended at the same
contour length of the chain. The ratio of
brush heights (for anisotropic and isotropic
brushes) is in agreement with theory of Bir -
shtein and Zhulina for semiflexible brushes.
It was found that the intrinsic viscosity n
for anisotropic brushes is essentially higher
than for isotropic brushes at small shear
rates but this difference decreases with
shear.

Two stages were obtained in the deforma -
tion for both types of the brushes with in-
creasing shear:

i) Increase of the x component %, of the
end-to-end distance without decrease of
brush height A, (at shear rates g<g.)

ii) Additional increase of h, due to the
decrease of h,.

This behaviour is in agreement both with
theoretical predictions and with our pre-
vious BD simulation of ordinary flexible
brushes.

The onset of the brush deformation gets
displaced to larger shear rates as the den-
sity of grafting increases. In our model this
characteristic value of the shear rate de-
pends on the number of monomers in the
chains as well. However, if hydrodynamic
interactions were taken into account the
penetration of the solvent flow into the
brush would be much smaller. The charac-
teristic penetration length will be inde-
pendent on N. Hence the characteristic
value of the shear rate corresponding to the
onset of the brush deformation in realistic
system is expected to be virtually inde-
pendent on N.

Our next goal is to study more anisot-
ropic brushes and incorporate the hydrody -
namic interactions into the present model.
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Macro-

MoaeaOBaHHA MOJIiMEPHHUX IIITOK, AKIi MiCTATH
aHI30TPONIHI MOHOMEpPH METOAOM NAMHAMIKHN 3iTKHEHb

I.Heenos, M.Banabaee, M.Pamnep, ®.Candxonm, K.Bindep

HasezneHo pesysabTaTy KOMII'IOTEPHOTO MOJEJIIOBAHHS METOJOM AMHAMIKU 3iTKHEHb ABOX
THUIIB MOJiMEePHUX IMiTOK: MEPIIUH TUI MIiCTUTh JIAHIIOMKKK 130TPOIMHMX MOHOMEpiB ('rHyU-
Ka miTka"), Tomi AK APYruil TMI BiAmoBimae amisorpomii moHoMmepiB ("aHisoTpomHa mmriTka’).
HocaimsxkeHo AK He30ypeHi IMiTKM, Tak i WIITKM TiJg BIJIMBOM CTAIliOHADHOTO B3CYBHOTO
moToKy. I[oBKMHA, BHCOTA Ta HAXWJ IIiTKU, a TAaKOXK MapaMeTp IMOPAAKY OOUYMCIeHi mpu
Pi3HMX IIIIBHOCTSAX NPUINMUBKU. PesynabTaTH 36iraloTbcAd 3 TEOPETUUYHUMM 3aBOAUEHHAMU,

o710 MarlTbCA.
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