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We analyze the excitonic instability in graphene by solving the
Bethe–Salpeter equation for the electron-hole bound state. In the
supercritical regime, we show that this equation has a tachyon in
its spectrum. We argue that the excitonic instability is resolved
through the formation of an electron-hole condensate leading to
the gap (mass) generation in the quasiparticle spectrum. Such a
gap could be observed in a free standing clean graphene.

1. Introduction

Graphene is an atomically thin layer of carbon atoms
densely packed in a honeycomb crystal lattice. Although
theoretically considered long time ago [1], graphene be-
came an active area of research only recently after the
experimental fabrication [2] of this material and due to a
variety of its unusual electronic properties, among them
metallic conductivity in the limit of no carriers and the
half-integer quantum Hall effect [3, 4].

At low energies, the quasiparticle excitations in
graphene are described by the massless Dirac equation
and have a relativistic-like dispersion E = ±~vF|k|,
where vF ≈ 106m/s is the Fermi velocity, and k is the
quasiparticle wave vector. This fact brings an exciting
connection between graphene and quantum electrody-
namics (QED).

The Coulomb interaction between the electrons in
graphene retains its long-range character in view of the
vanishing of the static polarization function as q → 0 [5].
The large value of the coupling constant α = e2/~vF ∼ 1
means that a strong attraction takes place between elec-
trons and holes in graphene, and this resembles strongly
coupled QED, thus providing an opportunity for study-
ing the strong coupling phase experimentally at a con-
densed matter laboratory. Given the strong attraction,
one may expect an instability in the excitonic channel in
graphene with a subsequent quantum phase transition
to a phase with gapped quasiparticles that may turn
graphene into an insulator. This semimetal-insulator
transition in graphene is widely discussed now in the
literature [6, 8] since the first study of the problem in

Refs. [9, 10]. The gap opening is similar to the chiral
symmetry breaking phenomenon that occurs in strongly
coupled QED and was studied in the 1970s and 1980s
[11–15]. In fact, the predicted strong coupling phase of
QED, like other QED effects not yet observed in the
nature (Klein tunneling, Schwinger effect, etc.), has a
chance to be tested in graphene.

In the present paper, we solve the Bethe–Salpeter (BS)
equation for the electron-hole bound state in graphene
and demonstrate that, for a strong enough coupling con-
stant, there are tachyon states with imaginary energy
(E2 < 0). The presence of tachyons signals that the
normal state of a freely standing graphene is unstable.
In fact, the tachyon instability can be viewed as the field
theory analog of the “fall into the center” phenomenon,
and the critical coupling αc is an analog of the criti-
cal coupling constant Zce2/~vF in the problem of the
Coulomb center [16, 17]. However, in view of the many-
body character of the problem, the way of curing the
instability in graphene (like in QED [12]) is quite differ-
ent from that in the case of the supercritical Coulomb
center. Since the coupling constant in a freely stand-
ing graphene α ≈ 2.19 is larger than the critical value
1/2 in the Coulomb center problem, the quasielectron
in graphene has the supercritical Coulomb charge. This
leads to the production of an electron-hole pair, the hole
is coupled to the initial quasielectron forming a bound
state, but the emitted quasielectron has again a super-
critical charge. Thus, the processes of creation of pairs
and formation of bound states lead to the formation of
an exciton (chiral) condensate in the stable phase, and,
as a result, the quasiparticles acquire a gap. The exciton
condensate formation resolves the problem of instability,
hence a gap generation should take place in a free stand-
ing graphene making it an insulator.

2. Bethe–Salpeter Equation

The signs of the excitonic instability can already be seen
in the spectrum of the Coulomb center problem, where
resonances appear for a large enough charge [16–18].
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In this section, we will study the BS equation for an
electron-hole bound state and show that it has a tachyon
in the spectrum in the supercritical regime. The exci-
tonic instability plays a role similar to that of the Cooper
instability in a normal metal that leads to the gap gener-
ation in superconductors. Indeed, according to [19], the
BS equation for an electron-electron bound state in the
normal state of a metal has a solution with imaginary en-
ergy, i.e. a tachyon. This means that the normal state is
unstable, and a phase transition to the superconducting
state takes place.

For the description of the dynamics in graphene, we
will use the same model as in Refs. [9, 10], in which the
electromagnetic (Coulomb) interaction between quasi-
particles is three-dimensional in nature while they are
confined to a two-dimensional plane. The excitations of
low-energy quasiparticles in graphene are conveniently
described in terms of a four-component Dirac spinor
ΨT
a = (ψKAa, ψKBa, ψK′Ba, ψK′Aa) which combines the

Bloch states with spin indices a = 1, 2 on the two differ-
ent sublattices (A,B) of the hexagonal graphene lattice
and with momenta near the two nonequivalent valley
points (K,K ′) of the two-dimensional Brillouin zone. In
what follows, we treat the spin index as a “flavor” in-
dex with Nf components, a = 1, 2, . . . Nf ; then Nf = 2
corresponds to a graphene monolayer, while Nf = 4 is
related to the case of two decoupled graphene layers in-
teracting solely via the Coulomb interaction.

The action describing graphene quasiparticles inter-
acting through the Coulomb potential has the form

S =
∫
dtd2xΨa(t, r)

(
iγ0∂t − ivFγ∇

)
Ψa(t, r)−

−1
2

∫
dtdt′d2rd2r′Ψa(t, r)γ0Ψa(t, r)×

×U0(t− t′, |r− r′|)Ψb(t′, r′)γ0Ψb(t′, r′), (1)

where Ψ = Ψ†γ0, and the 4 × 4 Dirac γ-matrices γµ =
τ3 ⊗ (σ3, iσ2,−iσ1) furnish a reducible representation
of the Dirac algebra in 2 + 1 dimensions. The Pauli
matrices τ, σ act in the subspaces of the valleys (K,K ′)
and sublattices (A,B), respectively. The other two γ-
matrices we use are γ3 = iτ2 ⊗ σ0, γ

5 = iγ0γ1γ2γ3 =
τ1 ⊗ σ0 (σ0 is the 2× 2 unit matrix).

The bare Coulomb potential U0(t, |r|) takes the simple
form:

U0(t, |r|) =
e2δ(t)
κ

∫
d2k

2π
eikr

|k|
=
e2δ(t)
κ|r|

. (2)

However, the polarization effects considerably modify
this bare Coulomb potential, and the interaction will be

U(t, |r|) =
e2

κ

∫
dω

2π

∫
d2k

2π
exp(−iωt+ ikr)
|k|+ Π(ω,k)

, (3)

where κ is the dielectric constant due to a substrate, and
the polarization function Π(ω,k) is proportional (within
the factor 2π/κ) to the time component of the photon
polarization function. Correspondingly, the Coulomb
propagator has the form

D(ω, |q|) =
1

|q|+ Π(ω, |q|)
. (4)

We use the one-loop polarization function in the static
approximation, where it is given by the expression [5]

Π(ω = 0,k) =
πe2Nf
4κ~vF

|k|. (5)

In general, the static polarization operator must have
the form Π(0, |q|) = |q|F (α,Nf ) due to dimensional rea-
sons. However, its exact form is not known, and we will
use the one-loop approximation in the present paper.

The continuum effective theory described by action
(1) possesses the U(2Nf ) symmetry. However, as was
pointed out in Ref. [20] (see also Refs. [21, 22]), it is
not exact for the Lagrangian on the graphene lattice. In
fact, there are small on-site repulsion interaction terms
which break the U(2Nf ) symmetry.

In order to analyze the excitonic instability, we con-
sider the BS equation for the electron-hole bound state,[
S−1(q +

1
2
P )χ(q, P )S−1(q − 1

2
P )
]
αβ

=

=
iα

(2π)2

∫
d3kD(|q− k|)

[
γ0χ(k, P )γ0

]
αβ
, (6)

where k = (k0,k), α, β are spinor indices, χ(q, P ) is the
BS amplitude in the momentum space,

χαβ(q, P ) =
∫
d3x eiqx〈0|TΨα

(x
2

)
Ψβ

(
−x

2

)
|P 〉, (7)

q = (q0,q), P = (P0,P), q and P are the relative and
total momenta, respectively, and

S(p) =
γ0p0 − γp + Δ

p2
0 − p2 −Δ2 + iδ

is the quasiparticle propagator with a gap Δ (the gap
Δ is zero in non-interacting graphene; however, it may
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be generated due to the strong Coulomb interaction). In
what follows, we put ~ = vF = 1.

Accounting for the static vacuum polarization by
massless fermions, Eq. (5), we get Eq. (6), where the fol-
lowing replacements are made:

α→ α

1 + παNf/4
≡ 2λ, D(|q− k|)→ 1

|q− k|
.

Further, introducing the function

χ̂(q, p) = S−1(q +
1
2
P )χ(q, P )S−1(q − 1

2
P )

with p = P/2, the BS equation can be equivalently
rewritten as follows:

χ̂(q, p) =
2iλ

(2π)2

∫
d3k

|q− k|
γ0S(k + p)χ̂(k, p)S(k − p)γ0.

(8)

In general, χ̂ can be expanded in 16 independent matrix
structures. In view of the experience in QED [12], we
expect a gap generation in graphene in the supercritical
regime. Then the spin-valley U(4) symmetry will be
broken (see, e.g. [9, 10]), which leads to the appearance
of massless Nambu–Goldstone bosons in the spectrum.
Similarly to QED [12], these Nambu–Goldstone bosons
are transformed into tachyons if they are considered on
the wrong vacuum state without a gap generation. In the
present paper, we will consider only matrix structures of
χ̂ connected with the γ5 matrix

χ̂(q) = χ5(q)γ5+χ05(q)qiγiγ0 γ5, γ5 = iγ0γ1γ2γ3, (9)

where χ5(q) and χ05(q) are coefficient functions. We will
see in the next section that it is enough to consider only
χ5 in order to describe a Nambu–Goldstone excitation
in the massive state. However, we retain the function
χ05 because it is necessary in the study of tachyons. In
principle, there could be tachyons in different channels
which describe different ways of breaking the U(2Nf )
symmetry. The real pattern of a symmetry breaking is
defined by solving the gap equations for various kinds
of order parameters and by determining which of them
corresponds to the global energy minimum of the system.
For simplicity, we consider only the channel described by
the wave function (9) which can be treated analytically.

2.1. Tachyon states

Let us firstly show that, for λ > λc, there is a tachyon
in the spectrum of the Bethe–Salpeter equation in the

massless theory Δ = 0 and determine the critical value
λc. For the study of a tachyon, we can set p = 0, how-
ever, should keep nonzero p0. One can check that ansatz
(9) is consistent for Eq. (8) and leads to a coupled system
of equations for the functions χ5(q) and χ05(q). Since
Eq. (8) implies that χ̂(q, p) does not depend on q0, we
can integrate then over k0 by using the integrals

i

∞∫
−∞

dk0

π

c1 + c2 k0 + c3k
2
0

((k0 − p0)2 − k2 + iδ) ((k0 + p0)2 − k2 + iδ)
=

=
c1 + c3(p2

0 − k2)
2|k| (p2

0 − k2)
,

where δ → +0. We obtain the following system of inte-
gral equations:

χ5(q) = λ

∫
d2k

2π
k2 (χ5(k) + p0χ05(k))
|q− k||k| (k2 − p2

0)
, (10)

χ05(q) = λ

∫
d2k

2π
qk
(
k2χ05(k) + p0χ5(k)

)
q2|q− k||k| (k2 − p2

0)
. (11)

We assume that χ5(q) and χ05(q) depend only on q =
|q|. Then we can integrate over the angle and arrive at a
system of integral equations with kernels depending on
the elliptic integrals K(x) and E(x). Approximating the
elliptic integrals by their asymptotic at x� 1,

K(x) ' π

2

(
1 +

x2

4

)
, E(x) ' π

2

(
1− x2

4

)
, (12)

we find

χ5(q) = λ

q∫
0

k2dk

q(k2 − p2
0)

(χ5(k) + p0χ05(k)) +

+λ

Λ∫
q

kdk

k2 − p2
0

(χ5(k) + p0χ05(k)) , (13)

χ05(q) =
λ

2

q∫
0

k2dk

q3(k2 − p2
0)
(
k2χ05(k) + p0χ5(k)

)
+

+
λ

2

Λ∫
q

dk

k(k2 − p2
0)
(
k2χ05(k) + p0χ5(k)

)
. (14)
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Here, we also introduced a finite ultraviolet cutoff Λ
which could be taken to be of order π/a, where a is a
characteristic lattice size, a = 2.46 Å for graphene, or of
the size of the energy band, Λ = t/vF, where t = 2.4 eV
in graphene.

These equations are equivalent to the system of differ-
ential equations

χ′′5 +
2
q
χ′5 + λ

χ5 + p0χ05

q2 − p2
0

= 0, (15)

χ′′05 +
4
q
χ′05 +

3λ
2
q2χ05 + p0χ5

q2(q2 − p2
0)

= 0 (16)

with the following boundary conditions:

q2χ′5

∣∣∣
q=0

= 0, (qχ5(q))′
∣∣∣
q=Λ

= 0, (17)

q4χ′05

∣∣∣
q=0

= 0, (q3χ05(q))′
∣∣∣
q=Λ

= 0. (18)

The system of differential equations (16) can be reduced
to one equation of the fourth order, whose solutions are
given in terms of the generalized hypergeometric func-
tions 4F3(q2/p2

0) with the corresponding boundary con-
ditions [18]. However, since we seek for the solution with
p0 → 0, it is simpler to analyze directly system (16). In
this regime, the system decouples

χ′′5 +
2
q
χ′5 + λ

χ5

q2 − p2
0

= 0, (19)

χ′′05 +
4
q
χ′05 +

3λ
2

χ05

q2 − p2
0

= 0, (20)

where we keep p0 in the denominators, because it regu-
larizes singularities for q → 0.

Obviously, Eqs. (19) and (20) are differential equa-
tions for the hypergeometric function F (a, b; c; z) [25].
The solutions that satisfy the infrared boundary condi-
tions are

χ5 = C1F

(
1 + γ

4
,
1− γ

4
;
3
2
;
q2

p2
0

)
, (21)

χ05 = C2F

(
3(1 + γ̃)

4
,
3(1− γ̃)

4
;
5
2
;
q2

p2
0

)
, (22)

where γ =
√

1− 4λ and γ̃ =
√

1− 2λ/3. Using the
asymptotic of the hypergeometric functions, one may

easily check that the ultraviolet boundary conditions for
the function χ5 can be satisfied only for λ > 1/4. There-
fore, 1/4 is the critical coupling for the approximation we
used above. The UV boundary condition for the func-
tion χ05 can be satisfied for the values of λ > 3/2 but
not for λ < 3/2. Therefore, for 1/4 < λ < 3/2, we take
a trivial solution χ05 = 0, and we are left only with the
equation for the function χ5. Knowing the function χ5,
we then solve the inhomogeneous equation (16) for χ05.
In this way, we find that the function χ05 ∼ p0. The crit-
ical value λc = 1/4 coincides with the critical coupling
constant found in [10], where the same approximation
for the kernel was made. In the supercritical regime,
γ = iω, ω =

√
4λ− 1, and the function χ5(q) behaves

asymptotically as

χ5(q) ∼ q−1/2 cos
(√

λ− 1/4 ln q + const
)
. (23)

Such oscillatory behavior is typical of the phenomenon
known in quantum mechanics as the collapse (“fall into
the center”) phenomenon: in this case, the energy of a
system is unbounded from below, and there is no ground
state. Zeros of the wave function of the bound state sig-
nify the existence of the tachyon states with imaginary
energy p0, Imp2

0 < 0. Indeed, the UV boundary condi-
tion for χ5 leads to the equation

(1 + iω)Γ
(
1 + iω

2

)
Γ
(

1−iω
4

)
Γ
(

5−iω
4

)
(1− iω)Γ

(
1− iω

2

)
Γ
(

1+iω
4

)
Γ
(

5+iω
4

) (−Λ2

p2
0

)iω
2

= 1.

(24)

If λ tends to 1/4 from the above, i.e. ω → 0, then we
find the following tachyon solution:

p2
0 = −Λ2 exp

(
−4πn

ω
− δ
)
, δ ≈ 7.3, n = 1, 2, . . . .

(25)

Thus, we see that the strongest instability, i.e., the small-
est negative value of p2

0 is given by the solution for the
function χ5 with n = 1. The tachyon states play here
the role of the quasistationary states in the problem of
a supercritical Coulomb center. In fact, the tachyon in-
stability can be viewed as the field theory analog of the
“fall into the center” phenomenon and the critical cou-
pling αc is an analog of the critical coupling Zcα in the
problem of a Coulomb center.

The solution for the tachyon energy p2
0 has a charac-

teristic essential singularity of the kind 1/
√
λ− λc in the

exponent. It can be argued that this behavior reflects a
scale invariance in the problem under consideration and
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keeps its form for any approximation which does not in-
troduce a new scale parameter except the cutoff [26].

Finally, since chiral symmetry is spontaneously bro-
ken, there must exist Nambu–Goldstone excitations in
the stable phase, where a quasiparticle gap arises. Let
us show that the BS equation (8) indeed admits such so-
lutions. To see this, according to [12], we set p0 = p = 0.
Then, Eq. (8) has a solution of the form χ(q, 0) =
χ5(q, 0)γ5, for which we obtain the equation

χ5(q, 0) =
λ

2π

∫
d2k

|q− k|
χ5(k, 0)√
k2 + Δ2(k)

(26)

or, after integrating over the angle,

χ5(q, 0) = λ

Λ∫
0

dk kχ5(k, 0)√
k2 + Δ2(k)

K(q, k) (27)

with the kernel

K(q, k) =
2
π

[
θ(q − k)

q
K

(
k

q

)
+
θ(k − q)

k
K
( q
k

)]
. (28)

On the other hand, the equation for a gap function ob-
tained in Ref. [10] has the form

Δ(q) = Δ0 + λ

Λ∫
0

dk kΔ(k)√
k2 + Δ2(k)

K(q, k), (29)

where we included also a bare gap Δ0 for the further
analysis. One can see that Eq. (27) has the solution
χ5(q, 0) = CΔ(q), if the gap function Δ(q) satisfies Eq.
(29) with Δ0 = 0, and C is a constant. Thus, the wave
function χ5(q, 0) describes a gapless Nambu–Goldstone
excitation. Solving the BS equation at nonzero p0,p,
one can obtain a dispersion law p0 ∼ |p| for a Nambu–
Goldstone excitation.

3. Gap Generation

We now study the gap generation in graphene and show
that it resolves the excitonic instability.

The equation for a quasiparticle gap in graphene is
given by Eq. (29) above. For the zero bare gap Δ0 = 0,
Eq. (29) admits a nontrivial solution which bifurcates
from the trivial one at λ = λc, where the critical cou-
pling λc = 0.2285. To find this critical point, we neglect
the terms that are quadratic or higher orders in the gap
function. It must be emphasized that this is not an ap-
proximation: it is a precise manner to locate the critical

point by applying the bifurcation theory. Hence, the bi-
furcation equation amounts to a linearization of Eq. (29)
with respect to the gap function. The result reads

Δ(p) = λ

∞∫
0

dqΔ(q)K(p, q). (30)

Note that the ultraviolet cutoff Λ has been taken to in-
finity, which is appropriate at the bifurcation point [7].
Since the equation is scale invariant, it is solved by

Δ(p) = p−γ (31)

with the condition that the exponent γ satisfies the tran-
scendental equation

1 =
2λ
π

1∫
0

dx
[
x−γ + xγ−1

]
K(x). (32)

This equation defines roots γ for any value of the cou-
pling λ. Bifurcation occurs when two of the roots in the
interval (0, 1) become equal. Numerically, we find that
this happens when γ = 1/2. For this value, the integral
in Eq. (32) is exactly evaluated [29]), and we find the
critical value

λc =
4π2

Γ4(1/4)
≈ 0.23. (33)

For λ > λc, the roots become complex indicating that
the oscillatory behavior of the gap function takes over
the non-oscillatory one. The condition λ = λc deter-
mines the critical line in the plane (α,Nf ),

αc =
4λc

2− πNfλc
(34)

(compare with Eq.(28) in [10]). A dynamical gap is gen-
erated only if α > αc. The critical value Ncrit ≈ 2.8,
which corresponds to α = ∞. Since the number of
”flavors“ Nf = 2 for graphene, the critical coupling is
estimated to be αc ≈ 1.62 in the considered approxima-
tion. Since the “fine structure” constant α ≈ 2.19 for a
free standing graphene, the dynamical gap will be gen-
erated. For graphene on a SiO2 substrate, the dielectric
constant ε ≈ 2.8 and α ≈ 0.78, i.e., the system is in
the subcritical regime. The values of αc are rather large,
which indicates that a weak-coupling approach is quanti-
tatively inadequate for the problem of the gap generation
in a free standing graphene. Certainly, both 1/Nf cor-
rections and improving the instantaneous approximation
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can vary the critical coupling. Therefore, it is instructive
to compare our analytical results with those of lattice
Monte Carlo studies [6]. They obtained αc = 1.08±0.05
for Nf = 2 and Ncrit = 4.8 ± 0.2 for α = ∞, i.e., the
ratio of the factors ≈ 1.5 comparing to our analytical
findings.

The above analysis is adequate precisely at the criti-
cal coupling, i.e., at the bifurcation point of the original
nonlinear equation. To get insight into analytical solu-
tions of Eq. (29), we approximate the kernel K(p, q) by
its asymptotic values at p� q and p� q:

K(p, q) =
θ(p− q)

p
+
θ(q − p)

q
. (35)

This allows us to reduce the nonlinear integral equation
(29) to the second-order nonlinear differential equation

(
p2Δ′(p)

)′
+ λ

pΔ(p)√
p2 + Δ2(p)

= 0 (36)

with the infrared (IR) and ultraviolet (UV) boundary
conditions

p2Δ′(p)
∣∣∣
p=0

= 0, (37)

(pΔ(p))′
∣∣∣
p=Λ

= Δ0. (38)

Equation (36) possesses a scale invariance, i.e., if Δ(p)
is a solution, then κΔ(p/κ) is also a solution. The scale
invariance is broken by the UV boundary condition only.

The order parameter is given by

〈0|ψ̄ψ|0〉 = − lim
x→0
〈0|Tψ(x)ψ̄(0)|0〉 =

= −Nf
π

Λ∫
0

dppΔ(p)√
p2 + Δ2(p)

=
Nf
πλ

p2Δ′(p)
∣∣∣
p=Λ

, (39)

where we used Eq. (36) in the last equality. One can
easily find the solutions of Eq. (36) in two asymptotic
regions. For p� Δ(p),

Δ(p) = C1 +
C2

p
(40)

due to the IR boundary condition (37), C2 = 0, and
Δ(p) ' C1 for p� Δ(p). For p� Δ(p),

Δ(p) ' C3p
−γ+ + C4p

−γ− , γ± =
1
2
±
√
λ− λc. (41)

However, in order to find a solution of Eq. (29), one
needs to show that there exists a solution of the differ-
ential equation (36) connecting the asymptotics Δ(p) '
const in the infrared region, p → 0, with asymptotics
given by Eq. (41) at large momenta. To this end, let us
define

Δ(p) = etu(t+ t0), t = ln p. (42)

Then the function u(t) satisfies the differential equation

u′′ + 3u′ + 2u+ λ
u√

1 + u2
= 0. (43)

The IR boundary condition implies

e2t (u′ + u)
∣∣∣
t=−∞

= 0. (44)

We require that etu(t) → 1 as t → −∞, since all other
solutions for Δ(p) are obtained by varying the constant
t0. With this normalization, the infrared scale is given
by Δ(0) = e−t0 for the general solution.

The dependence of the integral equation (29) on the
bare gap Δ0 now becomes an ultraviolet boundary con-
dition for the differential equation. It is

etΛ(u′ (tΛ + t0) + 2u (tΛ + t0)) = Δ0. (45)

This condition determines the parameter t0 = − ln Δ(0)
as a function of the coupling constant λ, the bare gap
Δ0, and the cutoff Λ.

Equation (43) can be rewritten in the form

u′′ + 3u′ = − d

du
V (u) (46)

or,(
1
2
(u′)2 + V (u)

)′
= −3(u′)2, (47)

where

V (u) = u2 + λ
√

1 + u2. (48)

This is the equation for a particle of unit mass moving
in a potential V under a friction proportional to the
velocity. Since V (u) > 0, the “energy” 1

2 (u′)2 + V (u)
reaches its minimum at u = 0. Hence, the particle moves
toward u = 0 damped by the friction. The asymptotic
behavior in this regime is described by the linearized
equation

u′′ + 3u′ + (2 + λ)u = 0 (49)
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and depends on the coupling constant λ. For the weak
coupling λ < λc = 1/4,

u(t)→ Ae−3t/2

√
λ− λc

sin
[√

λ− λc (t+ δ)
]
, t→∞, (50)

u(t)→ Be−3t/2

√
λc − λ

sinh
[√

λc − λ (t+ δ′)
]
, t→∞,

(51)

where the constants A,B, δ, and δ′ are functions of the
coupling constant λ.

At a weak coupling, there are no nontrivial solutions
satisfying the UV boundary condition for Δ0 = 0. For
a strong coupling, the UV boundary condition (45) with
Δ0 = 0 admits the infinite number of solutions for Δ(0)
corresponding to different solutions of the equation

u′ (tΛ + t0) + 2u (tΛ + t0) =

=
A
√
λ√

λ− λc
e−3(tΛ+t0)/2 sin (θ + φ) = 0, (52)

where φ = arctan
(
2
√
λ− λc

)
,

θ =
√
λ− λc (tΛ + t0 + δ) =

√
λ− λc ln

(
eδΛ
Δ(0)

)
. (53)

Hence, the solution is given by θ = πn− φ or

Δ(0) = Λeδ exp
(
− πn− φ√

λ− λc

)
, n = 1, 2, . . . . (54)

Only the solution without nodes, n = 1, corresponds to
the ground-state solution, since it generates the largest
fermion gap and, hence, has the lowest energy for the
ground state. The critical coupling λc = 1/4 is a bifur-
cation point of the integral equation (29). Physically, it
corresponds to the point of a continuous phase transi-
tion of the infinite order. According to the discussion
in the previous section, the critical coupling λc is closely
related to the “fall into the center” phenomenon in quan-
tum mechanics. A similar situation takes place in strong
coupling QED4 [12], where the phase transition is also
of the infinite order in the ladder approximation (and,
more generally, in the quenched approximation where
fermions loops are neglected [26]). The dimensionless
correlation length

ξ =
Λ

Δ(0)
∼ exp

(
π√

λ− λc

)
(55)

exponentially grows when λ → λc. That is the be-
havior inherent in the Berezinskii–Kosterlitz–Thouless
phase transition. Note, however, that considering the fi-
nite size of graphene samples should transform this phase
transition into a second-order one (as it was shown for
QED3 in Ref. [27]).

3.1. Excitonic condensate and critical
exponents

The order parameter is calculated to be

〈ψ̄ψ〉 = − NfA

πλ3/2
Λ1/2Δ3/2(0). (56)

For a nonzero bare gap Δ0 6= 0, we obtain the equation
for Δ(0),

Δ0 =
A
√
λ√

λc − λ
Δ3/2(0)√

Λ
sin (θ + φ) , (57)

and the expression for the order parameter

〈ψ̄ψ〉 =
NfA

π
√
λ(λ− λc)

Λ1/2Δ3/2(0) sin(φ− θ). (58)

Let us write θ + φ = π − ε, where ε goes to zero when
Δ0 → 0 and λ → λc. Then the above equations are
rewritten as

Δ0 =
A
√
λ√

λ− λc
Δ3/2(0)√

Λ
sin ε, (59)

〈ψ̄ψ〉 = −NfΛ
πλ

[
|2λ− 1|

2λ
Δ0 +A

Δ3/2(0)√
Λ

cos ε√
λ

]
. (60)

In such a form, the equations are convenient for finding
the critical exponents near the phase transition point λc.
We define the critical exponents in a standard way [28]:

ξ =
Λ

Δ(0)
∼ (λ− λc)−ν ,

〈ψ̄ψ〉
Λ2

∼ (λ− λc)−β , (61)

χ =
∂〈ψ̄ψ〉
∂Δ0

∣∣∣
Δ0=0

∼ (λ− λc)−γ , λ→ λc, (62)

〈ψ̄ψ〉
∣∣∣
λ=λc

∼ Δ1/δ
0 , Δ0 → 0. (63)

The exponents are assumed to obey the following hyper-
scaling relations in arbitrary dimensions D, if the theory
of second-order phase transitions is applicable:

2β + γ = Dν, 2βδ − γ = Dν, (64)
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δ − 1
δ + 1

=
2− η
D

, β = ν
D − 2 + η

2
. (65)

Here, the exponent η describes the behavior of the cor-
relation function

〈ψ̄ψ(r)ψ̄ψ(0)〉
∣∣∣
λ=λc

∝ r−D+2−η, r →∞. (66)

From Eq. (60), we find

〈ψ̄ψ〉
∣∣∣
λ=λc

= −4NfΛ
π

[
Δ0 +

2AΔ3/2(0)√
Λ

]
, (67)

and, in view of Eq. (57),

Δ(0) ∼
(

Δ0

ln(Λ/Δ0)

)2/3

, (68)

the critical exponent δ = 1. Then the hyperscaling rela-
tions imply

η = 2, γ = 0, β =
3ν
2
. (69)

The infinite-order phase transition with the correlation
length (55) formally corresponds to the limit

β =
3ν
2
→∞. (70)

Certainly, the infinite-order phase transition is quite dif-
ferent from that studied in the lattice simulations [6],
where the phase transition was found to be of the second
order with the critical exponents δ ∼ 2.3, β ∼ 0.8, γ ∼
1(Nf = 2). One of the reasons for such a difference might
be a finite size of the lattice which changes the order of
the phase transition [23, 24, 27]. Another reason could
be that one should take residual lattice interactions into
account, i.e., the present analysis has to be further re-
fined by incorporating effective four-fermion terms. The
corresponding analysis will be postponed for a separate
publication.

4. Conclusion

In this paper, we have studied excitonic instabilities in
graphene which arise at a strong Coulomb coupling.
Considering the many-body problem of strongly in-
teracting gapless quasiparticles in graphene, we have
showed that the Bethe–Salpeter equation for an electron-
hole bound state contains a tachyon in its spectrum in
the supercritical regime α > αc and found the critical
constant αc = 1.62 in the static random phase approxi-
mation. The tachyon states play a role of quasistation-
ary states in the problem of the supercritical Coulomb

center and necessitate the rearrangement of the ground
state and the formation of the exciton condensate.

We have calculated the critical coupling αc = 1.62 and
found the critical indices for the order parameter 〈ψ̄ψ〉
for the excitonic condensation δ = 1, η = 2, γ = 0, β =
∞. These values should be compared with αc = 1.08
and δ ∼ 2.3, γ ∼ 1, β ∼ 0.8 found in Monte Carlo simula-
tions [6]. The obtained value of αc is rather large, which
indicates that the ladder approximation is not quanti-
tatively good enough for the problem of excitonic insta-
bility and gap generation in a freely standing graphene.
Certainly, both higher-order corrections and improving
the instantaneous approximation can vary the value of
critical coupling. The discrepancy of the critical indices
can be explained through the necessity of the careful
calculation of the finite-size lattice effects and taking
residual lattice interactions into account, which leads to
effective four-fermion interactions. It is essential that
a ground state rearrangement at the strong coupling is
connected with the “fall into the supercritical Coulomb
center” phenomenon. This implies that a rearrangement
in graphene with the large Coulomb interaction is very
plausible for a strong enough coupling even if one goes
beyond the ladder approximation. The physical picture
of instabilities in graphene is quite similar to that elab-
orated earlier in strongly coupled QED [11, 12, 15] (see,
also, [13, 14]). In QED, the ladder approximation is not
reliable quantitatively as well, because the critical cou-
pling constant for chiral symmetry breaking is of order
of 1. However, the main results of the ladder approxima-
tion survive when all diagrams with exchanges by pho-
tons are included (the so-called quenched approximation
without fermion loops) [26]. Further, the existence of the
critical point is exactly proved in the lattice version of
QED [30]. We note also that, in the presence of an exter-
nal magnetic field, the critical coupling reduces to zero
(the magnetic catalysis phenomenon [31]), so that the
gap generation takes place already in the weak coupling
regime.
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ЕКСИТОННА НЕСТАБIЛЬНIСТЬ ТА ГЕНЕРАЦIЯ
ЩIЛИНИ В ОДНОШАРОВОМУ ГРАФЕНI

О.В. Гамаюн, Е.В. Горбар, В.П. Гусинiн

Р е з ю м е

За допомогою рiвняння Бете–Солпiтера для електрон-
дiркового зв’язаного стану дослiджено проблему екситонної
нестабiльностi в графенi. Показано, що для надкритичної кон-
станти зв’язку спектр має тахiоннi розв’язки. Екситонна неста-
бiльнiсть приводить до формування електрон-дiркового кон-
денсату та щiлини у спектрi квазiчастинок. Ця щiлина може
бути спостережена у графенi без домiшок.
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