УДК 582.288+544.47

ИНАКТИВАЦИЯ CANDIDA ALBICANS В СИСТЕМЕ ФОТО-ФЕНТОНА

Н.М. Соболева, М.Н. Сапрыкина, В.Н. Косинова, А.А. Носонович, В.В. Гончарук

Институт коллоидной химии и химии воды им. А.В. Думанского НАН Украины, г. Киев

Поступила 19.09.2011 г.

Исследовано фотокаталитическое обеззараживание культуры микромицетов Candida albicans в водных средах в зависимости от дозы облучения (диапазон $\mathcal{V}\Phi$ -A), pH среды, концентрации H_2O_2 , ионов железа (II), (III) и фосфатных ионов. Предложена интерпретация влияния указанных факторов на скорость протекания изучаемого процесса. Показана перспективность использования систем $\mathcal{V}\Phi/H_2O_2$ и фото-Фентона применительно к обеззараживанию водных сред от микромицетов Candida albicans.

Ключевые слова: водоочистка, пероксид водорода, фотоокисление, фотокаталитическое обеззараживание, *Candida albicans*.

Введение. Высокая устойчивость микроскопических грибов, вызывающих ряд опасных заболеваний (онихомикоз, нозокоминальные инфекции, микоз легких, пневмония, остеомиелит, эндокардит, отит и др.), к классическим способам обработки воды обусловливает актуальность поиска альтернативных методов дезактивации микроорганизмов [1, 2].

Использование эффективных и экологически чистых методов обеззараживания природных и питьевых вод является важным направлением в решении современных проблем экологии гидросферы и технологии водоочистки. Применение усовершенствованных окислительных способов (системы $H_2O_2/V\Phi$, H_2O_2/O_3 , $O_3/H_2O_2/V\Phi$, каталитическое фотоокисление и др.) обработки воды позволяет достигать глубокого обеззараживания устойчивых микроорганизмов с одновременной очисткой воды от вторичных продуктов дезинфекции [3].

В основе этих процессов лежит образование активных кислородсодержащих радикалов (HO^{\bullet} ; HO^{\bullet}_{2} ; O^{\bullet}_{2} и т.д.), среди которых гидроксильный радикал обладает наиболее высоким окислительным потенциалом (2, 8 B) [4].

© Н.М. СОБОЛЕВА, М.Н. САПРЫКИНА, В.Н. КОСИНОВА, А.А. НОСОНОВИЧ, В.В. ГОНЧАРУК, 2012

Присутствие в воде органических соединений природного и технического происхождения приводит к накоплению более устойчивых свободных вторичных радикалов, среди которых доминирующими по содержанию являются радикалы гуминовых кислот. Поэтому скорость гибели микроорганизмов определяется не только первичными кислородсодержащими радикалами, но и долгоживущими радикалами природных органических соединений, их соотношением, кинетикой протекающих радикальных реакций, а также видом самого микроорганизма.

К перспективным относятся способы очистки водных сред, основанные на разложении пероксида водорода с образованием гидроксильных радикалов (фотолиз ${\rm H_2O_2}$, каталитический распад с участием ${\rm Fe^{2^+}}$, система ${\rm H_2O_2}-{\rm Fe^{2^+}}$ при дополнительном воздействии ультрафиолетового или солнечного излучения).

Цель данной работы — исследование влияния различных факторов на кинетику каталитической и фотокаталитической инактивации микроскопических грибов *Candida albicans* в водных средах с применением системы $H_2O_2 - Fe^{2+}$ (Fe^{3+}).

Методика эксперимента. В качестве тест-культуры для изучения обеззараживания воды от микромицетов использовали дрожжеподобный гриб *Candida albicans*, полученный из музея микроорганизмов Института эпидемиологии и инфекционных заболеваний им. Л.В. Громашевского АМН Украины. Суспензию *Candida albicans* готовили согласно [5]. После приготовления экспериментального раствора его заражали исследуемой культурой. Концентрация микромицетов в растворе составляла $1\cdot10^5$ KOE/cm³.

Микромицеты инактивировали при помощи системы Фентона в темновых условиях и под действием УФ-излучения в статическом и динамическом режимах облучения.

Фотодетоксикацию *Candida albicans* в статических условиях проводили на экспериментальной лабораторной установке с облучателем ОИ-18А. В качестве источника света применяли ртутную лампу высокого давления СВД-120. Для выделения диапазона 289 — 365 нм (близкого по спектральному составу коротковолновой компоненте солнечного излучения) использовали комбинацию светофильтров УФС-1 и БС-4. Исследуемые растворы облучали в реакторе цилиндрической формы объемом 20 см³ в условиях барботажа воздухом и перемешивания магнитной мешалкой. Источник УФ-света находился на расстоянии 17 см от поверхности раствора.

Актинометрические измерения интенсивности полихроматического света, выделенного из эмиссионного излучения при помощи указанного набора светофильтров, проводили при помощи ферриоксалатного актинометра (раствор 9,3 \cdot 10⁻⁴ M K₃Fe(C₂O₄)₃ – 0,1 M H₂SO₄) [6]. В расчетах суммарной

интенсивности поглощённого света (I_0) принимали, что квантовый выход актинометрической реакции в выделенном при помощи светофильтров спектральном диапазоне не зависит от длины волны излучения и составляет Φ = 1,23 [6]. Найденная из актинометрических измерений интенсивность полихроматического света (диапазон 289 – 365 нм), поглощаемого исследуемыми растворами, составляла 5,79 · 10^{-6} эйнштейн 10^{-6} динитейн 10^{-6} г⁻¹.

Значения интенсивности действующего света (I_{λ} , эйнштейн/с) и энергетической освещенности растворов (E_{λ} , мВт/см²), соответствующие различным эмиссионным линиям источника света в исследованном диапазоне (таблица), рассчитаны из следующих соотношений [6]:

$$I_{\lambda} = \frac{W_{\lambda} \cdot T_{\lambda} \cdot \lambda}{1,196 \cdot 10^8}; \tag{1}$$

$$E_{\lambda} = \frac{1,196 \cdot 10^8 \cdot I_{\lambda} \cdot Q_{\lambda}}{\lambda \cdot S}, \tag{2}$$

где W_{λ} и T_{λ} — соответственно мощность излучения (Вт) и прозрачность применявшегося в опытах набора светофильтров для эмиссионных линий источника различной длины волны (λ) в диапазоне 289 — 365 нм; Q_{λ} — доля квантов излучения длины волны в поглощенном системой свете, %; I_{λ} — суммарная интенсивность поглощаемого раствором света в диапазоне 289 — 365 нм; S — площадь сечения реактора, см².

Обработку воды УФ-светом в динамическом режиме проводили на экспериментальной установке, описанной в [7].

Выживание микроорганизмов определяли по наличию КОЕ при посеве отобранных проб воды на агаризированную среду Сабуро. *Candida albicans* культивировали в течение одних суток при 37°C. Степень обеззараживания выражали в логарифмах отношения концентраций тестмикроорганизмов, оставшихся в растворе после обработки (N_i) , к ее исходному значению (N).

Пероксид водорода квалификации "ч.д.а." и хлорное железо ($FeCl_3$, "ч") применяли без дополнительной очистки. Концентрацию H_2O_2 определяли по методике, описанной в [6]. В качестве буфера использовали стандартный фосфатный буфер (pH 6,86). Исходные значения pH устанавливали водными растворами гидроксида натрия и соляной кислоты.

Относительное и абсолютное спектральное распределение энергии лампы СВД-120А в исходном (P_{λ} и W_{λ}) и отфильтрованном (Q_{λ} и I_{λ}) и излучении (светофильтры УФС-1 и БС-4), а также значения освещенности исследуемых образцов (E_{λ}), соответствующие различным эмиссионным линиям источника света

λ, нм	W_{λ} , Вт	<i>P</i> _λ , %	I_{λ} · 10^6 , эйнштейн/с	Q_{λ} , %	$E_{\lambda,}$, MBT/cm ²
289,4	0,55	3,48	0,07	0,30	0,01
293,5	0,09	0,60	0,03	0,12	0,004
296,7	1,71	10,79	0,93	4,11	0,15
302,2	2,85	17,99	2,67	11,85	0,43
312,6	5,32	33,57	8,18	36,26	1,28
334,1	0,76	4,80	1,50	6,66	0,22
365,0	4,56	28,78	9,18	40,71	1,23
Σ	15,83	100	22,56	100	3,33

Результаты и их обсуждение. *Фотоокислительное обеззараживание воды с применением пероксида водорода.* Степень удаления культуры *Candida albicans* из воды под действием УФ-излучения на три — четыре порядка выше по сравнению с опытами, проведенными в темновых условиях. Скорость обеззараживания культуры выше в кислой (рН 3) и щелочной (рН 9) средах, чем в слабокислой среде (при рН 5), поскольку последняя является благоприятной для роста микромицетов (рис. 1, a). Эффективность обеззараживания в значительной степени зависит не только от экспозиции и типа тест-микроорганизма, но и от состава обрабатываемой водной среды. В фосфатном буфере (рН 6,86) она более чем на порядок выше по сравнению с дистиллированной и водопроводной водами (см. рис. 1, δ).

Фотохимическое окисление с применением пероксида водорода нашло широкое практическое применение и является перспективным в детоксикации водных сред. Эффективность процесса определяется скоростью фоторазложения пероксида водорода и зависит от интенсивности УФ-излучения, а также от природы примесей и их концентраций [8 – 10]. При введении в систему H_2O_2 степень обеззараживания Candida albicans под действием УФ-излучения существенно возрастает. В опытах с варьированием концентрации пероксида водорода в интервале

 $4\cdot 10^{-3} - 4\cdot 10^{-2}$ М в дистиллированной воде под действием УФ-излучения наиболее эффективный результат получен при концентрации окислителя $4\cdot 10^{-2}$ М (степень обеззараживания – 5,3). Повышение степени обеззараживания с ростом концентрации H_2O_2 обусловлено увеличением количества активных кислородсодержащих радикалов, образующихся под действием света.

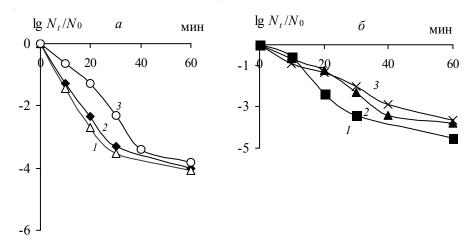


Рис. 1. Влияние pH(a) - 3(1); 9 (2); 5 (3) и состава среды (6) — фосфатного буфера (pH 6,86) (1), дистиллированной (pH 5,2) (2) и водопроводной вод (pH 8,2) (3) на инактивацию микромицетов УФ-светом.

Квантовый выход фотогенерирования гидроксильных радикалов довольно высок и может достигать значений, близких к единице. Благодаря радикально-цепному характеру общий квантовый выход фотоокислительного процесса может превышать указанное значение. Основными гидроксилирующими агентами являются гидроксильный и гидропероксидный радикалы. В темновых условиях уменьшается количество активных радикалов и, соответственно, снижается фунгицидное действие. Участие гидроксильных радикалов в обеззараживании подтверждается результатами опытов, проведенных с трет-бутиловим спиртом, являющимся ингибитором радикальных реакций. В присутствии трет-бутилового спирта дезактивация значительно замедляется (рис. 2. а).

В фосфатном буфере максимальный эффект фотообеззараживания (5,8 порядка) достигается при концентрации H_2O_2 $2\cdot 10^{-3}$ М, которая на порядок ниже, чем в дистиллированной воде. При дальнейшем повышении концентрации пероксида водорода степень обеззараживания снижается (см. рис. $2. \, \delta$).

В дистиллированной воде эффективность инактивации *Candida albicans* при использовании пероксида водорода незначительна [11]. Степень обеззараживания воды возрастает с повышением концентрации пе-

роксида водорода (рис. 3, a). В водопроводной воде при внесении последнего наблюдается снижение степени обеззараживания (см. рис. 3, δ)

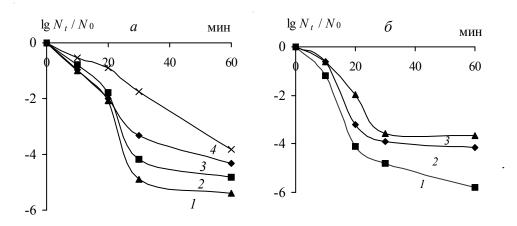
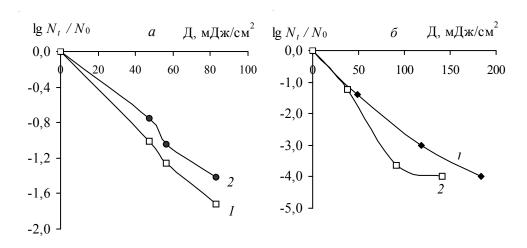



Рис. 2. Инактивация Candida albicans под действием УФ-света при концентрациях H_2O_2 , M: в дистиллированной воде (a) – 4 10^{-2} (1); 2 10^{-2} (2); 4 10^{-3} (3); 4 10^{-2} (4) (с трет-бутиловым спиртом)), в фосфатном буфере (б) – 2 10^{-3} (1); 4 10^{-3} (2); 6 10^{-1} (3).

Puc.~3.~ Степень выживания Candida albicans под действием УФ-света в дистиллированной (а) и водопроводной (б) водах при концентрации H_2O_2 : 20~(1)~u~0~мг/дм $^3~(2)$.

Эффективность обеззараживания Candida albicans в системе фото-Фентона. Соединения переходных металлов обладают широким спектром действия на разные виды микроорганизмов; многие из них подавляют рост грибов и бактерий. Токсичность указанных соединений зависит от рН и состава среды [12, 13].

Эффективность окисления этого вида микромицетов под действием $Fe^{2+}/Fe^{3+}-H_2O_2$ может быть значительно повышена при воздействии на реакционную систему ультрафиолетового/видимого или солнечного света — системой фото-Фентона, что обусловлено восстановлением комплексов трехвалентного железа с аква- и органическими лигандами, в результате чего в системе создается относительно высокая концентрация активного катализатора Fe^{2+} , генерирующего вторичные гидроксильные радикалы:

$$FeOH^{2+} + h\nu \rightarrow Fe^{2+} + OH^{\bullet}; \tag{3}$$

$$LFe^{3+} + h\nu \rightarrow Fe^{2+} + L^{\bullet}. \tag{4}$$

Дополнительно к термическому процессу образуются гидроксильные радикалы с квантовым выходом $\Phi = 0.14$ (313 нм) и 0.017 (360 нм). Фотоактивными являются ионы Fe_{aq}^{3+} , $FeOH^{2+}$, $Fe_2(OH)_2^{4+}$, вклад которых определяется pH системы и длиной волны источника света.

Радикально-цепной механизм процессов, протекающих в системе ${\rm Fe^{3+}}-{\rm H_2O_2}$, включает генерирование ${\rm OH}_2^{\bullet}$, ${\rm OH}^{\bullet}({\rm O}_2^{\bullet-})$ и ${\rm Fe^{2+}}$, образование пероксокомплекса ${\rm FeHO}_2^{2+}$, гидроксокомплекса ${\rm FeOH^{2+}}$:

$$Fe^{3+} + H_2O_2 \leftrightarrow FeH_2O_2^{2+} \leftrightarrow FeHO_2^{2+} + H^+; \tag{5}$$

$$FeHO_2^{2+} \leftrightarrow Fe^{2+} + OH_2^{\bullet}; \tag{6}$$

$$Fe^{2+} + H_2O_2 \leftrightarrow Fe^{3+} + OH^{\bullet} + OH^{-}. \tag{7}$$

В кинетической модели, которая описывает систему $H_2O_2 - Fe^{2+} - hv$, необходимо учитывать также и фотоиндукционное разложение H_2O_2 , протекающее с квантовым выходом 1,32 (полихроматический свет, ртутная лампа среднего давления):

$$[Fe(OH)(HO2)]^+ + h\nu \rightarrow [Fe(OH)]^+ + HO2^{\bullet}.$$
 (8)

Следует отметить, что степень обеззараживания *Candida albicans* в дистиллированной воде при воздействии УФ-излучения в присутствии FeCl_3 ($10^{-4} - 10^{-3}\,\text{M}$) повышается. При концентрации FeCl_3 , равной $10^{-3}\,\text{M}$, степень обеззараживания составляет 2,3 порядка. При снижении концен-

трации FeCl₃ на порядок происходит снижение степени обеззараживания на 1,8 порядка, а при концентрации железа 10^{-4} M — на 1,1 порядка (рис. 4, a). Возрастание степени обеззараживания в данном случае обусловлено фотовосстановлением ионов железа (III) под действием света.

В фосфатном буфере степень обеззараживания заметно выше, чем в дистиллированной воде. Максимальная степень инактивации составляет 3,5 порядка, что более чем на порядок превышает соответствующее значение, полученное в отсутствие буфера. При этом зависимость начальной скорости и максимальной степени обеззараживания от концентрации $FeCl_3$ в рассматриваемых средах имеет противоположный характер. Действительно, в то время как указанные кинетические параметры инактивации в дистиллированной воде с ростом концентрации $FeCl_3$ снижаются, в фосфатном буфере они симбатно возрастают (см. рис. 4, δ). В фосфатном буфере при росте концентрации железа в интервале $10^{-4} - 10^{-3}$ М степень обеззараживания снижается. При концентрации $FeCl_3$ (10^{-4} М) уменьшение количества *Candida albicans* составляет 3,5 порядка, что более чем на порядок превышает максимальный результат (2,3 порядка), полученный в случае дистиллированной воды при концентрации железа 10 М.

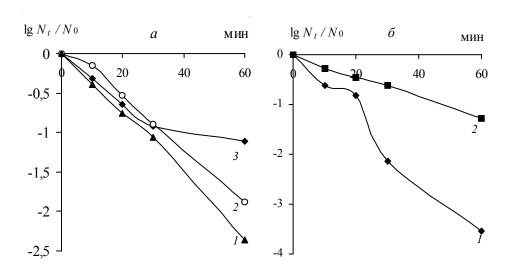


Рис. 4. Степень выживания Candida albicans под действием УФ-света при концентрации FeCl3, M: в дистиллированной воде $(a) - 10^{-3}(1)$, $5 \cdot 10^{-4}(2)$, $10^{-4}(3)$; в фосфатном буфере $(6) - 10^{-4}(1)$, $10^{-3}(2)$.

При концентрации $FeCl_3$ 10^{-3} M степень обеззараживания снижается до 1,27 порядка. В темновых условиях процесс проходит менее эффективно, и аналогичная степень обеззараживания (1,26 порядка) достигается при концентрации $FeCl_3$ 10^{-2} M.

Из-за недостатка экспериментальных и теоретических исследований сложно объяснить улучшение эффекта обеззараживания в фосфатном буфере по сравнению с дистиллированной водой. Известно, что использование фосфатного буфера стабилизирует данную систему. Наблюдающееся снижение эффективности инактивации $Candida\ albicans$ в фосфатном буфере в присутствии ионов Fe^{3+} обусловлено, очевидно, связыванием последних в фосфатные комплексы.

Инактивация Candida albicans в дистиллированной воде реактивом Фентона при концентрации FeCl_3 10^{-5} М и $\mathrm{H_2O_2}$ $4\cdot10^{-3}$ М составляет 1,2 порядка. Повышение концентрации железа до 10^{-4} М при постоянной концентрации пероксида водорода приводит к снижению степени обеззараживания воды до 0,87 порядка. Применение $\mathrm{FeSO_4}$ и $\mathrm{H_2O_2}$ при концентрациях соответственно 10^{-4} и $4\cdot10^{-3}$ М значительно снижает степень обеззараживания (рис. 5).

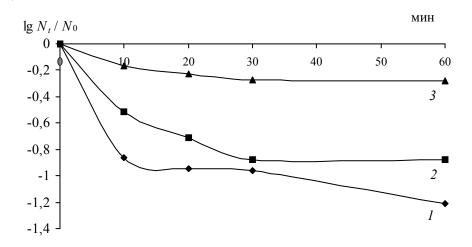


Рис. 5. Обеззараживание Candida albicans в системе Фентона в дистиллированной воде в зависимости от соотношения $Fe^{3+}(Fe^{2+})/H_2O_2$: $1-10^{-5}$ M $FeCl_3-4\cdot10^{-3}$ M H_2O_2 , $2-10^{-4}$ M $FeCl_3-4\cdot10^{-3}$ M H_2O_2 , $3-10^{-4}$ M $FeSO_4-4\cdot10^{-3}$ M H_2O_2 .

В аналогичных условиях степень обеззараживания воды при отдельном использовании $FeCl_3$ и H_2O_2 была соответственно на 3,5 и 4,1 порядка ниже, чем при их совместном использовании. Таким образом, в данном случае достигнут аддитивный эффект (рис. 6).

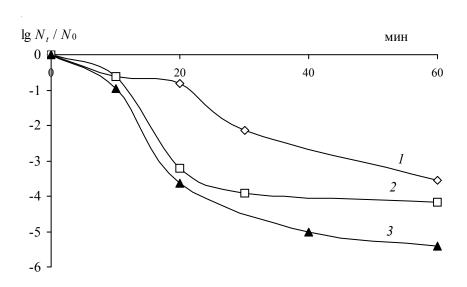


Рис. 6. Степень обеззараживания Candida albicans в системе Фентона в фосфатном буфере в присутствии $FeCl_3$ и H_2O_2 : $1-10^4$ M $FeCl_3$, $2-4\cdot10^3$ M H_2O_2 ; 3- система фото-Фентона $(1\cdot10^4$ M $FeCl_3-4\cdot10^3$ M H_2O_2).

Степень обеззараживания *Candida albicans* в системе фото-Фентона в дистиллированной воде при концентрации железа и пероксида водорода соответственно 10^{-5} и $4\cdot 10^{-3}$ М составляла 3,66 порядка, что более чем в три раза выше по сравнению с полученной при использовании реактива Фентона (рис. 7, a).

Обеззараживание в фосфатном буфере в системе фото-Фентона $(0.94\cdot10^4~\mathrm{M~FeCl_3}-4.62\cdot10^3~\mathrm{M~H_2O_2};\,10^4~\mathrm{M~FeCl_3}-2.31\cdot10^3~\mathrm{M~H_2O_2})\,(5.3-5.4~\mathrm{порядка})$ (см. рис. $7, \delta$) эффективнее по сравнению с опытами, проведенными в дистиллированной воде (3.66 порядка). Степень обеззараживания *Candida albicans* с реактивом Фентона значительно ниже (1,08 порядка).

Преимуществом системы фото-Фентона является светочувствительность вплоть до 600 нм, что открывает определенные перспективы применения солнечного излучения в качестве источника света.

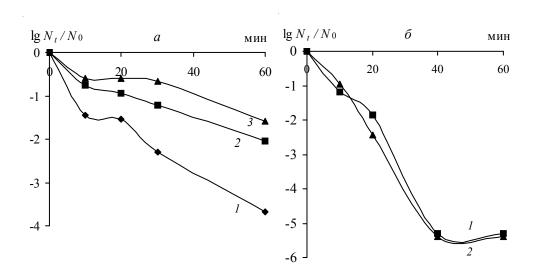


Рис. 7. Степень обеззараживания Candida albicans в системе фото-Фентона в дистиллированной воде (a): $1-10^{-5}\,\mathrm{M\,FeCl_3}-4\cdot10^{-3}\,\mathrm{M\,H_2O_2}$, $2-10^{-4}\,\mathrm{M\,FeCl_3}-4\cdot10^{-3}\,\mathrm{M\,H_2O_2}$, $3-10^{-4}\,\mathrm{M\,FeSO_4}-10^{-4}\,\mathrm{M\,H_2O_2}$; в фосфатном буфере (б): $1-0.94\cdot10^{-4}\,\mathrm{M\,FeCl_3}-4.62\cdot10^{-3}\,\mathrm{M\,H_2O_2}$, $2-10^{-4}\,\mathrm{M\,FeCl_3}-2.31\cdot10^{-3}\,\mathrm{M\,H_2O_2}$.

Выводы. Итак, изучена кинетика обеззараживания микромицетов под действием УФ-излучения (диапазон A) в каталитической окислительной системе Фентона, а также в присутствии отдельных ее компонентов. На основании проведенных исследований можно сделать следующие выводы:

- природа и состав воды под действием УФ-света незначительно влияют на инактивацию микромицетов;
- при введении в систему пероксида водорода эффект обеззараживания повышается;
- с ростом концентрации ионов железа в воде степень инактивации микромицетов повышается;
- применение системы фото-Фентона дает возможность значительно повысить степень обеззараживания водных сред от микромицетов.

Резюме. Досліджено фотокаталітичне знезараження культури мікроміцетів *Candida albicans* у водних середовищах в залежності від дози опромінення (діапазон УФ-А), рН середовища, концентрації H_2O_2 , йонів заліза (II), (III) та фосфатних йонів. Запропоновано інтерпретацію впливу вказаних факторів на швидкість проходження досліджуваного процесу. Показано перспективність використання систем УФ/ H_2O_2 та фото- Фентона відносно знезараження водних середовищ від мікроміщетів *Candida albicans*.

N.M. Soboleva, M.M. Saprykina, V.M. Kosinova, A.A. Nosonovich, V.V. Goncharuk

INACTIVATION OF CANDIDA ALBICANS IN THE PHOTO-FENTON SYSTEM

Summary

The effect of UV-A irradiance dose, pH, concentration of H_2O_2 , ferrous and ferric ions and phosphatic ions on the inactivation of *Candida albicans* was investigated. The interpretation of influence of specified factors on disinfection process has been proposed. It was shown that UV/H_2O_2 and photo-Fenton system are perspective for usage in the disinfection of the water contaminated by *Candida albicans*.

Список литературы

- [1] Экологические аспекты современных технологий охраны водной среды / Под ред. В. В. Гончарука. Киев: Наук. думка, 2005. 393с.
- [2] Гончарук В.В., Руденко А.В., Коваль Э.З., Савлук О.С. // Химия и технология воды. 2004. **26**, №2. С.120 144.
- [3] *Pereira V.J., Bashlio M.C., Fernandes D. et. al.* // Water Res. 2009. **43**, N 15. P. 3813 3819.
- [4] *Носонович А.А., Соболева Н.М., Гончарук В.В.* // Химия и технология воды. −2010. −**32**, №1. − С. 30 − 56.
- [5] Сапрыкина М.М., Савлук О.С., Гончарук В.В. // Там же. 2009. **31**, №1. С. 100 109.
- [6] *Носонович А.А., Соболева Н.М., Гончарук В.В.* // Там же. 2011. **33**, №5. С. 465 476.
- [7] Сапрыкина М. Н., Самсони-Тодоров А. О., Гончарук В. В. // Там же. -2009. -31, №5. -C.575-582.
- [8] Feuerstein O., Moreinos D., Steinberg D. // J. Antimicrob. Chemotherapy. 2006. 57, N 5. P. 872 876.
- [9] *Rajala-Mustonen R.L., Toivola P.S., Heinonen-Tanski H.* // Water Sci. and Technol. 1997. **35**, N 11/12. P. 237 241.
- [10] *Parkinson A., Barry M.J., Roddick F.A., Hobday M.D.* // Water Res. 2001. **35**, N 15. P. 3656 3664.
- [11] *Mamane H., Shemer H., Linden K. G.* // J. Hazard. Materials. 2007. **146**. P. 479 486.
- [12] *Bandala E.R., Gonzaleza L., Hozb F., Pelaezc M.A.*// J. Photochem. and Photobiol., A. 2011. **218**, N2/3. P.185.
- [13] *Cho M., Lee Y., Chung H., Yoon J. //* Appl. Environ. Microbiol. 2004. **70**, N3. P. 1129 1134.