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Based on the non-equilibrium density matrix method and using
the Bogolyubov’s approach for the decoupling of many-particle
distribution functions, a closed set of kinetic equations is derived
for the state occupancies of closed and open quantum systems. It
is shown that the transformation of a non-Markovian master equa-
tion into a Markovian one becomes possible at a high-frequency
stochastic field alternating the energy levels of a quantum system.
At a weak interaction between quantum subsystems composing the
open quantum system, the set of linear balance-like kinetic equa-
tions for multistate occupancies of the system is transformed into
a set of nonlinear kinetic equations for the occupancies of separate
quantum subsystems.

1. Introduction

The most general way to derive a master equation for
the state occupancies of closed and open quantum sys-
tems (CQS and OQS, respectively) is based on two ap-
proaches. The first one utilizes the method of projection
operators [1-3]. The second approach employs the Bo-
golyubov’s method of asymptotic description of the evo-
lution of dynamic systems (the principle of correlation
weakening) [4-6]. Both approaches lead to identical ki-
netic equations for the OQS. In what follows, we employ
the projection operators method which has been earlier
used to derive the kinetic equations for the description
of the charge transmission through single molecules and
molecular wires [7-9]. The present generalization takes
a possible control of transfer processes by external high-
frequency stochastic fields into consideration. The main
aim of the present communication is to derive master
equations suitable for the description of kinetic processes
in closed and open quantum systems composed of sep-
arate subsystems. The subsystems are assumed to be
coupled to one another and to an equilibrium environ-
ment via off-diagonal interactions.
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2. Master Equation for the Closed Quantum
System

The closed quantum system is a dynamic system, where
transitions between its states are determined by only
interactions within the system, whereas both the system-
environment energy exchange and the particle exchange
are ignored. Let |a) and E, be, respectively, the proper
state and the proper energy of the CQS Hamiltonian Hy.
This Hamiltonian has to include the main interactions in
the CQS. Transitions between the ath and the bth states
are associated with the off-diagonal transfer operator V.
To generalize a situation, we suppose that the position of
CQS energy levels can be alternated by regular ac-fields
or non-regular stochastic fields so that the energy of the
ath state becomes F,(t) = E, + AE4(t). In the basis of
proper states {|a)}, a total CQS Hamiltonian appears as

Heoqs(t) = H + AH(1), (1)
where
H=Ho+V (2)

is the basic CQS Hamiltonian, with

Hy =" Eala)(al (3)

and

V=" Vi (1= dap) [a) (0] (4)

a,b

being its diagonal and off-diagonal parts, respectively.
In the model under consideration, the influence of an
external ac-field is completely concentrated in the state
energy via the addition

AH(t) =) AE,(t)]a){al (5)

where AFE,(t) is the energy variation caused by regular
or/and stochastic fields.
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The derivation of a master equation describing the
evolution of state occupancies starts from the Liouville
equation for the CQS’s density matrix pcqs(?):

poqs(t) = —1L(H)pogs(t) - (6)

Here, L(t) = (1/h) [Hcoqs(?), ...] is the Liouville super-
operator associated with Hamiltonian (1). In line with
a structure of this Hamiltonian, £(¢) consists of two Li-
ouville superoperators, Lo(t) = (1/h) [Ho + AH(t),...]
and Ly = (1/h)[V,...], so that L(t) = Lo(t) + Ly.
Let us introduce the projection superoperators T, and
Tna = I — Ty which expand any operator into its diag-
onal component (matrix elements are the occupancies)
and its off-diagonal component (matrix elements are the
coherences). The action of the operators Ty and Ty
upon the left- and the right-hand sides of Liouville equa-
tion (6) generates a coupled set of differential equations
for diagonal and off-diagonal parts of the density ma-
trix, pa(t) = Tapcqs(t) and pna(t) = Taapcas(t), re-
spectively. The details of this procedure can be found,
for instance, in Refs. [2, 7,8, 10]. In our case of the
time-dependent Hamiltonian, the noted set of equations
can be written in the form

pa(t) = —iTy Ly ppa(t),
pra(t) = —1Tng L()pnalt) — Ly pa(t) . (7)

After the substitution of the second equation into the
first one, we obtain the following integro-differential
equation for the diagonal part of the density matrix:

t

ﬁd(t) = —/dTTdﬁvs(t,t—T)Evpd(t—T)7 (8)
0

where S(t,t —7) = S(¢)ST(t — 1), and

¢ a ’
S(t) e 1{ dr'Tpa L(7") (9)
is the evolution superoperator. The state occupancy
P(a;t) = (a|pa(t)|a) defines the probability for the quan-
tum system to be found in the ath state at any time ¢.
In line with the basic master equation (8), one arrives to
a desirable master equation for the occupancies,

t

Pa=-Y [

b(#a) o

dr Gap(t,t = 7)[P(a;t —7)—

—P(b;t —1)]. (10)
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Here, the quantities

Gav(t,t — 1) = —(al(LvS(t, t — 1)Ly [b)(b])]a) (11)
define the transfer matrix G(¢,t — 7). Master equation
(10) is exact and can be used for a further reduction
to the master equation for state occupancies. Before,
however, we show how master equation (10) is trans-
formed into a set of kinetic equations, where the tran-
sitions are specified by the only rate constants. To this
end, let us consider the Born approximation, where an
evolution operator reads S(t,t — 7) = So(t,t — 1) =
exp[—ifttiT dr’ Lo(7")], and, thus, elements (11) of the
transfer matrix G(¢,¢ — 7) appear in a simple form
Gap(t,t —7) = (2/1%) |Via|? cos [wpaT + Ppa(t, t —7)],
(12)

where

wya = (Ey — Eq)/h (13)

is the stationary transition frequency between the ath
and the bth states, while

By (t,t — 1) = Byt t — 1) — Bu(t,t — 1) (14)

is the phase difference caused by external ac-fields. Note
that, for the ath state, this time-dependent phase is de-
fined by the expression

t

By (Lt — 7) :% / dr' AE, (') .

t—T1

(15)

If the ac-field is regular, the phase ®,(t,t — 7) is a reg-
ular function. Therefore, the action of a regular ac-field
does not bring to relaxation (damping) transitions in
the CQS. A basically another situation is formed if the
CQS is under influence of a stochastic field. In this
case, the AF,(7)/h = «a(7) is a random value, and,
thus, the phase ®,(¢,t — 7) becomes a random func-
tional. As a result, the master equation (10) appears
as a stochastic equation. For the description of spe-
cific transfer processes, this stochastic equation has to
be averaged with respect to a realization of the ran-
dom quantity «(7). The examples of such an averag-
ing can be found, for instance, in [11-15]. The main
result of the averaging is that one obtains the set of
coupled equations including not only an equation for
averaged state occupancies P(a;t) = ((P(a;t))), but
for additional averaged values as well. However, for
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the fast random realizations of «(7) in comparison with
the transfer process within the quantum system, the
decoupling procedure ((Gup(t,t — 7)P(a(b);t — 7))) =~
({Gap(t,t — 7)))P(a(b);t — 7) is valid with a high ac-
curacy. A very important result is that, independently
on the type of a stochastic process, the averaged transfer
matrix, ((G(t,t—7))), loses its dependence on the current
time ¢ and obtains the damping factors like exp (—vs7)
with v, > 0. For instance, in the simplest case of a
symmetric dichotomous process (a(7) = +0), the aver-
aging yields ((Gap(t,t — 7)) = exp (—y7)Qap(7), where
v = 0%/4v (v and o are, respectively, the characteris-
tic frequency and the amplitude of the random process).
Consequently, the averaged master equation reads

t

Plat)=— ) /

b(#a) |

dre™ /T Qu (M)[Pla;t —T)—

—P(b;t — 1), (16)

where 74 = v~ ! is the decay parameter, and Q(7) =

(2/h?) |Vha|? cos (wpeT) is the regular part of the kernel.
It follows from integro-differential equation (16) that the
characteristic time of the kernel decrease, 74, is associ-
ated with a stochastic influence, while the characteristic
time of the transfer process, 7., is determined by an
off-diagonal interaction within the CQS (i.e., by matrix
elements V;,). Note that P(a;t—7) = exp (77%)P(a; t).
In the case of fast stochastic processes under consid-
eration, the strong inequality 74 < 73 is satisfied.
Therefore, on the time scale of the transfer process,
At ~ 7y, the factor exp(—7) can be estimated as
exp (—7q/7er) &~ 1. This means that, with a high accu-
racy, one can set P(a;t—7) &~ P(a;t), by ignoring, thus,
a role of memory processes in the formation of transi-
tions between the CQS states. In view of this fact, one
can perform the complete integration with respect to 7.
Setting exp (—t/74) ~ 0, we obtain, thus, the following
Markov’s version of a master equation for the averaged
occupancies:

P(a;t) = - Y K(a,b)[P(a;t) — P(bit)].
b(#a)

(17)

Here, the quantity K(a,b) = (2/8%)|Vea|*[v/(wi, + 7?)]
exhibits itself as the rate constant characterizing the in-
terstate transitions. The parameter v could be treated
as the broadening of energy levels caused by a stochastic
field. [If the stochastic field has a complicated form, a
simple expression for the K is not more valid. But, in-
dependently of the precise form of stochastic influence,
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the main physical result remains correct. Namely, the
fast alternation of the stochastic field leads to the trans-
formation of the non-Markovian master equation into a
Markovian one.] Note now that the area covered by the
Lorentzian v/(w? + 4?) in the region —oo < w < 400,
is independent of the parameter . Therefore, it be-
comes possible to simplify the form of the rate con-
stant, by setting v ~ 0. With regard for the relation
lim,_o(1/7m)v/(w? + 7?) = §(w), this yields K(a,b) =
(27 /h)|Vpa|?6(Ey — E,). The advantage is that the rate
constant can be calculated now without specification of
stochastic fields acting on the CQS. But, one can remem-
ber that, physically, the appearance of rate constants de-
scribing the transitions in the CQS becomes possible at a
strong dephasing caused by the fast alternating stochas-
tic field. If the Born approximation is not used, one
derives the following generalized expression for a rate
constant:

21 r
K(a,b) = f\‘/}f; 26(Ey, — E,). (18)
In Eq. (18), Vb(atr) = (b|V*)|a) is the transition ma-

trix element on the energy surface £ = E, = Ep. It is
calculated with the transition operator

Ve =V L VG(E)Y, (19)

where G(E) = (E — H +i07)~! is the Green’s opera-
tor, with H being the CQS Hamiltonian (5). Note that
form (19) is employed widely for the description of scat-
tering processes, when the initial, |a), and the final, |b},
states belong to the colliding particles with and without
changes in their compositions [16]. Thus, in the scat-
tering theory, each ath state includes, with necessity,
the states of continuous spectrum of the particle. Our
derivation of master equation (17) shows that the inter-
state transitions in a CQS can be described by a closed
set of kinetic equations (17) for the averaged state occu-
pancies P(a;t) if only the CQS energy levels are casually
shifted by a fast stochastic field. In this case, the transi-
tions between CQS states are characterized by the aver-
aged rate constants (18), even though the CQS does not
contain a continuous spectrum. In fact, the continuous
spectrum is imitated by the fast stochastic field.

3. Master Equation for a Dynamic Subsystem

Let Ag be the s(= 1,2, ...)th dynamic subsystem of the
entire CQS. Subsystem A, is associated either with a
precise CQS unit (for instance, with electrodes or a
molecule) or/and with different degrees of freedom (elec-
tronic, nuclear, spin). Denoting, by js(As), a specific
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quantum state related to the Agsth subsystem, one can
represent a proper state of Hamiltonian (3) as a set
{j(A)} of possible quantum states of the CQS. There-
fore, master equation (17) reads

P{j(A}it)=— > E{i'(A)}L{i(M)}) x
%)
x[P({7(A)});t) — P({7"(A")}); )] . (20)

[Subsystem A’ can differ from the A; by another charge
or/and conformation, as well as by a spin state.] Note
the validity of a normalization condition

S Pt = 1.
{7(A)}

(21)

The precise form for the rate constant

K({5' (A0} i)} = 2% {5 (ADHVE (A}

<O[E({5'(AD}) = E({i(A)})]

depends strongly on the structure of the matrix element

(L AHVED G} = (T AHVIG )1+

(22)

+ 0D VI )
G G/

(' AMGE)NTE DAV

characterizing the transitions between the CQS states.
To estimate this matrix element, let us note that
any CQS state can be represented generally as |a) =

AN = 50 OO a1 (A1), 2 (As), o).

Below, for the sake of simplicity, we consider only the
form ‘{](A)}> = |j1(A1),j2(A2),j3(A3)7...> valid in the
case of a negligible exchange interaction between the
CQS subsystems. Let V) couple the states belong-
ing to a limited number of subsystems, say, Ai, As,...
A,.. Then

L AHVEGA)}) =

(23)

1T diapaanx
I#1,...r

X (1A, e (A V1 (A1), i (Ar)) (24)
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Form (24) shows that one can sum both parts of
Eq. (20) over the states jr41(Ary1),Jrt2(Arga),... =
{ji(A;)} which are not involved in the transition
J1(AD), . gh(AL) = j1(Aq),...jr(Ay). Such a summation
brings about the master equation

P(jl(Al)a "-jr(Ar);t) =

-y ¥

{a(A0} {57(AD}

1A, - dr (A7) 41 (A1), i (Ar)) X
<[P (A1), PN, -l (A1) (25)
for the partial multistate occupancies

Pl A (A = S P
{5(A)}

(Ar);t) —

(26)

which, in line with Eq. (21), satisfy the normalization
condition

Y PG, e (An)it) =1 (27)
J1(A1),.gr (Ar)
In Eq. (25), the rate constants are determined as
K(j1(AY), o gr(AL); 1 (M), i (Ar)) =
2T N (tr)) . 2
= = [ (A, -G (A IV L1 (M), -5 (A ))
XO[E(j1 (M), dr(A7)) = B(j1(A1), g (A))] . (28)

The set of linear equations (25) can be used to get a ki-
netic equation for state occupancies P(js(As);t) of a sep-
arate subsystem A;. Summing Eq. (25) over all states
J1(Aq1),...dr(Ay) except js(As), one derives

P(.js(As); t) =

== > > KA

{51 (AD)}£7s (As) {37 (AD}

/1>7 ];(Alr)mjl(Al)a ]T(AT))X

X[ PG, e (80):8) = P, i (A D], (29)

where the subsystem state occupancy is normalized by
the condition

S PGuA) =1

jS(AS)

(Ar);t)

(30)
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4. Master Equation for an Open Quantum
System

The above-derived kinetic equations describe the evo-
lution behavior of a dynamic system isolated from the
environment. For such systems, the forward and the
backward rate constants coincide completely (see the
right-hand side of the basic master equation (20) and
its particular cases, Egs. (25) and (29). As a result, at
t > 74 (74 is the characteristic time of evolution pro-
cesses in the CQS), the identical steady occupancies are
established for all CQS states {j(A)} participating in the
transition process. The situation is strongly changed for

an OQS.

4.1. Kinetic equation for partial occupancies

To derive a master equation for the OQS, let consider
the CQS which is in a contact with the environment.
The environment can be considered as a specific
subsystem A, of the combined system "CQS + en-
vironment". We again come to the master equation
(20), but the evolution of state occupancies is de-
termined now not only by the transitions between
subsystems (or within a separate subsystem) but is
controlled by the environment. This fact is reflected
in master equation (25), where, along with the above-
indicated states ji(A1),...J-(A,) and 71 (A}),...5.(AL),
the sets of environmental states, j.(A.) and j.(AL),

are also included in the common state. Therefore,
instead of the occupancies P(ji1(A1),...5-(Ar); )
and  P(ji(A}),...J.(A));t), the more complicated

occupancies P(j1(A1), -jr(Ar), je(Ae)i t) and
P (AY), g (AL), gL(AL);t) are involved into the
transition process. At the same time, the rate

K(jt(Ax)s e (A); 71(AD), gL (AL)) is replaced by
K(]l(A1)>jr(Ar)7]e<Ae)7]i(A/1)7J:"(A;’>7jé(A/e))

An important property of the environment is that
the evolution behavior of its state occupations
P({je(Ae)};t) is not practically affected by a dy-
namic system but is determined by a much stronger
interaction with the outside surrounding. This cir-
cumstance allows us to employ the Bogolyubov-type
decoupling procedure P(j1(A1),...5-(Ar), Je(Ae);t) ==
P(j1(A1),...dr(Ar); ) P(Je(Ae);t).  Such a decoupling
assumes also that E(j1(A1),...J-(Ar),Je(Ae))) =
E(j1(A1),...9-(A)) + E(je(Ae)).  Another important
property is that the characteristic time 7. of the
establishment of environmental steady-state occu-
pancies is much less than those for the subsystems,
ie. T. < 7. Since the evolution of the occupan-
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cies of subsystems occurs on a time scale At > 7.,
we can set P(je(Ae);t > 7o) ~ W(je(Ae)) and
PGLAL);t > 7o) ~ W(L(AL)) on a time scale
At ~ 14, where W(j.(A:)) and W(jL(AL)) are the
equilibrium environmental steady-state occupancies.
When the environment is in a thermal contact with
an outside surrounding, this environment appears as a
thermal bath with the bath distribution function

L -BGao) kT

Wie(Ae)) = 705

(31)

where Z(Ae) =37, (a,) e~ EU(A))/ksT ig the partition
sum (kg and T are the Boltzmann’s constant and the
absolute temperature, respectively). [In condensed mat-
ter, the environmental states are often associated with
vibration states of nuclei. In this case, each environ-
mental state j. coincides with the number of vibration
quanta ny = 0,1, 2, ... of the Ath mode of the frequency
wy, while E(jo(Ae)) = D, hwa(na +1/2)].

By taking the decoupling procedure into ac-
count and by using the normalization condition
2.y W(e(Ae)) = 1, we reduce master equation (25)
to the form

P(jr (A1), g (Ay)st) =

== > [KGiA), e (Ar) = LA, i (A1) %

{au(A)} 57 (A7)
X P(j1(Ar), - jr(Ar); t)—
—K(j1(A), (A7) = Gi(A), e (Ar)) %
X P (A7), 31 (AD):)]
Here, the forward rate constant reads

K(j1(Ar), e (Ar) = j1 (A7), -dr (A7) =

)

Je(Ne) FL(AL

XK(jl(A1)7 "'jr(AT)7je(Ae);j:/l(A/1)v ];(A;)?JQ(AD)
(33)

where
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= 215D, s B ADIV DL (A1), e (A P
XB{IBGAAL), L (A) + BLAL) -
_[E(jl(Al)a ]T(Ar)) + E(]e(Ae)]} : (34)

Rate (33) characterizes the transition j1 (A1), ...Jr(A]) —
J1(AY), .50 (AL) within the set of quantum subsystems
coupled to the equilibrium environment. The expression
for the backward rate constant follows from Eq. (33)
if one substitutes the environmental steady occupancy
W({je(Ae)}) for W({j.(AL)}). Note that, in line with
Egs. (34) and (31), the backward and forward rate con-
stants are connected by the relation

KA, -

Jp(A) = 1(A1), - (Ag)) X

X exp [— E(j1(AY), ];(A;))/kBT} -

= K(j1(A1), --gr(Ar) = J1(AL), -5 (A7) X

]

The equation for the occupancy of a separate subsystem
follows directly from Eq. (32) and reads

X exp { — E(j1(A (35)

P(js(As);t) =

=- > o KGi(A),dr(Ar) —
{a(A)}#5s (As) {5/ (AD}

= J1(AD), G (M) P(j1(Ar), e (Ar)i ) —

—K(j1(AY), -5 (A7) = G1(Ar), - (Ar)) X

P(j1(AY), g1 (A7) )] (36)

Here, the rate constants are given by expressions (33)—
(35).
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4.2. Nonlinear master equation

Let the interaction between the subsystems be so weak
that Hamiltonian (3) contains no interactions that mix
the states related to different subsystems. So, the cou-
pling between the subsystems is completely associated
with the weak off-diagonal interaction (4). This allows
us to represent a common quantum state as a direct
product of partial states |j;(A;)),

{i(A)}) =

71 (A1)) x [52(A2))

H |.78 Al

Analogously, the proper energy E({j(A)}) appears as
the sum of partial energies E(j;(A;)) related to separated
subsystems,

E{i(M)}) =

= EGi(A))
l

Since the proper state (37) is the product of separate
Agth states, one can utilize the ansatz, where a multi-
state occupancy is represented as the product of partial
occupancies (see also refs. [7,8]), i.e

HP]z

Here, each partial occupancy satisfies the normalization
condition (30).

With the use of ansatz (39), Eq. (36) is transformed
into a nonlinear master equation for partial occupancies,

P(js(Ag)it) =

E(j1(A1)) + E(j2(A2)) +

(38)

P(j1(A1, j2(A2), (39)

=- Z Z K(j1(A1),

{3i(A)}#£5:(As) {57(AD}

Jr(Ar) —

T

= D), Gh D) [PGsA)i ) TT PGt~
I(#s)=1
JHAL) = 1 (M),

—K(ji(A}), - Jr(Ay))x

PG T PG -

I(#s)=1

(40)
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Here, the rate constant is given by Eq.
where  E(ji(A1),...jr(AL)) >~ 3
E(j1(A1), gr(Ar)) = 3212 EGi(A]))-

The nonlinear master equation (36) reduces to a sim-
ple form, when only two subsystems, A; and A,, are
involved in a transition process. Thus, the equation for
the occupancy of the js(A) state appears as

(33),
E(j;(A7)) and

PGS == 3 Y Y [KG.5r(4) —
JE(AL) 3r(Ar) J1.(A7)

— Jo(AL), 3 (M) P (s (As); ) P (i (Ar)s ) —

—K(ji(AL), 5 (Ar) = Gs(As), jr(Ar)) X

X P(jo(AL); ) P (5 (ML) )] (41)

where

K(js(As), r(Ar) = G (AY), 57(AL))

x| (G (AL), (AL je(Ae) Vs (As), i (Ar)je(Ae)) P

x{[E(5(AS) + B (A}) + E((Ae))] -

_[E(JS(AS)) + E(JT(AT)) + E(]e(Ae))]}

is the rate constant characterizing the transition between
two subsystems.

The simplest form of a kinetic equation is established
to describe the evolution within a separate subsystem.
Actually, if the js(Ags) = jL(AL) transitions are accom-
plished without participation of any additional subsys-
tem, the nonlinear master equation (41) reduces to a
linear one,

P(js<As);t) = Z [K(JS(AS)

AU

(42)

= Js(A))P(js(As): 1)) —

—EK(ji(AY) = js(As)) P (i (AL): )]

Here, the forward rate constant reads

ZZ

{Je(A RVAGWY

(43)

K(jS(AS)_)]s A/ ({Je(Ae)}) X

x|(L(AL) {Ge (A HV15s (As), {e(Ae) })I? %
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<O[E(j5(AL)) + E(e(Ae)) — E(j(As) — E(je(Ae))] - (44)
The expression for the backward rate constant fol-
lows from Eq. (44) if one substitutes W ({j.(A¢)}) for
W ({j.(Ae)}). Note that, due to a direct coupling of the
subsystem to the environment, the transitions within the
subsystem are mainly performed with the first term in

the effective transfer operator (19).

5. Conclusion

In the given communication, the rigorous derivation of
different types of master equations is carried out for state
occupancies belonging to the both closed and open quan-
tum systems. The derivation starts from an exact Liou-
ville equation for the density matrix of a quantum sys-
tem affected by a high-frequency stochastic field. Just
owing to the stochastic field, the master equation for the
diagonal density matrix is transformed into a Markov-
type operator equation reducing thus the master equa-
tion for occupancies into linear balance-like kinetic equa-
tions with respective rate constants. Generally, these
rate constants characterize transitions between the CQS
states, Eq. (20), as well as the evolution of partial oc-
cupancies, Eq. (25). When the CQS contacts with an
equilibrium environment, it is transformed to an OQS.
Now, the master equation for multistate partial occupan-
cies and the master equation for the state occupancy of a
separate quantum subsystem are given by Egs. (36) and
(40), respectively. All noted equations are linear ones.
But, in the case of a weak interaction between quantum
subsystems, the noted sets of balance-like equations are
transformed into a set of nonlinear kinetic equations for
single-state occupancies, Eq. (40). Note that such a
transformation is strictly correct if only one employs the
Born approximation for operator (19).

The main criterion employed to derive the master
equation for multistate occupancies of a CQS is that the
characteristic time of the damping process caused by the
alteration of a stochastic field, 74, and the characteris-
tic time of transition processes in the CQS, 7., satisfy
the condition 7. > 74. In the case of an OQS, this
criterion reads as 7. > T, > T4, where 7. is the char-
acteristic time of the establishment of a thermal equilib-
rium in the environment (thermal bath). For instance,
in molecular systems, the stochastic fields can be cre-
ated by small alteration of valent bonds (frequencies of
the order 10'3s71). This yields 74 ~ (1072 — 10713)s.
As to the characteristic time for the vibration relax-
ation associated with 7., it varies in a wide interval
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(1071 — 10712)s. Therefore, the above conditions for
the derivation of master equations are satisfied.
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KEPYIOYE PIBHAHHA J1J1d 3ACEJIEHOCTEM CTAHIB
BIJIKPUTOI KBAHTOBOI CUCTEMU

E.I". Ilempos
Pezmowme

I pyHTYIOYHCh Ha METOZi HEPIBHOBAYKHOI MATDHI IYCTHHE Ta BH-
KOPHCTOBYIO4HM MeTon, Borosiob6oBa sl po3delvieHHs Oararoda-
CTHHKOBOI (PYHKIII] pO3HOALTY, OTPIMAHO 3aMKHYTY CHCTEMY KiHe-
TUYHUAX PiBHAHB JJI4 3aCEJICHOCTEH CTaHiB fK 3aMKHYTOI, Tak i BiJi-
KpUTOl KBAHTOBHX cucTeM. [lokazano, mo Tpancdopmariist HeMap-
KiBCBKOTI'O KEPYIOYOTr'O PiBHAHHS B MapKiBCbKe CTA€ MOYKJIMBOIO IIPU
BHCOKOYACTOTHOMY CTOXaCTHUIHOMY IIOJI, fIKE 3CyBa€ €HEepreTH4Hi
piBHi KBaHTOBOI cucremu. [Ipu cirabkiit B3aeMomil MizK KBAHTOBUMHU
mificucTeMaMu, IO CKJIAJAlOTh Iy KBAHTOBY CHUCTEMY, CHCTEMA
JIiHIAHUX OaJlaHCHUX KiHETUYHUX PIBHSIHB JJIsl 3aCeJIeHOCTel bara-
TOYACTUHKOBUX CTaHIB IIEPEXOIUTh y CHUCTEMY HEJIHINHUX KiHeTu-
YHUX PiBHAHD JJIS1 3aCEJICHOCTENl OKPEMOI KBAHTOBOI IIiJCHCTEMHU.
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