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Kinetic calculations of the effective grain potential are presented
for the case of weakly-ionized plasma in the external electric field.
The drag force associated with the ionic drift in the external field
is found. It is shown that the absorption of electrons and ions by
the grain can cause the change of the direction of the drag force.

1. Introduction

Theoretical description of various phenomena observed
experimentally in dusty plasma (dusty structure forma-
tion, excitation of dust-acoustic waves, existence of spa-
tial domains free of dust particles (voids), etc.) requires
the knowledge of the explicit form of effective grain
potentials. The numerical solution of the appropriate
boundary-value problem, as well as numerical simula-
tions of such a potential, does not give us necessary an-
alytical expressions. Thus, one has to use approximate
relations obtained within the framework of various mod-
els. Obviously, the more consistent description of plasma
processes is used, the more fine details concerning the ef-
fective grain potentials are known. That is why it is very
important to have the kinetic theory of grain screening
in a plasma. The additional essential requirement is that
the theory should take the electron and ion absorption
by grains into account.

The kinetic theory of the effective grain potential with
regard for the grain charging by a plasma current was
proposed for the first time in Refs. [1–3]. With this pur-
pose, the point sinks were introduced into the kinetic
equations. Later on, the point sink model was substan-
tiated on the basis of a consistent microscopic theory of
dusty plasma [4, 5].

The proposed kinetic description turns out to be also
efficient for theoretical studies of the effective potentials
of moving grains [6–9]. The presence of the external force
fields can be easily taken into account as well. This gives
the possibility to generalize the kinetic description of the
grain screening in a weakly ionized plasma exposed to an
electric field, which was done in Ref. [10,11] disregarding
the influence of charging currents, to the case of absorb-
ing grains. It is possible to expect that the absorption of
plasma particles by grains can influence the asymptotic
behavior of the potential (as it is observed in the case of
immovable grains in a plasma without external electric
field [1–3]) and lead to the qualitative changes of the po-
larization forces (as in the case of a grain moving in the
Maxwellian plasma [6–9]). Obviously, the description
of these effects within the kinetic model will give more
details about the grain effective potential than that ob-
tained in the fluid approximation [12]. In turn, this will
provide more consistent calculations of the ionic drag
force which are needed, in particular, for studies of the
grain dynamics in the sheath region.

The purpose of the present paper is to give a kinetic
description of the effective grain potential in a weakly
ionized plasma under the presence of an external electric
field taking the electron and ion absorption by grains into
account.

The paper is organized in the following order. The
basic set of equations is formulated in Section 2. Plasma
dynamics is described by the Bhatnagar–Gross–Krook
(BGK) kinetic equation [13], in which the point sinks
of plasma particles are introduced. Such sinks naturally
appear in the kinetic equations in the course of their
derivation on the basis of the microscopic treatment [4,
5]. The formal solution of the problem is given in Section
3. In Section 4, we present specific calculations related
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to a weakly ionized plasma in an external electric field.
The qualitative influence of the external electric field,
as well as some analytical relations describing such an
influence, are presented in Sec. 4.

2. Basic Set of Equations

The consistent derivation of the kinetic equations for
plasma particles in the presence of grains gives the fol-
lowing result [4, 5]:{
∂

∂t
+ v

∂

∂r
+

eα
mα

E(r, t)
∂

∂v
+

1
mα

Fext
α (r,v, t)

∂

∂v

}
×

×fα(r,v, t) = −fα(r,v, t)
∫
dv′

∫
dq′σα(q′,v − v′)×

×|v − v′|fg(r,v′, q′, t) + Iα, (1)

where fα(r,v, t) and fg(r,v, q, t) are the one-particle
distribution functions normalized by volume for plasma
particles and grains, respectively, α = e, i (electron and
ion), Iα is the collision term describing the elastic scat-
tering of electrons and ions by a grain and neutrals (if
present), Fext

α (r,v, t) is the external force field, σα(q, v)
is the charging cross-section which is given for the colli-
sionless plasma by

σα(q, v) = πa2

(
1− 2eαq

mαv2a

)
θ

(
v2 − 2eαq

mαa

)
,

q is the grain charge which is an additional variable and,
in the general case, can depend on time. Now let us ap-
ply Eq. (1) to the calculations of the effective grain
potentials. In the case of a single immovable grain,
fg(r,v′, q′, t) = δ(r)δ(v′)δ(q′ − q), Eq. (1) reduces to{
∂

∂t
+ v

∂

∂r
+

eα
mα

E(r, t)
∂

∂v
+

1
mα

Fext
α (X, t)

∂

∂v

}
×

×fα(X, t) = Iα − vσα(q, v)fα(X, t)δ(r), (2)

where X denotes (r,v).
For the sake of simplicity, we do not use, in what fol-

lows, the collision term calculated in terms of correlation
functions of microscopic fluctuations. Instead, we use
a simple version of the model collision integral (simple
Bhatnagar–Gross—Krook model) proposed in Ref. [13],
namely

Iα = −να
(
fα(r,v, t)− Φα(v)

∫
dv′fα(r,v′, t)

)
. (3)

Here, να is the effective collision frequency, Φα(v) is the
distribution function generated in the course of plasma
particle collisions.

In view of the fact that the plasma particle absorp-
tion considerably suppresses the influence of a nonlin-
earity [14, 15], we can suggest that the sinks cause a
small perturbation of the effective electric field and thus
fα(X, t) = f0α(v) + δfα(X, t). The linearized version of
Eq. (2) reads{
∂

∂t
+ v

∂

∂r
+

1
mα

Fext
α (X, t)

∂

∂v

}
δfα(X, t)−

− eα
mα
∇Φ(r, t)

∂f0α(v)
∂v

= −S(0)
α (v, t)δ(r)−

−να
{
δfα(X, t)− Φα(v)

∫
dvδfα(X, t)

}
, (4)

where

S(0)
α (v, t) = vσα(q(t), v)f0α(v)

is the intensity of the plasma particle sink, and f0α(v)
is the unperturbed distribution function. The potential
Φ(r, t) is governed in this case by the Poisson equation

ΔΦ(r, t) = −4πq(t)δ(r) − 4π
∑
α

eαn0α

∫
dvδfα(X, t).

(5)

Here, n0α is the unperturbed plasma particles density.

3. Effective Potential of Charged Grains
(General Relations)

The solution of Eq. (4) is given by

δfα(X, t) =
eα
mα

t∫
−∞

dt′
∫
dX ′Wα(X,X ′; t− t′)×

×∂Φ(r′, t′)
∂r′

∂f0α(v′)
∂v′

−

−
t∫

−∞

dt′
∫
dX ′Wα(X,X ′; t− t′)S(0)

α (v′, t′)δ(r′), (6)
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where Wα(X,X ′; t− t′) satisfies the equation{
∂

∂t
+ v

∂

∂r
+

1
mα

Fext
α (X, t)

∂

∂v

}
Wα(X,X ′; τ) =

= −να
{
Wα(X,X ′; τ)− Φα(v)

∫
dvWα(X,X ′; τ)

}
(7)

with the initial condition

Wα(X,X ′; 0) = δ(X −X ′). (8)

As is seen from Eqs. (7) and (8), the quantity
Wα(X,X ′; τ) is the phase density of probability of the
particle transition from the phase point X ′ to the point
X during the time period τ = t − t′ in the system with
no self-consistent particle interaction through the elec-
tric field.

Substituting Eq. (6) into Poisson equation (5) and
performing the Fourier transformation yield

Φkω =
4πqω

k2ε(k, ω)
− 4π
k2ε(k, ω)

×

×
∑
α

eαn0α

∫
dv
∫
dv′Wαkω(v,v′)S(0)

αω(v′), (9)

where ε(k, ω) is the dielectric response function

ε(k, ω) = 1− i
∑
α

4πe2αn0α

k2mα
×

×
∫
dv
∫
dv′Wαkω(v,v′)k

∂f0α(v′)
∂v′

, (10)

Wαkω(v,v′) =
∫
dRe−ikR

∞∫
0

dτeiωτWα(X,X ′, τ),

R = r− r′.

In the stationary case where q(t) = q, Eq. (9) reduces
to

Φk =
4πq

k2ε(k, 0)
− 4π
k2ε(k, 0)

∑
α

eαn0α×

×
∫
dv
∫
dv′Wαk(v,v′)S(0)

α (v′). (11)

Here,

Wσk(v,v′) = Wσkω(v,v′)
∣∣
ω=0

,

ε(k, 0) = 1 +
k2
D

k2
,

k2
D =

∑
α

k2
α, k2

α =
4πe2αn0α

Tα
. (12)

Thus, we have obtained the general relations describ-
ing the effective macroparticle potentials with regard to
the electron and ion absorption by grains and the col-
lisions of plasma particles with neutral gas molecules.
These relations make it possible to recover all known
analytical results for the effective grain potential. For
example, in the case of an isotropic plasma with no ex-
ternal field, we have

Wαkω(v,v′) =
iδ(v − v′)

ω − kv + iνα
−

− ναΦα(v)
(ω − kv + iνα)(ω − kv′ + iνα)

×

×
[
1− iνα

∫
dv

Φα(v)
ω − kv + iνα

]−1

, (13)

which yields the stationary grain potential given by

Φ(r) =
qe−kDr

r
+ i
∑
α

4πeαn0α×

×
∫

dk
(2π)3

eikr

k2 + k2
D

∫
dv vσα(q,v)f0α(v)

kv−iνα

1 + iνα
∫
dv Φα(v)

kv−iνα

. (14)

In the collisionless limit (να → 0), this relation is sim-
plified to

Φ(r) =
qe−kDr

r
+ i
∑
α

4πeαn0α×

×
∫

dk
(2π)3

eikr

k2 + k2
D

∫
vσα(q, v)f0α(v)

kv − i0
dv, (15)

and thus we have

Φ(r) =
qe−kDr

r
− Q̃

r
g(kDr), (16)

where

g(x) = e−xEi(x)− exEi(−x),

Q̃ =
2π
kD

∑
α

eαn0α

∞∫
0

dv v2σα(q, v)f0α(v). (17)
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At kDr � 1, Eq. (16) yields the well-known result

Φ(r) ' − 2Q̃
kDr2

,

i.e. the effective potential is of the dipole type.
In the strongly collisional limit (να � ksα, sα =√
Tα/mα), Eq. (14) reduces to a superposition of the

screened and unscreened potentials

Φ(r) = (q + S̃)
e−kDr

r
− S̃

r
, (18)

which is in agreement with the results obtained in terms
of the drift-diffusion approximation [1, 16]. Here,

S̃ =
∑
α

S̃α =
∑
α

eαn0α

k2
DDα

∫
dvS(0)

α (v),

Dα = Tα/(mανα) is the diffusion coefficient. When de-
riving (18), we have put Φα(v) = f0α(v). Thus, we
see that, in the case of the dusty plasma which can be
treated as an open system, the stationary screened po-
tential considerably depends on the details of the plasma
dynamics, in contrast to the case of a screened potential
for the ordinary plasma.

4. Effective grain potential in the weakly
ionized plasma exposed to an external
electric field

If an external electric field E0 = (0, 0, E0) is present,
then Eq. (2) generates an equation for the unperturbed
distribution function, i.e.

eα
mα

E0
∂f0α(v)
∂v

= −να
{
f0α(v)− Φα(v)

∫
dv′f0α(v′)

}
,

(19)

and Wα (X,X ′; τ) [see Eq. (7)] satisfies the equation{
∂

∂t
+ v

∂

∂r
+

eα
mα

E0
∂

∂v

}
Wα (X,X ′; τ) =

= −να
{
Wα (X,X ′; τ)− Φα(v)

∫
dvWα (X,X ′; τ)

}
.

(20)

Integrating Eq. (19) results in

f0α(v) =

vz∫
−∞

dv′zβαΦα (v⊥, v′z) exp(−βα(vz − v′z)),

βα > 0, (21)

f0α(v) = −
∞∫
vz

dv′zβαΦα (v⊥, v′z) exp(−βα(vz − v′z)),

βα < 0 , (22)

where

βα =
1
vα
, vα =

eαE0

mανα
.

The solution of Eq. (20) for vα > 0 is given by

Wαkω(v,v′) =
βα
να

{
δ(v⊥ − v′⊥)θ(vz − v′z)×

× exp [−iψα(v⊥, v′z)] + ναWαkω(v′)×

×
vz∫
−∞

dv′′z Φα(v⊥, v′′z ) exp [−iψα(v⊥, v′′z )]

}
exp[iψα(vz)] ,

(23)

where

ψα(v⊥, vz) =
βα
να

{
(ω − k⊥v⊥ + iνα)vz −

kzv
2
z

2

}
, (24)

Wαkω(v′) =
βα
να

∞∫
−∞

dvz exp [iψα(v′⊥, vz)− iψα(v′⊥, v
′
z)]×

×θ(vz − v′z)

{
1− βα

∫
dv

vz∫
−∞

dv′′z Φα(v⊥, v′′z )×

× exp [iψα(v⊥, vz)− iψα(v⊥, v′′z )]

}−1

. (25)

For vα < 0, we have

Wαkω(v,v′) = −βα
να

{
δ(v⊥ − v′⊥)θ(v′z − vz)×

× exp [−iψα(v⊥, v′z)] + ναWαkω(v′)×

32 ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 1



GRAIN IN A PLASMA IN THE PRESENCE OF EXTERNAL ELECTRIC FIELD

×
∞∫
vz

dv′′z Φα(v⊥, v′′z ) exp [−iψα(v⊥, v′′z )]

}
exp[iψα(vz)],

(26)

where

Wαkω(v′)=−βα
να

∞∫
−∞

dvz exp [iψα(v′⊥, vz)− iψα(v′⊥, v
′
z)]×

×θ(v′z − vz)

{
1 + βα

∫
dv

∞∫
vz

dv′′z Φα(v⊥, v′′z )×

× exp [iψα(v⊥, vz)− iψα(v⊥, v′′z )]

}−1

. (27)

Substituting Eqs. (21)–(27) in Eq. (10) for the dielec-
tric response function ε(k, ω) yields

ε(k, ω) = 1 +
∑
α

k2
α

κ2
α(k)Gα(k, ω)

×

×
∞∫
0

dy exp(−y)W
(
ω + iνα − kzvαy

κα(k)sα

)
, (28)

where

Gα(k, ω) =
1

ω + iνα

[
ω + iναW

(
ω + iνα
κα(k)sα

)]
,

κ2
α(k) ≡ κ2

α = k2 +
ikzvανα
s2α

, (29)

W (z) = 1− z exp
(
−z

2

2

) z∫
0

dy exp
(
y2

2

)
+

+i
(π

2

)1/2

z exp
(
−z

2

2

)
. (30)

With the accuracy up to the notation, Eqs. (28) and
(29) recover the result obtained in Ref. [10].

For |kzvα| � να, Eq. (28) is simplified to

ε(k, ω) = 1 +
∑
α

k2
α

κ2
αGα(k, ω)

W

(
ω + iνα
κα(k)sα

)
=

= 1 +
∑
α

k2
α

κ2
α

(ω + iνα)W
(
ω+iνα
καsα

)
ω + iναW

(
ω+iνα
καsα

) . (31)

In the drift-diffusion approximation (ω � να), we
have

ε(k, ω) ' 1 + i
∑
α

ω2
pα

να(ω − kzvα + ik2Dα)
, (32)

where ω2
pα = 4πe2αnα/mα.

In the stationary case (ω = 0),

ε(k, 0) = 1− i
∑
α

ω2
pα

να(kzvα − ik2Dα)
. (33)

For the further calculations, we need to know the ex-
plicit forms of the quantities describing the contribu-
tion of the absorption processes to the effective poten-
tial, namely, to the second terms in Eqs. (9) and (11).
We denote these by Φ(s)

kω and Φ(s)
k , i.e.,

Φ(s)
kω =

4πQ(s)
ω

k2ε(k, ω)
, (34)

where

Q(s)
ω =

∑
α

eαn0α

∫
dv
∫
dv′ Wαkω (v,v′)S(0)

αω(v′) . (35)

With regard for the explicit form of Wαkω (v,v′), one
obtains

Q(s)
ω = −i

∑
α

eαn0α

Gα(k, ω)

∫
dv

S
(0)
αω(v)

ω − kv + iνα
×

×
[
1−W

(
ω − kv + iνα√

ikzvανα

)]
,

Re
(√

ikzvανα

)
> 0. (36)

Notice that, in the case of collisional plasma, the prob-
lem of the appropriate approximation for the charging
cross-section σα(q, v) is not yet solved (rigorously speak-
ing, by introducing any cross-section, we assume that the
incoming particle flux in course of its movement from the
infinity to the scattering center is disturbed by this cen-
ter only). Therefore, the description of the grain charg-
ing is usually done in terms of charging currents [17, 18]
or in self-consistent kinetic simulations [19, 20]. With
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the dependence of charging currents on the collision fre-
quency and other plasma parameters being known, it is
possible to propose reasonable approximations for the
integral terms which include the charging cross-sections.
In particular, such an idea was used in Ref. [21] in order
to calculate the effective grain potential in the case of a
weakly collisional regime of the grain charging. Namely,
it was assumed in [21] that∫
dvvσi(q, v)F (v) = σ0i

∫
dvvF (v), (37)

where F (v) is an arbitrary (but regular) function, and
σ0i is the effective cross-section taken from the relation
for the charging current

Ji = ni

∫
dvvσi(v)f0i(v) = niσ0i

∫
dvvf0i(v). (38)

A similar approximation can be used in the case under
consideration. Moreover, as follows from the compari-
son of the consistent calculations of the effective grain
potential in the case of the low-collisional regime with
the appropriate estimates on the basis of the relations
for charging currents, the approximation of the type∫
dvvσα(q, v)F (v) =

Jα
nα

∫
dvF (v) (39)

is even more efficient. Here, Jα is the charging current
generated by particles of the α species.

So doing, we are led to the following relations for the
effective charge associated with the grain charging:

Q(s)
ω = i

∑
α

eαJαω

∞∫
0

dy
1

Gα(k, ω)
exp(−y)

ω − kzvαy + iνα
×

×
[
1−W

(
ω − kzvαy + iνα

κα(k)sα

)]
. (40)

As follows from Eq. (36) and (40) for να � ksα, kzvα,
we have

Q(s)
ω = −i

∑
α

eα
Gα(k, ω)

1
(ω + iνα)

×

×
[
1−W

(
ω + iνα√
ikzvανα

)]
Jαω, Jαω = nα

∫
dvS(0)

αω(v).

(41)

In the stationary case (ω = 0), Eq. (41) reduces to

Q(s) = −
∑
α

eα
ναGα(k, ω)

[
1−W

(√
iνα
kzvα

)]
Jα,

Gα(k, ω) 'W
(

iνα
κα(k)sα

)
. (42)

If the condition |κα(k)sα| � να is satisfied, then

Gα(k, 0) ' k2s2α + ikzvανα
ν2
α

. (43)

Obviously, for kzvα � να, we have

Q(s) ' −
∑
α

eα
ναGα(k)

Jα. (44)

Thus, in the drift-diffusion approximation (να �
ksα, kzvα), we obtain

Φk =
4πq

k2ε(k, 0)
− 4π
k2ε(k, 0)

∑
α

eα
ναGα(k)

Jα . (45)

Neglecting the field influence on electrons (ve = 0),
i.e. assuming that electrons can be described by the
Boltzmann distribution, we can put

ε(k, 0) = 1 +
k2
e

k2
+

k2
i

k2 + ikzviνi/s2i
, Ge(k) =

k2s2e
ν2
e

.

(46)

With the potential Φk being known, we can calculate
the force acting on the grain due to the polarization of
the medium

F = −q ∂Φ(r)
∂r

∣∣∣∣
r=0

= −iq
∫

dk
(2π)3

kΦk . (47)

If the external field is absent, then Φk depends on the
squared k, and the force acting on the particle is equal
to zero. The situation crucially changes if particle fluxes
occur in the plasma. Taking the explicit form of ε(k, 0)
and Gi(k) into account, we find

Fz = − q

2π2

∫
dk

ikz
k2ε(k, 0)

[
q −

∑
α

eα
ναGα(k)

Jα

]
. (48)

For small velocities vi, Eq. (48) reduces to

Fz =
qvi

2π2Di

∫
dk

k2
z

k2(k2 + k2
D)
×

×

[
k2
DS̃i
k2

+
k2
i

k2 + k2
D

(
q − k2

DS̃

k2

)]
. (49)

In terms of Jα, S̃ =
∑
S̃α =

∑
eαJα/(k2

DDα).
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After the integration, we have

Fz =
qvi

6DikD

{
k2
i (q − S̃) + 2k2

DS̃i

}
. (50)

We see that if there is no absorption by the grain
(S̃α = 0), then the drag force is positive, i.e. it acts
in the direction of the ion flux velocity. However, if the
condition

k2
i

(
q − S̃

)
+ 2k2

DS̃i > 0 (51)

is satisfied and q < 0, then the force becomes negative,
as it was found in kinetic simulations in Ref. [22]. Equa-
tions (50)–(51) reproduce the results obtained earlier in
Refs. [7, 9].

5. Summary and Conclusions

The constituent kinetic theory of dusty plasma is used
to calculate the effective grain potential for the case of a
weakly ionized plasma in an external electric field. The
grain charging by plasma currents is taken into account
with regard for elastic collisions of plasma particles with
neutrals within the framework of the BGK collision term.

The drag force associated with the ionic drift in the
external field is found. It is shown that the absorption
of electrons and ions by the grain can cause the change
of the direction of the drag force.
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ПОРОШИНКА В ПЛАЗМI
У ПРИСУТНОСТI ЗОВНIШНЬОГО
ЕЛЕКТРИЧНОГО ПОЛЯ: КIНЕТИЧНИЙ РОЗРАХУНОК
ЕФЕКТИВНОГО ПОТЕНЦIАЛУ ТА IОННОЇ СИЛИ ОПОРУ

А.Г. Загороднiй, I.В. Рогаль, А.I. Момот, I.В. Швейгерт

Р е з ю м е

Представлено кiнетичнi розрахунки ефективного потенцiалу
порошинки для випадку слабоiонiзованої плазми у зовнiшньо-
му електричному полi. Знайдено силу опору, яка пов’язана з
дрейфом iонiв у зовнiшньому полi. Показано, що поглинання
електронiв та iонiв порошинкою може привести до змiни на-
прямку сили опору.
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