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It has been shown that the strong exciton-lattice interaction is realized for J-aggre-
gates of different dyes. It causes exciton self-trapping that results in a low quantum yield
of J-aggregate luminescence. It has been found that at room temperature, the self-trapped
excitons relaxe via a nonradiative process. The possibility to influence the exciton-lattice
interaction in J-aggregatesl is discussed.

IToxaszano, uro ansi J-arperaTroB pPasHBIX KpacHUTeJell peajmsyeTrcs CHUJIbHOE DKCHTOH-pe-
metounoe B3ammojeiicrBue. OHO 06yCIOBIMBAET aBTOJOKAJU3AIUI0 9KCHUTOHOB, YTO IIPUBO-
OIUT K MAJOMy KBAHTOBOMY BBIXOJY JIOMHUHecIeHuuu J-arperatoB. OGHApPYKeHO, YTO IIPHU
KOMHATHBIX TEMIIEPATyPaX aBTOJIOKAJN30BAHHBIE 9KCUTOHBLI PEIaKCUPYIOT 0e3bI3/IydaTe bHO.
OOGcy:xmaeTcss BOBMOXXHOCTDL BO3LEMCTBUA Ha 9KCHUTOH-PEIIeTOYHOe B3amMojelicTBue B J-arpe-

rarax.

1. Introduction

The electron-lattice interaction (ELI), as
a ubiquitous fundamental phenomenon of
solid-state physics, is transformed to a po-
tentially useful instrument in development
of modern materials with important funec-
tional properties, for example, the GeSbTe
phasechange materials, high-superconduc-
tors, ete. [1, 2]. The intensive discussion on
the new ELI aspects is stimulated by the
high interest to the nanodispersed materials
and the design of nanomachines like single
photon sources, quantum information de-
vices, ete. [3, 4]. The ELI could be varied
for semiconductors and metals by the
charge density varying at the Fermi level
using the chemical doping [5] or electric
field effects [6]. This does not work for the
bulk dielectric crystals but certain possibil-
ity appears to control the ELI in their
nanosized version [7]. The short-range ELI
was demonstrated to be an anomalously
strong for the localized electron states
which could be produced by a static disorder
or spatial confinement of electron wave
functions as well [8]. As to the long-range
(Froehlich type) polar interaction which is
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realized for nanoparticles dispersed into a

medium with dielectric constant ¢,,;, the
ELI was shown to depend on ¢,L, in addi-

tion to the Pekar factor (gp! — ¢}, and po-

laron energy being a complex function of
the nanoparticle size [9].

J-Aggregates are self-assembled molecu-
lar nanoparticles composed by the linear or
ring-like arrangement chains of the po-
lymethine or phtalocyanine dyes [10-12].
J-Aggregates belong to the large family of
so-called non-covalent structures like
micelles, proteins, liposomes, amyloids,
etc., but their specific feature is a narrow
absorption band (J-band) red-shifted with
respect to the monomer one [10-12]. The
major experimental finding for J-aggre-
gates formed in aqueous solutions, like the
unusual sharpness of the J-band and exci-
ton superradiance [18, 14] were interpreted
successfully in the frame of 1D Frenkel ex-
citon model [15]. A certain type of J-aggre-
gates was considered as supramolecular
quantum wires which demonstrate the de-
pendence of exciton energy on the lateral
confinement [16]. Though the long history
[10-12], J-aggregates are connected by the
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wide bridge with the up-to-date science:
some types of J-aggregates exhibit an effec-
tive exciton migration [17] similar to the
ballistic electron propagation in the carbon
nanotubes [18]; J-aggregates can undergo
strong coupling (Rabi splitting ~250 meV)
with the surface plasmon-polariton modes
that favors the development of new plas-
mon-based technologies [19]; due to the pos-
sibility to turn the exciton localization, J-
aggregates are promising systems for the
quantum computing technology [20]; the
specific interaction between J-aggregates
and important biological objects like mito-
chondria, DNA and RNA [21, 22] allows to
consider J-aggregates as the perspective lu-
minescent markers with the spatial resolu-
tion.

In spite of numerous and comprehensive
efforts undertaken to understand the opti-
cal and luminescence properties of J-aggre-
gates, there is no clear conception relative
to the ELI in such nanoscale objects. The
weak ELI is generally accepted and the
short-range interaction is considered to be
realized through the deformation potential
similarly to the molecular crystals [15].
This means both the energy changing of
static interaction of n-th excited molecule
D, (diagonal ELI) and the resonant integral
transfer ( (off-diagonal ELI) are functions
of the intermolecular distance. The critical
parameters governing the exciton-phonon
dynamics have been introduced by E.Rashba
[28, 24] to be as follows: B; g;p is the en-
ergy of lattice relaxation; Opp, is the fre-
quency of phonon mode coupling with exci-
ton. The ELI is usually presented by the
dimensionless parameter g =¢g;5/2B (2B is
the half of exciton band). Depending on the
g value, the weak ELI (g < 1) or the strong
ELI (g = 1) could be realized. The weak ELI
resulting in an intraband exciton relaxation
was used to analyze the destruction of su-
perradiant decay and the thermal line
broadening in J-aggregates [14]. The off-di-
agonal ELI strength was estimated to be
about 26 meV from the temperature de-
pendence of superradiant decay in PIC J-ag-
gregates [25]. There is no univocal concept
of the phonon mode providing the ELI in
J-aggregates. Both the low frequency ma-
trix phonons and the high frequency optic
phonons of J-aggregates have been accepted
[10, 11, 14, 15, 25]. The strong diagonal
ELI has been involved into consideration to
explain the significant polaron effect caus-
ing the exciton self-trapping in the amphi-
PIC J-aggregates [26—28]. Direct estimation
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of g;p and P for amphi-PIC J-aggregates
gives g ~ 1, indicating the strong ELI [27,
28]. For the 2D J-aggregates in the form of
LB films, both the weak (g < 1) and strong
(g > 1) ELI were evaluated [29]. So, it is of
interest to ascertain the ELI origin for the
self-assembled J-aggregates in solutions.

In this work, we present for the first
time the set of important deeply intercon-
nected findings concerning the ELI manifes-
tation in the J-aggregates. The ELI could be
controlled by changing of the J-aggregate
solvate shell using surfactants. The strong
correlation between the J-aggregates lumi-
nescence quantum vyield and the ELI
strength has been revealed that allows us to
consider the exciton self-trapping as the
main mechanism of the J-aggregate lumi-
nescence loss. The anomalous enhancement
(twenty-fold in some cases) of J-aggregate
luminescence under ELI suppression will be
demonstrated. This mechanism is general
and works for different types of J-aggre-
gates.

2. Experimental part

The dye 3,3’-dimethyl-9-thienyl-thiacar-
bocyanine iodide (L-21) was obtained from
the dye collection of the Department of
Combinatorial Chemistry (Institute for Mo-
lecular Biology and Genetics, NAS of
Ukraine). The dyes 5,5,6,6’-tetrachloro-
1,1,3,3’-tetraethylbenzimidazolylcarbocyanine
iodide (JC-1 or TTBC) and 1-methyl-1’-oc-
tadecyl-2,2’-cyanine perchlorate (amphi-
PIC) were synthesized by Dr.I.Borovoy (In-
stitute for Scintillation Materials, NAS of
Ukraine). The purity of the dyes was con-
trolled by thin layer chromatography. 1,1’-
Diethyl-2,2’-cyanine iodide (PIC) dye and
cationic surfactant cetylpyridinium
(hexadecylpyridinium) bromide (CPB) were
purchased from Sigma Aldrich and used as-
received.

J-Aggregates of L-21 were prepared by
the adding an appropriate amount of the
surfactant CPB to a stock solution of L-21
in dimethylformamide (DMF). Then the so-
lution was diluted with aqueous buffer Tris-
HCI (C = 0.05 M, pH = 8) in the ratio 1:19.
The L-21 concentration in the solution was
11074 M. The JC-1 aggregates were pre-
pared in a similar way from a stock solution
of JC-1 dye and CPB surfactant in DMF.
Then the solution was diluted with a aque-
ous borate buffer (Na,B,0,—HCI, pH = 8.5)
in the ratio 1:9. The JC-1 concentration in
the solution was 1-107% M. PIC J-aggregates
were prepared by dissolving the PIC dye and
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CPB surfactant in aqueous NaCl (0.2 M) so-
lution under moderate heating (< 80°C).
Then the solution was cooled down to room
temperature. The PIC concentration in the
solution was 5-107% M. To prepare amphi-
PIC J-aggregates with CPB, the dye and the
surfactant were dissoclved in DMF, then
doubly distilled water was added to obtain a
binary solution DMF/water with 90 %
water content. The amphi-PIC concentration
in the solution was 5-107 M. The CPB con-
centration in all the solutions was 1073 M
(critical micelle concentration for CPB is
6.2-107¢ M [30]).

Luminescence and luminescence excita-
tion spectra were recorded using a spec-
trofluorimeter based on two grating mono-
chromators MDR-23 and a xenon lamp. One
of the monochromators was used to select a
required wavelength (FWHM ~ 0.5 nm), the
other one was used for the luminescence
collection. For absorption spectra measure-
ments, the spectrofluorimeter was supplied
with an incandescent lamp.

Absolute quantum vyields of photolumi-
nescence for all the solutions were measured
using a home-made integrating sphere
(100 mm in diameter), which provides a re-
flectance >99 % over the 400-1000 nm
range. As an excitation source, a diode-
pumped Nd3*:YAG laser (A = 532 nm) was
used. The absolute quantum yield was calcu-
lated using the method developed in [31]
and successfully applied for solutions in
[32]. The experimental setup was adjusted
and tested for a standard dye (rhodamine
6G in ethanol, C = 1076 M) as described in
[31]. To measure the time-resolved lumines-
cence spectra, a mode-locked Nd3*:YAG laser
(second harmoniecs, A,,. =532 nm) and a
time-correlated photon counting system
were used. The instrumental function of the
setup was 0.5 ns. The CFS LS software
package (Center for Fluorescent Spectros-
copy, USA) was used to process the experi-
mental luminescence decay curves.

3. Results and discussion

It is well known that in real J-aggre-
gates, we deal with disorder-induced spa-
tially compact excitons which extension is
usually described by the number of coher-
ently coupled monomers N, [15]. We can
control the N, through the solvate shell
which is the main source of the J-aggregate
disorder [10-12, 15]. For example, the
solvate shell heterogeneity promotes an in-
creasing J-band width [10—12] while in con-
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Fig. 1. Molecular structures of the dyes and

surfactant investigated: a) L-21, b) JC-1, c)
PIC, d) amphi-PIC and e) CPB.

trast, in surfactant solutions, J-band was
shown to tend narrowing that was inter-
preted by an increasing N,,; [33, 34]. The
N g0 variation could cause the ELI changing
in J-aggregates, since the ELI strength was
declared by Drabold [85] to increase for the
localized electronic states. To verify this
idea, the different surfactant molecules
aiming to locate on the interface have been
looked over to control the solvate shell of
J-aggregates. We developed a technology
free from the specific surfactant-dye inter-
action noted in [33]. A number of extensive
polymethine dyes (Fig. 1) was selected to
create J-aggregates.

In what follows, we shall focus on the
most remarkable effect achieved with the
CPB molecules (Fig. 1). For all J-aggregates
tested, the J-band narrowing has been ob-
served in the surfactant solution as com-
pared to that in the aqueous solution (Table).
The CPB concentration corresponded to con-
dition ncpp/ng,, > 1. The electrostatic re-
pulsion of the identical charged surfactant
molecules and dyes (Fig. 1) and the invari-
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ance of the maximum of J-bands confirm
that the direct CPB intercalation into J-ag-
gregates body is impossible. CPB molecules
are believed to gather around J-aggregates
making a dynamical coat that is confirmed
by the increasing of the J-aggregates an-
isotropy luminescence decay [34]. The
J-band narrowing demonstrates the surfac-
tant CPB to affect the J-aggregates struc-
ture which becomes more perfect [10-12,
15, 34]. But we have revealed the dynamical
processes to give a considerable contribution
to the J-band width at room temperature.
In particular, the ELI strength was esti-
mated to be reduced by the CPB molecules.
So, using the absorption band parameter of
monomers AFG%,, and J-aggregates Afyy ras

one can obtain only a rough estimate (lower
limit) of the N, [34].

To single out the ELI strength from the
J-band, we have used the Urbach-Martien-
sen (U-M) rule [36, 37]:

o(E) = agexp [-o(T) - (Eqg — E)/kgT], (1)

o(T) = 6o(2kpT /fio ) tank(ho, ,/ 2kgT),(2)

where E is photon energy; o(T), the steep-
ness parameter; kp, the Boltzmann constant

and Oph the phonon mode frequency.

The correctness of U-M rule (1) has been
firstly examined for the J-aggregates tested
in solutions. For example, we have observed
a typical slope variation of the low-fre-
quency J-band edge (Fig. 2) as it was shown
for J-aggregates in form of LB films [29].
Of course, the slope changing is insignifi-
cant at room temperature (Fig. 2) because
the temperature dependence of steepness pa-
rameter (2) tends to saturation due to the

fio,y, < kgT criterion. The v,, value was ob-
tained for certain J-aggregate types by
Mukamel (o,;, ~ 220 em™1) [14] and Inoue
(“’ph ~ 210 em 1) [38]. Hence, the condition
o(T) ~ oy is acceptable and we can get the

Fig. 2. Low energy edge of PIC J-aggregate
J-band (dashed lines) attemperatures (K): 290
(1), 315 (2), 290 in the CPB presence (3).
Solid lines represent approximation according
U-M rule. Inset: application of U-M rule for
PIC J-aggregates in frozen matrix: T = 77 K,
180 K, 212 K, 252 K. The arrow shows the
direction of J-band slope changing at tem-
perature elevation.
ELI constant from the expression g = s~60’1
(where s is dimensionless parameter defined
by the lattice geometry) [36, 837]. For 1D
system, s is known to be a function of tem-
perature and we used the data presented in
[37] to estimate its value. The set of the g
values obtained shows the surfactant mole-
cules to provoke the ELI strength reduction
that correlates with J-band narrowing
(Table). The weak ELI is realized only for
PIC aggregates both in the aqueous and sur-
factant solutions. Others J-aggregates dem-
onstrate the ELI change from the strong
interaction (g > 1) to the weak one (g <1)
in the surfactant solutions.
We have ascertained the evident anticor-
relation between the ELI strength and the

Table. Spectroscopic data for different J-aggregates in the absence and presence of CPB: J-band
width (Avgy ), luminescence quantum yield (¢) and exciton-phonon coupling constant (g).

AV gy em™1 0, % g
No CPB CPB No CPB CPB No CPB CPB
L-21 800 175 2.5 17.5 1.95 0.55
JC-1 380 265 1.5 19 1.25 0.75
PIC 130 125 2.5 38 0.65 0.5
amphi-PIC 650 410 0.3 0.5 0.95 0.8
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Fig. 3. Luminescence decay curves for JC-1
J-aggregates in the absence (1) and the pres-
ence (2) of CPB. 3, the instrument function.

J-aggregate luminescence absolute quantum
yield (Table). The considerable increase of
the J-aggregate luminescence is observed as
the ELI decreases. Simultaneously, the lu-
minescence decay of all J-aggregates be-
comes longer (Fig. 3) due to the inhibition
of photonless relaxation of excited J-aggre-
gates. This means the excitons suffer from
the quenching provided by the strong ELI.
As it follows from Table, the luminescence
lack of J-aggregates is observed when the
polaron formation criterion, g > 1 is realiz-
able. The liquid solvate shell does not pre-
vent J-aggregates deformation and the self-
trapped state could be deactivated due to
the monotonous lowering of the total energy
and consequent photonless relaxation. That
is why the quantum yield of the J-aggregate
luminescence in solutions is low. But in the
frozen solution, the relaxation of the self-
trapped state could be stabilized by the elas-
tic deformation of molecular chain and ma-
trix and the free excitons and self-trapped
excitons simultaneously are manifested in
the luminescence spectrum (Fig. 4). At room
temperature, the band of self-trapped exci-
tons vanishes at all reflecting the 63 % loss
of J-aggregate luminescence (according to
the band area ratio of free and self-trapped
excitons).

The control of polaron formation
through N, is corroborated by the micro-
scopic model of polaron state as well. This
model was partially developed in [27, 28]
gand accounts a specific of polymethine
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Fig. 4. Spectra of amphi-PIC J-aggregates lu-
minescence at different temperature (from
T =77 K up to T =290 K). Arrows show di-
rection of band intensity changing at the
temperature growth.

dyes electronic structure. The polymethine
state of these dyes was shown by S.Daehne
[39] to be the charge modulation along the
polymethine chain consisting always of odd
atoms (see Fig. 5a). Within the chromo-
phore chain which is the main block of the
real J-aggregate, there is a "plane-to-plane”
interaction, typical of molecular crystals
but the minimum Coulomb coupling stipu-
lated by the charges of polymethine chains
in the nearest-neighbor molecules is pro-
vided by its shift (see Fig. 5). The charge
alternation becomes the opposite when the
dye has been excited into the first singlet
level (see Fig. 5b) that results in a substan-
tial change of the Coulomb coupling be-
tween the nearest-neighbor molecules. The
interaction energy becomes negative within
the deep minimum, when the shift between
two polymethine chains is absent (see Fig.
5b). Hence, the chromophore chain deforma-
tion, when the displacements of sequentially
positioned molecules, 5,, and §,.;, have op-
posite signs (the successive molecules shift
transversely to opposite sides from the
chain axis which retains a fixed position) is
very important for the polaron formation,
because in this case, the lattice deformation
involves the small volume of the order of
lex~a2 = Ndel'a3 producing a low elastic en-
ergy being of the order of k~Ndel~a-62. As it
is much more energ-favourable compared to
the contraction of the chain segments. The
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Fig. 5. (a) Amphi-PIC dye structure; (b) frag-
ment of amphi-PIC J-aggregate chain (two
types of monomer displacements are shown).

alternate-sign displacements of molecules
numbered in the chain by subscript n, can
be written down in the form 5§, = (—1)"u(na),
where u(x) is a function slowly varying on
the distance [,, (x is a coordinate counted
along the chain). Since the positive and
negative directions of transverse displace-
ments are physically equivalent, the ELI en-
ergy will not change when the funection u(x)
changes its sign. Hence, the u(x) — expan-
sion of the ELI energy starts with wu(x)2
item instead of generally accepted linear
one. The total energy of the chromophore
chains containing an exciton is

@ Ny (3)
€tot = I{(Zmeﬁ)—l ~(dy(x)/dx)? -
0

—C-ux)? yx)2+ ...+ K- ux)?+ ...}

The relation (3) shows that a self-trapped
state can exist under the condition
y(x)2-C > K, which could be met in the case
of a large exciton density w(x)2 or of a
strong ELI described by a large constant C.
Both characteristics y(x)2 and C (according
to Drabold [8, 35]) tend to increase at small
N oy that makes N, to be the main drive
parameter to control the polaron formation
in J-aggregates polymethine dyes.
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4. Conclusions

The strong ELI (g>1) is shown to be
realized for numerous J-aggregates and to
cause the lack of J-aggregate luminescence.
At room temperature, the STS of excitons
which is formed under the strong ELI re-
laxes via a photonless process. The ELI in
J-aggregates could be changed by way of
N 4. control.
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KoHTpoas yTBOpeHHs mOJApOHIB B J-arperarax

I.K.Kampynos, C.JI.€pimosa, O.B.Copoxin, IO.B.Maniokin

IToxasano, mo gas J-arperariB pisHux 6GapBHUKIB peaid3yeTbCs CHJIbHA €KCUTOH-I'PATKO-
Ba B3aeMojis. BoHa cIOpuUYMHSE aBTOJIOKANi3aIllil0 €KCHUTOHIB, II[0 MNPUBOAUTL IO MAJIOTO
KBaHTOBOI'O BUXOJY JioMiHecreHIii J-arperariB. BusiBieHo, mio npu KiMHATHHX TeMIepaTy-
pax aBTOJIOKAJi30BAHI €KCUTOHM PeJaKCyIOTh 0e3BUIPOMiHIOBAJILHO. OOGrOBOPIOETHCT MOMK-
JIUBICTh BILIMBY HA €KCHUTOH-IPATKOBY B3Aa€EMOIil0 B J-arperarax.
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