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Results of theoretical researches of barodiffusion phenomena in
one-component liquids are presented for various regions of ap-
proach to the critical point, namely, 1) for the dynamic fluctu-
ation region, where the singular contributions to Onsager kinetic
coefficients prevail over the corresponding regular ones (as � ar

and bs � br); 2) for the dynamic crossover (transition) region,
where as ≈ ar and bs ≈ br; and 3) for the dynamic regular region,
where as � ar and bs � br. In addition to the dynamic crossover
temperature τD, the dynamic crossover pressure 4pD and density
4ρD have been introduced, and the corresponding numerical esti-
mations have been made. The peculiarities of critical behaviors of
the self-diffusion coefficient D and the barodiffusion ratio kp have
been analyzed.

1. Introduction

A reliable theoretical basis for studying the peculiari-
ties in the critical behavior of equilibrium and nonequi-
librium liquid systems consists in the application of
universal methods of physics of phase transitions and
critical phenomena to the objects under investigation.
These methods are based on scale invariance (scaling)
and renormalization group ideas which have been formu-
lated by A.Z. Patashinski, V.L. Pokrovski, M.E. Fisher,
K.G. Wilson, L.P. Kadanoff, and other researchers (see,
e.g., works [1–5]).

In this work, the main attention will be given to study-
ing barodiffusion phenomena for liquid systems in their
critical region, i.e. the diffusion processes that occur
not only under the influence of a chemical potential gra-
dient, but also a pressure gradient. For this purpose,
let us use the general basic points of thermodynamics
of nonequilibrium processes and nonequilibrium statisti-

cal mechanics [6–10], by applying them to the study of
barodiffusion processes in one-component biphase liquid
systems, in particular, the behaviors of the self-diffusion
coefficient and the barodiffusion ratio.

2. Barodiffusion Phenomena in a
One-component Biphase System

As an example of the first object to study, let us con-
sider the diffusion motion of particles of a certain kind
through a membrane which separates the internal (the
first phase) and the external (the second phase) medium.
As is known (see, e.g., works [6,9]), the condition of ther-
modynamic equilibrium in such a system is the equalities
between temperatures, pressures, and chemical poten-
tials in both phases. Let only the first of those equalities
be fulfilled:

T1 = T2, p1 6= p2, µ1 6= µ2.

Then, in the absence of velocity gradients and chemical
reactions, the diffusion flux of particles In can be written
down as follows:

In = −a∇µ− b∇p, (1)

where a and b are kinetic coefficients (the Onsager coef-
ficients presented as sums of singular and regular contri-
butions: a = as+ar and b = bs+br), ∇µ is the chemical
potential gradient, and ∇p is the pressure gradient.

The self-diffusion coefficient D for such an isothermal
one-component system appears as a proportionality fac-
tor between the diffusion flux of particles In and the
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gradient of particle concentration ∇ρ in the linear rela-
tion between the fluxes of physical quantities and ther-
modynamic forces, whereas the barodiffusion ratio kp is
included into the proportionality factor of the linear, in
the pressure gradient ∇p, term in the relation for In.
To obtain the corresponding expressions for those coeffi-
cients, let us pass from the independent variables (µ, p)
to a new set of independent variables (ρ, p). For this pur-
pose, let us write down the chemical potential gradient
in terms of variables (ρ, p):

∇µ = (∂µ/∂p)ρ∇p+ (∂µ/∂ρ)p∇ρ. (2)

Now, let us substitute the chemical potential gradient (2)
into formula (1). Then, the linear law for the diffusion
flux of particles reads

In = −a(∂µ/∂ρ)p∇ρ− [b+ a(∂µ/∂p)ρ]∇p. (3)

Compare formula (3) with a linear relation for the flux
In in the case of two thermodynamic forces invoked by
the gradients of particle concentration, ∇ρ, and pres-
sure, ∇p. Under isothermal conditions, this relation
looks like [8, 9]

In = −D(∇µ+ kp∇ ln p). (4)

Whence, we obtain the following formulas for the self-
diffusion coefficientD, the barodiffusion coefficientDp =
Dkp, and the barodiffusion ratio kp for a one-component
biphase liquid:

D = a(∂µ/∂ρ)p, (5a)

Dp = p[b+ a(∂µ/∂p)ρ], (5b)

kp = p[b+ a(∂µ/∂p)ρ]/a(∂µ/∂ρ)p. (5c)

Let us analyze the critical behavior of the quantities D
and kp which characterize barodiffusion phenomena in a
one-component biphase system at various approaches to
critical points or phase transition points along the paths
close to the critical isochore and isobar. The tempera-
ture, as was marked above, is fixed, i.e. the liquid system
is isothermal. Moreover, for definiteness, let us assume
this temperature to be critical: T1 = T2 = Tc = const.

3. Self-diffusion Coefficient

First of all, let us consider the behavior of self-diffusion
coefficient D, which is determined by formula (5a), along
three different paths of liquid system approach to the
point of phase transition of the second kind, making no
allowance for spatial dispersion effects.

3.1. Fluctuation region

In this region, which corresponds to the asymptotic ap-
proach to phase transition points and the anomalous
growth of fluctuation effects, the singular contributions
as and bs to the Onsager kinetic coefficients in formulas
(1), (3), and (5) exceed their regular parts ar and br.
The inequalities as � ar and bs � br follow from the
fact that, according to the conclusions of the dynamic
scaling theory [11], the quantities as and bs diverge in
the fluctuation region, and this divergence is governed
by the critical behavior of the correlation length ξ, i.e.
as and bs behave as follows, when approaching the crit-
ical point and the phase transition points of the second
kind:

as = bs = Δρ−ν/βf (a,b)
1 (Δp/Δρδ) =

= Δp−ν/βδf (a,b)
2 (Δρ/Δp1/δ), (6)

where Δρ = (ρ− ρc)/ρc is the order parameter of a one-
component liquid, i.e. a deviation of the density from
the critical value ρc; Δp = (p − pc)/pc is a deviation of
the pressure p from its critical value pc; β, δ, and ν are
critical indices which are β ≈ 1/3, δ ≈ 5, and ν ≈ 0.63
in the bulk liquid phase; and the scaling functions f1(x)
and f2(y) have the asymptotics f1(x → 0) = const and
f2(y → ∞) ∼ y−ν/β in a close vicinity of the critical
isobar, and f1(x→∞) ∼ x−ν/βδ and f2(y → 0) = const
in a close vicinity of the critical isochore.

The singular contributions to the self-diffusion coeffi-
cient D in the fluctuation region are determined, accord-
ing to formula (5a), by two multipliers, namely, 1) the
Onsager kinetic coefficient a ≈ as and 2) the inverse
isobaric compressibility of a one-component liquid

(∂µ/∂ρ)p = Δργ/βf3(Δp/Δρδ) = Δpγ/βδf4(Δρ/Δp1/δ),
(7)

where the critical index γ ≈ 1.24. In accordance with
the fluctuation theory of phase transitions [1, 12], the
anomalous reduction of the quantity (∂µ/∂ρ)p, when
approaching the critical point, is immediately associ-
ated with a “strong” divergence of the isobaric compress-
ibility, which coincides with the known divergence of
the isothermal compressibility (∂µ/∂ρ)T , since the same
thermodynamic derivative is calculated at constant field
variables—the pressure p or the temperature T . Note
also that the asymptotics of the scaling functions f3(x)
and f4(y) are identical, to an accuracy of nonuniversal
constant coefficients, with those of the scaling functions
f1(x) and f2(y) which enter formulas (6).
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Fig. 1. Dependence of the normalized self-diffusion coefficient D∗

on the order parameter Δρ in a vicinity of the critical isobar

Hence, the self-diffusion coefficient is described by the
following scaling dependence on the order parameter Δρ
and the pressure Δp in the fluctuation region that is
asymptotically close to the critical point:

D = Δρ(γ−ν)/βf5(Δp/Δρδ) = Δp(γ−ν)/βδf6(Δρ/Δp1/δ),
(8)

where the scaling functions f5(x) = f1(x)f3(x) and
f6(y) = f2(y)f4(y) are introduced.

For the specific numerical values of critical indices,
formula (8) allows the following conclusions to be drawn
concerning the critical behavior of the self-diffusion co-
efficient:
(i) in a vicinity of the critical isobar,

D ≈ D0Δρ1,85(1 +A1Δp/Δρ5); (9)

(ii) in a vicinity of the critical isochore,

D ≈ D0Δp0,37(1 +B1Δρ/Δp0,2). (10)

The amplitude value D0 of the self-diffusion coefficient
determines its value in the range Δρ ≈ 1 and Δp ≈ 1,
where fluctuation effects cease to play the crucial role.
The dependences of the normalized self-diffusion coef-
ficient D∗ = D/D0 on the order parameter Δρ in a
vicinity of the critical isobar (Δp/Δρδ � 1) and on
the pressure Δp in a vicinity of the critical isochore
(Δp/Δρδ � 1) are depicted in Figs. 1 and 2, respec-
tively.

It should be emphasized that, as was noted in work
[13], the vanishing of the self-diffusion coefficient at the
very critical point cannot be observed in experiments.

Fig. 2. Dependence of the normalized self-diffusion coefficient D∗

on the order parameter Δp in a vicinity of the critical isochore

It is clear that, for the D-values obtained at the critical
points and the points of phase transitions of the second
kind to be minimal (nevertheless, nonzero), the contribu-
tions of the space-time dispersion, which make allowance
for non-locality effects and memory effects with respect
to physical properties (the Onsager coefficients, the iso-
baric compressibility, and so on) in the critical region,
must be taken into account. In the Ornstein–Zernike
approximation which corresponds to a relatively weak
spatial dispersion (i.e. ξk < 1, where ξ is the corre-
lation length, and k is the wave vector), small terms
of the ξ2k2-order should be added to expressions (8)–
(10) [14]. In the region of strong spatial dispersion
(ξk ≥ 1), an additional multiplier which includes the
Kawasaki function (see, e.g., works [15, 16]) should be
introduced into expressions for the self-diffusion coeffi-
cient.

3.2. Crossover region

In work [17], the temperature of the so-called dynamic
crossover τD was introduced for the critical phenomena
and the phase transitions that depend only on the tem-
perature variable τ = (T − Tc)/Tc. At this tempera-
ture, the regular and singular contributions to Onsager
kinetic coefficients are of the same order of magnitude.
By analogy to τD, in that case where critical phenom-
ena and phase transitions occur only under the pres-
sure action, it is useful to introduce the variable ΔpD
which would determine the pressure, at which the dy-
namic crossover takes place, i.e. the approximate equal-
ities as ≈ ar and bs ≈ br hold true. Evidently, such a
situation takes place, when the critical points (the points

460 ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 4



BARODIFFUSION PHENOMENA IN LIQUID SYSTEMS

of phase transitions of the second kind) are approached
along the three-dimensional phase surface and perpen-
dicularly to the T − ρ plane. If the singular parts of
Onsager kinetic coefficients are given by the formulas
as = a0

s |Δp|
−ν/βδ and bs = b0s |Δρ|

−ν/βδ, the dynamic
crossover pressure ΔpD is characterized by the relations
|ΔpD| ≈ (ar/a0

s)
−βδ/ν and |ΔpD| ≈ (br/b0s)

−βδ/ν . Pro-
vided that the dynamic crossover temperature is of the
order of |ΔτD| ≈ (ar/a0

s)
−1/ν ≈ 10−4÷10−5, one should

expect that |ΔpD| ≈ |τD|βδ ≈ 10−6.5 ÷ 10−8.
In a similar way, for the critical phenomena and

the phase transitions that depend only on the den-
sity, the variable ΔρD obeying |ΔρD| ≈ (ar/aos)

−β/ν

and |ΔρD| ≈ (br/bos)
−β/ν , which determines a den-

sity, at which the dynamic crossover takes place, should
be introduced. The numerical estimation of the dy-
namic crossover density gives rise to the value |ΔρD| ≈
|ΔpD|1/δ ≈ |τD|β ≈ 10−1.3 ÷ 10−1.65 ≈ 0.5÷ 0.3.

Taking into account that as ≈ ar in the crossover
region, we obtain the following relation for the Onsager
kinetic coefficient: a = ar +as ≈ 2as. This result means
that the amplitude of the self-diffusion coefficient in the
dynamic crossover region is approximately twice as large
as that in the dynamic fluctuation region, i.e.,
(i) in a vicinity of the critical isobar,

D ≈ 2DoΔρ1,85(1 +A1Δp/Δρ5); (11)

(ii) in a vicinity of the critical isochore,

D ≈ 2DoΔp0,37(1 +B1Δρ/Δp0,2). (12)

3.3. Regular region

As was mentioned above, fluctuation effects can be ne-
glected in this region, if the Ginzburg–Levanyuk number
Gi =

〈
Δϕ2

〉
/ϕ2

0 – it is a ratio between the root-mean-
square fluctuation of the order parameter,

〈
Δϕ2

〉
, and

the squared equilibrium value of the order parameter,
ϕ2

0 – is small enough (Gi < 1). Then, for temperature-
dependent critical phenomena and phase transitions in

T a b l e 1
Δp D∗ = D/D0 Δρ D∗ = D/D0

10−12 3.63× 10−5 10−7 1.12× 10−13

10−10 1.99× 10−4 10−5 5.26× 10−10

10−8 1.11× 10−3 10−3 2.82× 10−6

10−6 6.03× 10−3 0.1 1.41× 10−2

10−4 0.001 0.5 7.38× 10−2

10−2 0.18 0.75 0.34

1 1 1 1

the region, where Gi < τ ≤ 1, the Onsager kinetic co-
efficient, a ≈ ar, does not depend on the temperature
variable τ . In this case, every peculiarity in the crit-
ical behavior of the self-diffusion coefficient D is com-
pletely governed by the value of inverse compressibility:
D = D0τ

γ .
However, if critical phenomena and phase transitions

depend mainly only on the density, the expression for
the diffusion coefficient in the regular region in a close
vicinity to the critical isobar (Δp/Δρδ � 1) looks like

D = DoΔργ/β(1 +A1Δp/Δρδ), (13)

or, for specific numerical values of critical indices,

D = DoΔρ3.76(1 +A1Δp/Δρ5).

At last, for critical phenomena and phase transitions
which are governed by a pressure variation, as it takes
place in the case of barodiffusion phenomena, the diffu-
sion coefficient in the regular region in a close vicinity
to the critical isochore (Δρ/Δp1/δ � 1) is described by
the formula

D = DoΔpγ/βδ(1 + Δρ/Δp1/δ), (14)

which, after the substitution of numerical values of crit-
ical indices, reads

D = DoΔp0.75(1 + Δρ/Δp0,2).

Table 1 illustrates the dependences of the normalized
self-diffusion coefficient D∗ = D/D0 on pressure devia-
tions within the interval Δp = 10−12 ÷ 1 on the critical
isochore (left side) and on density deviations within the
interval Δρ = 10−7÷1 on the critical isobar (right side).
Hence, an important conclusion follows: if a numerical
value of the self-diffusion coefficient amplitudeD0, which
is determined by the regular part of the Onsager kinetic
coefficient amplitude ar and the amplitude of the inverse
isobaric compressibility (∂µ/∂ρ)0p according to the for-
mula D0 = ar(∂µ/∂ρ)0p, is known, this enables the abso-
lute value of the self-diffusion coefficient of an arbitrary
one-component liquid to be calculated. For instance, us-
ing the known value D0 = 2.3 × 10−9 m2/s for water
[13, 18], we obtain numerical values of self-diffusion co-
efficient D in wide intervals of pressure and density (see
Table 2).

4. Barodiffusion Ratio

Let us now analyze the critical behavior of the barodiffu-
sion ratio kp for a one-component liquid. In accordance
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with formula (5c), it can be rewritten as follows:

kp = p[(b/a) + (∂µ/∂p)ρ]/(∂µ/∂ρ)p. (15)

This expression demonstrates that kp depends not only
on the Onsager kinetic coefficient a and the inverse iso-
baric compressibility (∂µ/∂ρ)p (those two determine the
self-diffusion coefficient D), but also on the Onsager ki-
netic coefficient b in the cross term that corresponds to
a contribution of the pressure gradient ∇p to the diffu-
sion flux In, as well as on the thermodynamic derivative
(∂µ/∂p)ρ. The latter quantity has no features at the
critical point, because the derivative of one field variable
(in this case, it is the chemical potential µ) with respect
to another field variable (in this case, it is the pressure
p), provided that any field quantity (T , p, ν, and so on)
or the density one (the entropy S, volume V , density ρ,
concentration x, and so on) is fixed, remains constant at
the critical point [12].

The Onsager kinetic coefficient b has the same features
at the critical point as the kinetic coefficient a which has
already been considered, i.e. its singular behavior in the
case of a one-component liquid is completely governed
by the divergence of the density fluctuation correlation
length ξ according to formula (6).

4.1. Fluctuation region

Taking the conditions as � ar and bs � br into account
and cancelling the identical divergences of singular con-
tributions to the kinetic coefficients in formula (15), we
obtain the following expression for the barodiffusion ra-
tio kp:

kp = Δρ−γ/βϕ1(Δp/Δρδ) = Δp−γ/βδϕ2(Δρ/Δp1/δ).
(16)

Here, the scaling functions ϕ1(x) and ϕ2(y), which de-
pend on the arguments x = Δp/Δρδ and y = x−1/δ =
Δρ/Δp1/δ, can be written down as follows:

ϕ1(x) = pc

[
f

(b)
1 (x)

f
(a)
1 (x)

+
(
∂µ

∂p

)0

ρ

]
/

(
∂µ

∂ρ

)0

p

,

ϕ2(y) = pc

[
f

(b)
2 (y)

f
(a)
2 (y)

+
(
∂µ

∂p

)0

ρ

]
/

(
∂µ

∂ρ

)0

p

. (17)

Note that, in order to obtain formula (16), we used
the relations as = a0

sΔρ
−ν/β = a0

sΔp
−ν/βδ and bs =

b0sΔρ
−ν/β = b0sΔp

−ν/βδ, where a0
s and b0s are the ampli-

tudes of singular parts of kinetic coefficients. Whence,

assuming that, in vicinities of the critical isobar (x→ 0)
and the isochore (y → 0), the ratios between the scale
functions in relations (16) are equal to the ratio between
the amplitudes of singular parts of Onsager kinetic coef-
ficients as and bs, i.e.,

f
(b)
1 (x)

f
(a)
1 (x)

≈ f
(b)
2 (y)

f
(a)
2 (y)

≈ b0s
a0
s

,

we obtain the following formula for the amplitude of bar-
odiffusion ratio:

k0
p = pc[b0s/a

0
s + (∂µ/∂p)0ρ]/(∂µ/∂ρ)

0
p = const. (18)

Therefore, according to expressions (16)–(18), the baro-
diffusion ratio kp has a “strong” divergence in the fluctu-
ation region, similar to that for the isothermal or isobaric
compressibility of a one-component liquid, if the effects
of spatial dispersion are not taken into account. For the
specific numerical values of critical indices, we obtain the
following formulas for kp:
(i) in a vicinity of the critical isobar,

kp ≈ k0
pΔρ

−1,85(1 + C1Δp/Δρ5), (19)

(ii) in a vicinity of the critical isochore,

kp ≈ k0
pΔp

−0,37(1 +D1Δρ/Δp0,2). (20)

4.2. Crossover region

In this region, where as ≈ ar and bs ≈ br, the ratio
between Onsager kinetic coefficients remains the same
as it was in the fluctuation region, since b/a = (bs +
br)/(as + ar) ≈ 2bs/2as ≈ 2br/2ar = b0s/a

0
s. Hence,

formulas (19) and (20) remain invariable, whereas the
barodiffusion ratio kp, according to them, decreases, as
the distance from the critical point increases, which is
accompanied by the growth of deviations of the density,
Δρ, and the pressure, Δp.

T a b l e 2
Δp D Δρ D

10−12 8.35× 10−14 10−7 2.58× 10−22

10−10 4.58× 10−13 10−5 1.21× 10−18

10−8 2.30× 10−12 10−3 6.49× 10−15

10−6 2.55× 10−12 0.1 3.24× 10−11

10−4 1.39× 10−11 0.5 1.70× 10−10

10−2 4.14× 10−10 0.75 7.82× 10−10

1 2.30× 10−9 1 2.30× 10−9
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Fig. 3. Dependences of the barodiffusion ratio on the order param-
eter Δρ in a vicinity of the critical isobar and the order parameter
Δp in a vicinity of the critical isochore

4.3. Regular region

All that was written above about the crossover region
is equally applicable to the regular one, where b/a =
br/ar = b0s/a

0
s. A unique quantity that remains depen-

dent on Δρ and Δp is the derivative (∂µ/∂ρ)p in the de-
nominator of formula (15), which ensures that formulas
(19) and (20) hold true. Figure 3 illustrates the depen-
dence of the barodiffusion ratio on the density and the
pressure presented by Eqs. (19) and (20), respectively,
in wide intervals of their variation.

At the same time, since the regular region is contigu-
ous with the region, where deviations of the thermo-
dynamic parameters from their critical values are large
(τ ≥ 1, Δρ ≥ 1, and Δp ≥ 1), this circumstance requires
that the additional regular contributions providing the
“matching” between the expressions for the barodiffu-
sion ratio kp in the regions (τ ≤ 1, Δρ ≤ 1, Δp ≤ 1) and
(τ ≥ 1, Δρ ≥ 1, Δp ≥ 1) should be taken into account.
In other words, it is necessary to provide a transition
(crossover) from formulas (19) and (20), in which the
power-law relations (∂µ/∂ρ)p ∼ τγ ∼ Δργ/β ∼ Δpγ/βδ

were used, to corresponding formulas, in which the in-
verse isobaric compressibility (the isobaric modulus) is
given, for example, by the Tait or another regular (non-
scaling) state equation. By the way, the same also
concerns the self-diffusion coefficient in the regular re-
gion.

5. Conclusion

To summarize, we would like to note that the results of
this research provide a basis for the further study of fea-
tures of the pressure gradient influence on diffusion pro-
cesses, which is of not only theoretical, but also practical
interest. In particular, barodiffusion processes must play
an important role in the precision medical techniques of
ultrasonic diagnostics and therapy [19].
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БАРОДИФУЗIЙНI ЯВИЩА В РIДИННИХ СИСТЕМАХ
ПОБЛИЗУ КРИТИЧНОЇ ТОЧКИ

О.В. Чалий, Г.В. Храпiйчук

Р е з ю м е

Представлено результати теоретичних дослiджень бародифу-
зiйних явищ в однокомпонентних рiдинах для рiзних областей
наближення до критичної точки, а саме: 1) для динамiчної
флуктуацiйної областi, де сингулярнi внески в кiнетичнi ко-
ефiцiєнти Онзагера переважають їх регулярнi внески (as � ar

i bs � br); 2) для динамiчної кросоверної (перехiдної) областi,
де as ≈ ar i bs ≈ br ; 3) для динамiчної регулярної областi,
де as � ar i bs � br. Додатково до температури динамiчно-
го кросовера τD введено тиск 4pD i густину 4ρD динамiчно-
го кросовера, для яких наведено чисельнi оцiнки. Дослiджено
особливостi критичної поведiнки коефiцiєнта самодифузiї D та
бародифузiйного вiдношення kp.
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