В.В. Гончарук, Л.Н. Пузырная, Г.Н. Пшинко, А.А. Косоруков, В.Я. Демченко

УДАЛЕНИЕ Cu(II), Nı(II) И Co(II) ИЗ ВОДНЫХ РАСТВОРОВ СЛОИСТЫМ ДВОЙНЫМ ГИДРОКСИДОМ, ИНТЕРКАЛИРОВАННЫМ ЭДТА

Синтезирован образец слоистого двойного гидроксида, интеркалированного ЭДТА, и установлена его химическая формула $[Zn_4Al_2(OH)_{12}]$ (ЭДТА)· $8H_2O$. Изучена возможность применения такого сорбента для извлечения Cu(II), Ni(II), Co(II) из водных растворов. Проведено сравнительное исследование сорбционной способности карбонатной и хелатной форм слоистых двойных гидроксидов. Показано, что степень извлечения металлов на сорбенте $[Zn_4Al_2(OH)_{12}]$ (ЭДТА)· $8H_2O$ полностью коррелирует с устойчивостью комплексных соединений этих металлов в растворе.

Ключевые слова: адсорбция, слоистые двойные гидроксиды, тяжелые металлы, ЭДТА.

Введение. Интенсивное промышленное развитие современного общества, в частности горнодобывающего производства и цветной металлургии, сопровождается увеличением загрязнения ионами тяжелых металлов сточных вод, при недостаточной очистке которых происходит локальное и глобальное загрязнение всех водных ресурсов нашей планеты. Тяжелые металлы, являющиеся опасными токсикантами, способны к биоаккумуляции, что несет серьезную угрозу для экосистем [1]. Поэтому при переработке вторичных ресурсов и для обеспечения экологической безопасности ионы тяжелых металлов должны извлекаться из сточных вод. На сегодняшний день к основным методам очистки воды от ионов тяжелых металлов принадлежат ионный обмен и сорбция с использованием как природных сорбционных материалов [2], так и синтетических [3, 4]. В связи с этим актуальной остается необходимость получения высокоселективных сорбентов.

Одним из путей решения данной задачи является использование в процессах сорбционной очистки воды слоистых двойных гидроксидов (СДГ) или анионных глин, состоящих из положительно заряженных бруситоподобных слоев, связанных между собой обменными анионами и имеющих теоретически высокую анионообменную емкость ($\approx 3 \text{ мг-экв/г}$) [3]. В последнее время появились работы [5 – 8], направленные на повышение селективности и для улучшения сорбционных свойств модифи-

© В.В. ГОНЧАРУК, Л.Н. ПУЗЫРНАЯ, Г.Н. ПШИНКО, А.А. КОСОРУКОВ, В.Я. ДЕМЧЕНКО, 2011

цированных СДГ органическими реагентами, в частности содержащими в межслойном пространстве хелатообразующие анионы, которые эффективно связывают металлы в комплексные соединения, иммобилизируя их на твердой фазе. Такие сорбенты, функционализованные анионами нитрилотриуксусной (НТА) [5], этилендиаминтетрауксусной (ЭДТА) [6, 7], диэтилентриаминпентауксусной и мезо-2,3-дитиоянтарной кислот [8], являются достаточно эффективными для извлечения тяжелых металлов из водных сред.

Цель данной работы — исследование сорбционной способности сорбента на основе СДГ, интеркалированного анионами ЭДТА, для извлечения из водных растворов ионов Cu(II), Ni(II), Co(II).

Методика эксперимента. В работе использовали соли металлов: $CuSO_4 \cdot 5H_2O$, $NiSO_4 \cdot 7H_2O$, $CoSO_4 \cdot 7H_2O$ ("ч.д.а."). Ионную силу растворов (*I*) устанавливали с помощью раствора соли $NaClO_4$ ("х.ч").

Приготовление сорбентов на основе СДГ. Для исследования синтезировали образец сорбента цинк-алюминиевого СДГ, интеркалированного ЭДТА (ZnAl – ЭДТА), согласно методике, описанной в [7]: в суспензию СДГ(прекурсора) – [Zn₂Al(OH)₆]Cl·nH₂O, полученную соосаждением в атмосфере азота при 75 °C из растворов 0,67 M ZnCl₂ и 0,33 M AlCl₃ с использованием дистиллированной воды без CO₂ при рН 8, добавляли 0,015 M Na₂H₂ЭДТА (анионообменная реакция). При синтезе СДГ поддерживали рН до значения \approx 5,5, что соответствовало форме H₂ЭДТА². Для определения роли анионов ЭДТА в межслоевом пространстве цинк-алюминиевого гидроталькита также синтезировали гидроталькит [Zn₄Al₂(OH)₁₂]·CO₃·nH₂O (ZnAl – CO₃) из растворов нитратов цинка и алюминия, NaOH и Na₂CO₃.

Полученные продукты синтеза идентифицировали при помощи химического анализа. Элементарный химический анализ синтезированного образца $ZnAl - \Im ДTA$ проводили после растворения навески 0,2503 г сорбента в 15-20 см³ разбавленной соляной кислоты (1:1), а далее добавляли свободную от CO_2 дистиллированную воду до объема пробы 250 см³. Концентрации цинка и алюминия определяли атомно-абсорбционным методом, а концентрацию $\Im LTA$ оценивали по общему органическому углероду, определенному хроматографическим методом [9]. Формула установлена на основании результатов анализа по мольному содержанию цинка, алюминия и $\Im LTA$: $Zn_{1,05}Al_{0,546}$ $\Im LTA_{0,256}$. Содержание OH^- находили исходя из нейтральности сорбента, а количество молекул кристаллизационной воды — по разнице общей массы сорбента и отдельных компонентов сорбента. Предложенная формула изучаемого сорбента, полученная экспериментально, следующая: $[Zn_{1,05}Al_{0,546}(OH)_3]\Im LTA_{0,256}$. $2H_2O$, что соответствует примерному цело-

численному соотношению компонентов: Zn/Al = 2; Zn/ЭДТA = 4; Al/ЭДТA = 2 и позволяет написать формулу синтезированного сорбента в виде $[Zn_4Al_2(OH)_{12}](ЭДТА) \cdot 8H_2O$.

Сорбцию металлов изучали в статических условиях при непрерывном встряхивании в течение одного часа (объем водной фазы – 50 см³, навески сорбентов ZnAl – CO_3 и ZnAl – ЭДTA – 0,050 г, исходная концентрация металлов – $1\cdot10^{-4}$ моль/дм³). После установления адсорбционного равновесия водную фазу отделяли центрифугированием (5000 об/мин) и определяли в ней равновесные концентрации металлов атомно-абсорбционным методом на спектрофотометре C-115-M1 при длине волны $\lambda = 324,7$ нм для Cu(II), $\lambda = 232,0$ нм для Ni(II) и $\lambda = 240,7$ нм для Co(II).

Величину сорбции металлов (a_s , мкмоль/г), коэффициент распределения (k_a , см³/г) и степень очистки (CO, %) рассчитывали по следующим формулам:

$$a_{s} = (C_{0} - C_{p}) \frac{V}{m};$$

$$k_{d} = \left(\frac{C_{0} - C_{p}}{C_{p}}\right) \cdot \frac{V}{m};$$

$$CO = \frac{(C_{0} - C_{p})}{C_{0}} \cdot 100,$$

где C_0 , $C_{\rm p}$ – исходные и равновесные концентрации металлов, мкмоль/дм³; V – объём водной фазы (при расчете $a_{\rm s}$ в дм³ и ${\bf k}_d$ в см³); m – навеска минерала, г.

Результаты и их обсуждение. Влияние pH и ионной силы на сорбцию металлов металлов. Известно, что существенное влияние на сорбцию металлов оказывает значение pH. На рис. 1, a-e показана зависимость величин сорбции Cu(II), Ni(II) и Co(II) на сорбентах ZnAl – CO $_3$ и ZnAl – ЭДТА от pH и ионной силы растворов. Как видно из данных табл. 1 и рис. 1, a, сорбция ионов металлов на указанных сорбентах в разной степени зависит от pH. Мольная доля гидроксида меди в исходном растворе, например рассчитанная на основе констант (табл. 2), при pH 7 составляет практически 100% в отличие от никеля и кобальта, мольная доля которых при данном значении pH намного ниже, т.е. характер сорбции поглощения ионов металлов на обоих сорбентах обусловлен различной прочностью гидроксоформ металлов и трилонатных комплексов. Кроме того, Cu(II) в присутствии сорбента ZnAl – CO $_3$ осаждается преимущественно

в виде гидроксокарбонатов. Именно поэтому при рН 7 коэффициенты распределения для Cu(II) максимальны (k_d = 99000) для карбонатной формы гидроталькита. Это свидетельствует об извлечении меди за счет ее осаждения на сорбенте (известно, что уже при lgK_s >7 наблюдается процесс осаждения малорастворимых соединений [10]) преимущественно в виде гидроксокарбонатов и частично, по-видимому, в виде гидроксидов, что подтверждается константами образования осадков меди (см. табл. 2). Для Ni(II) и Co(II) коэффициенты распределения при рН 7 незначительно повышаются по сравнению с таковыми для меди при более низких значениях рН. К тому же коэффициенты распределения при сорбции Cu(II) на ZnAl - ЭДТА выше, чем для Ni(II) и Co(II), что полностью коррелирует с устойчивостью комплексных соединений металлов с ЭДТА в растворе.

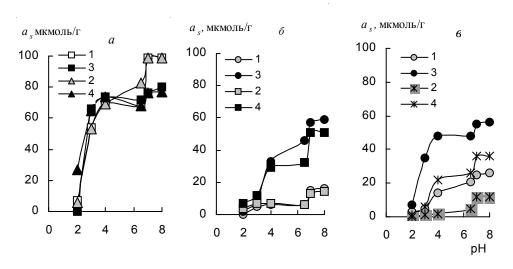


Рис. 1. Зависимость величин сорбции Cu(II) (a), Ni(II) (б) и Co(II)(в) от pH и ионной силы раствора на $ZnAl - CO_3(1,2)$ и ZnAl - ЭДТА(3,4). I: 0 (1,3); 0,01 (2,4). $V_{p-pa} = 50$ см³, $m_{cop6} = 0$,05 г

Ионная сила раствора на сорбцию двухвалентных металлов с использованием ZnAl — ЭДТА практически не влияет (см. рис. 1, кривые 2-4), что свидетельствует о связывании ионов металлов за счет комплексообразования с функциональными группами гексадентатного лиганда — ЭДТА. Для ионов Ni(II) и Co(II) величины сорбции на ZnAl — CO₃ намного ниже, чем на ZnAl — ЭДТА, при обоих значениях ионной силы.

Изотермы сорбции. Для ионов меди, никеля и кобальта были получены изотермы сорбции на сорбентах ZnAl - ЭДТА и $ZnAl - CO_3$ при pH 3,5 (рис. 2). С помощью уравнения Ленгмюра определены максимальные величины сорбции (a_n) для меди, кобальта и никеля, которые соот-

ветственно составляют: на ZnAl - 32TA - 357; 85 и 71, а на $ZnAl - CO_3 - 143$; 15,4 и 15,4 мкмоль/г. Интеркалирование хелатообразующим реагентом СДГ приводит к существенному повышению его сорбционных свойств по отношению к ионам тяжелых металлов.

Таблица 1. Влияние ионной силы раствора (I) и pH на коэффициенты распределения металлов

IOL CIO	Сорбент	pH ₀	$\mathbf{k}_d^{\mathrm{Cu(II)}}$	$k_d^{Co(II)}$	$\mathbf{k}_d^{\mathrm{Ni(II)}}$
I(NaClO ₄)			см ³ /г		
0	ZnAl – CO ₃	3	1170	50	50
		4	2230	70	160
		7	99000	180	330
	ZnAl – ЭДТА	3	1940	100	540
		4	2850	490	920
		7	3170	1330	1220
0,01	ZnAl – CO ₃	3	1130	4	10
		4	2230	4	20
		7	99000	9	140
	ZnAl-ЭДТА	3	1860	140	60
		4	2850	410	280
		7	3170	1040	560

Влияние фульвокислот (ΦK). Изучено влияние природного комплексообразующего лиганда — фульвокислот, выделенных из сапропелей киевских озер (сумма кислотных групп — 12,0 мг-экв/г), на процесс извлечения исследуемыми формами сорбентов ионов меди, никеля и кобальта. Полученные данные (рис. 3) свидетельствуют, что ΦK практически не влияют на сорбцию указанных тяжелых металлов даже при концентрации ΦK 60 — 75 мг/дм³.

Влияние дозы сорбента. Для оценки эффективности извлечения ионов меди, никеля и кобальта из водных сред сорбентами на основе СДГ исследована сорбция ионов тяжелых металлов при дозе 1 и 6 г/дм³ (рис. 4).

Таблица 2. Значения общих констант устойчивости комплексных соединений $(lg\beta)$, образования осадков малорастворимых солей и комплексов металлов (lgK_s) [10,11]

		lg β		$\lg K_s^*$		
Me(II)	Ι	OH-	$\mathrm{H_4L}^{**}$	OH' – Me(OH) ₂	CO ₃ ²⁻	
Cu ²⁺	0	CuL 6,0 Cu ₂ L ₂ 17,1	CuL 18,8 CuHL 21,8 Cu(OH)L 21,2	18,2	Cu ₂ (OH) ₂ CO ₃ 42,96 Cu ₃ (OH) ₂ (CO ₃) ₂ 54,69	
Ni ²⁺	0,1	NiL 4,6	NiL 18,6 NiHL 21,8	14,5	NiCO ₃ 6,87	
Co ²⁺	0,1	CoL 4,1 CoL ₂ 9,2	CoL 16,31 CoHL 19,5	14,8	CoCO ₃ 12,84	

*lg $K_s = 1/\Pi P$, где $\Pi P -$ произведение растворимости. ** $H_4 L - \Im \Pi T A$.

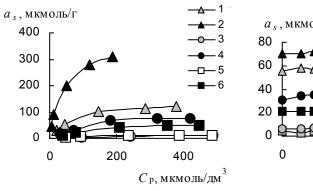


Рис. 2. Изотермы сорбции Cu(II) (1,2), Co(II) (3,4) и Ni(II) (5,6) на $ZnAl - CO_3$ (1, 3, 5) и ZnAl - ЭДТА (2, 4, 6). I = 0; pH_0 3,5

Рис. 3. Влияние концентрации фульвокислот на сорбцию Cu(II) (1,2), Ni(II) (3,4) и Co(II) (5,6) сорбентами $ZnAl - CO_3$ (1, 3, 5) и $ZnAl - \Im \Pi TA$ (2, 4, 6). $V_{p-pa} = 50$ см³; $m_{cop6} = 0,05$ г

На рис. 4 видно, что при введении сорбента $ZnAl - CO_3$ в количестве 1 г/дм³ степень очистки воды от ионов меди(II) составляет 42, а ZnAl - 90% (см. также табл.1). Повышение дозы сорбентов до 6 г/дм³ приводит практически к полному извлечению ионов меди как на карбонатной форме сорбента, что обусловлено осаждением меди в виде двойных солей – гидроксокарбонатов (при повышении дозы сорбента наблю-

дается более полное связывание меди в гидроксокарбонатную форму), так и на ЭДТА-форме, что обусловлено образованием прочных комплексов ионов меди с ЭДТА.

Для Ni(II) и Co(II) существенное повышение степени очистки (в 2 – 3,5 раза) наблюдается для хелатной формы сорбента по сравнению с карбонатной, что свидетельствует о преобладающем механизме извлечения этих ионов металлов за счет комплексообразования с хелатным лигандом сорбента.

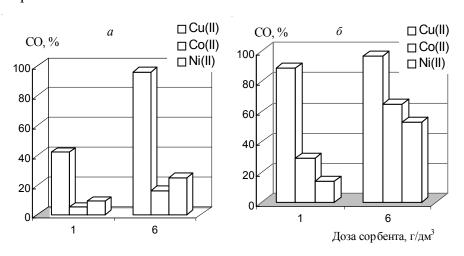


Рис. 4. Влияние дозы сорбентов $ZnAl - CO_3(a)$ и ZnAl - ЭДТА(6) на степень очистки (CO) водных растворов от Cu(II), Ni(II) и Co(II). I = 0; pH_0 3,5

Выводы. Показана возможность применения СДГ, интеркалированного ЭДТА, для извлечения Cu(II), Ni(II) и Cu(II) из водных растворов. Сделана оценка сорбционной емкости материалов по отношению к исследованным ионам металлов.

Изучено влияние комплексообразующих реагентов природного происхождения (ФК) на процесс очистки ионов тяжелых металлов исследованными сорбентами и показано, что для меди при дозе сорбентов $ZnAl-CO_3$ и ZnAl-ЭДТА 6 г/дм³ степень очистки примерно одинакова и составляет $\approx 96-97\%$, а для Ni(II) и Co(II) наблюдается существенное ее повышение при использовании ZnAl-ЭДТA- соответственно 53 и 65% по сравнению с сорбентом $ZnAl-CO_3$ (25 и 16%).

Резюме. Синтезовано зразок шаруватого подвійного гідроксиду, інтеркальованого ЕДТА, встановлена його хімічна формула $[Zn_4Al_2(OH)_{12}](EДТА) \cdot 8H_2O$. Вивчено можливість застосування такого сорбенту для вилучення Cu(II), Ni(II), Co(II) з водних розчинів. Проведено порівняльне дослідження сорбційної здатності карбонатної та хелатної форм шаруватих подвійних гідроксидів: показано, що ступінь вилучення

металів на сорбенті $[Zn_4Al_2(OH)_{12}](EДTA)\cdot 8H_2O$ повністю корелює зі стійкістю комплексних сполук цих металів з ЕДТА у розчині.

V.V. Goncharuk, L.N. Puzyrnaia, G.N. Pshinko, A.A. Kosorukov, V.Ya. Demchenko

REMOVAL Cu(II), Ni(II) AND Co(II)) FROM WATER SOLUTIONS ON LAYERED DOUBLE HYDROXIDES INTERCALATED WITH EDTA

Summary

Synthesized sample layered double hydroxide intercalated with EDTA obtained. It is established that the chemical formula of the investigated sorbent has the form $[Zn_4Al_2(OH)_{12}](EDTA)\cdot 8H_2O$. The possibility of using such a sorbent for the extraction of Cu(II), Ni(II), Co(II) from aqueous solutions was studied. A comparative research of the sorption capacity of the carbonate and chelated forms of layered double hydroxides held: it is shown that the degree of extraction of metals on the sorbent $[Zn_4Al_2(OH)_{12}](EDTA)\cdot 8H_2O$ is fully correlated with the stability of complex compounds of these metals in solution.

- 1. *Gbaruko B.C., Friday O. U.* // Int. J. Environ. Sci. and Technol. 2007. **4**, N 2. P. 197 202.
- 2. *Тарасевич Ю.И*. Природные сорбенты в процессах очистки воды. Киев: Наук. думка, 1981. 208 с.
- 3. *Park M., Chei C.L., Seo Y.J. et al.* // Appl. Clay Sci. 2007. **37**. P. 143 148.
- 4. *Тимошенко Т.Г.*, *Косоруков А.А.*, *Пшинко Г.Н.*, *Гончарук В.В.* // Химия и технология воды. 2009. **31**, № 4. С. 437 447.
- 5. *Kaneyoshi M., Jones W. //* J. Mater. Chem. 1999. **9.** P. 805 811.
- 6. *Tarasov K.A.*, *O'Hare D.*, *Isupov V.P.* // Inorg. Chem. 2003. **42.** P. 1119 1127.
- 7. *Perez M.R., Pavlovic I., Barriga C. et al.* // Appl. Clay Sci. 2006. **32.** P. 245 251.
- 8. *Pavlovic I., Perez M.R., Barriga C., Ulibarri M.A.* // Ibid. 2009. **43.** P. 125 129.
- 9. *Kaplan L.A.* // Limnol. Oceanogr. 1992. **5**, N 37. P. 1119 1125.
- 10. *Инцеди Я*. Применение комплексов в аналитической химии. М.: Мир, 1979. 376 с.
- 11. *Кумок В.Н., Кулешова О.М., Карабин Л.А.* Произведения растворимости. Новосибирск: Наука, 1983. 266 с.

Ин-т коллоид. химии и химии воды им. А.В.Думанского НАН Украины, г. Киев

Поступила 22.02.2011