УДК 543.426: 541.183: 546.65

С.В. Бельтюкова, Е.В. Малинка, Е.О. Ливенцова

ОПРЕДЕЛЕНИЕ ОФЛОКСАЦИНА И НОРФЛОКСАЦИНА В СТОЧНЫХ ВОДАХ ФАРМАЦЕВТИЧЕСКИХ ПРЕДПРИЯТИЙ С ИСПОЛЬЗОВАНИЕМ СЕНСИБИЛИЗИРОВАННОЙ ЛЮМИНЕСЦЕНЦИИ КОМПЛЕКСОВ ТЬ (III)

Установлены оптимальные условия люминесценции комплексов Tb(III) с антибиотиками оксохинолонового ряда в твердой фазе сорбента. Разработана методика определения офлоксацина (предел обнаружения — 0,010 мкг) и норфлоксацина (предел обнаружения — 0,001 мкг) в сточных водах фармацевтических предприятий с помощью тонкослойной хроматографии. Хроматографическую пластинку обрабатывают смесью растворов хлорида Tb (III) и тетрадецилсульфата натрия и измеряют интенсивность люминесценции пятен.

Фторированные хинолонкарбоновые кислоты, представителями которых являются офлоксацин (ОФ) и норфлоксацин (НФ), действуют против широкого спектра бактерий, поэтому достаточно широко распространены в терапевтической практике. Их производство требует значительного расхода чистой воды и сопровождается образованием загрязненных сточных вод, которые обычно поступают в городскую канализацию и подлежат биологической очистке с использованием природных микроорганизмов. Так как присутствующие в сточных водах антибиотики ингибируют процесс биологической очистки, необходимо разрабатывать методы определения этих веществ в сточных водах фармацевтических предприятий. Для определения малых количеств фторхинолонов 10-75 нг/дм³ применяется в основном метод высокоэффективной жидкостной хроматографии [1-3], который требует дорогостоящей аппаратуры и довольно сложен в выполнении.

Цель данной работы – разработка чувствительной, простой и доступной методики определения ОФ и НФ, основанной на их предварительном выделении с помощью тонкослойной хроматографии и последующей регистрации люминесценции их комплексов с ионами Тb (III).

Методика эксперимента. Стандартный раствор хлорида тербия $(1\cdot10^{-2})$ моль/дм³ готовили из соответствующего оксида квалификации "о.с.ч" путем растворения его в хлористо-водородной кислоте (1:1) с последующим удалением избытка кислоты упариванием. Концентрацию

© С.В. БЕЛЬТЮКОВА, Е.В. МАЛИНКА, Е.О. ЛИВЕНЦОВА, 2008

Тb(III) контролировали комплексонометрическим титрованием. Стандартные растворы ОФ и НФ $(1\cdot10^{-2})$ моль/дм³ готовили растворением точных навесок препаратов в этаноле, водные растворы ПАВ $(1\cdot10^{-1})$ моль/дм³ — растворением навесок этих препаратов. Пластинки для тонкослойной хроматографии были марки Sorbfil (сорбент — силикагель CTX-1ВЭ; связывающее вещество — силиказоль; подложка — алюминиевая фольга), а также Silufol UV254 и CTX-1A. Люминесценцию возбуждали излучением ртутно-кварцевой лампы СВД-120A со светофильтром УФС-2. Спектры люминесценции регистрировали с помощью спектрометра СДЛ-1 ("ЛОМО"). Для изучения кинетики затухания люминесценции применяли осциллографическую регистрацию [4]. При этом люминесценцию возбуждали импульсным азотным лазером с длиной волны излучения 337 нм. Спектры поглощения регистрировали с помощью спектрофотометра Lambda-9 ("Регкіп-Еlmer"). Значения рН растворов измеряли рН-метром OP-211/1 ("Radelkis") при $20 \pm 2^{\circ}$ С.

Результаты и их обсуждение. Офлоксацин (9-фтор-2,3-дигидро-3-метил-10-(4-метил-1-пиперазинил)-7-оксо-7-пиридо-[1,2,3-de]-1,4-бензоксазинкарбоновая кислота)

и норфлоксацин (1-этил-6-фтор-1,4-дигидро-7-(1-пиперазинил)-4-оксо-3-хинолинкарбоновая кислота)

образуют с ионами Tb(III) комплексные соединения, в которых осуществляется сенсибилизация люминесценции иона лантанида за счет внутримолекулярного переноса энергии возбуждения [5]. В спектрах поглощения ОФ и НФ имеются коротковолновые полосы с максимумами при

210 нм и более длинноволновые с максимумами соответственно при 301 и 286 нм (рис.1). Молярный коэффициент поглощения в области второй полосы составляет для ОФ $3.8\cdot10^4$ и для НФ $-4.2\cdot10^4$.

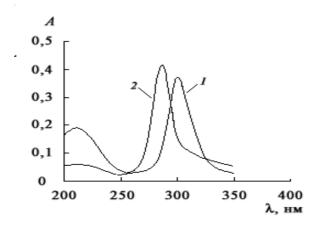


Рис. 1. Спектры поглощения офлоксацина (1) и норфлоксацина (2). $C_L = 1\cdot 10^{-5}$ моль/дм³, l=1 см

Энергии фотовозбужденных триплетных уровней лигандов, рассчитанные по спектрам фосфоресценции их комплексов с иттрием при температуре 77 K, составляют для ОФ 21050 и для НФ – 21280 см $^{-1}$, что превышает энергию уровня $^5\mathrm{D}_4$ (20500 см $^{-1}$) возбужденного состояния иона Тb(III) и определяет возможность ее переноса с триплетных уровней лигандов на $^5\mathrm{D}_4$ уровень лантанида. Наиболее интенсивной в спектре люминесценции комплекса является полоса излучения с максимумом при 545 нм, что соответствует переходу $^5\mathrm{D}_4 \to ^7\mathrm{F}_5$ (рис. 2).

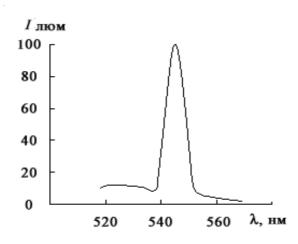


Рис. 2. Спектр люминесценции Тb (III) в комплексе с норфлоксацином. $C_{Tb}=1\cdot 10^{-5}$, $C_{H\Phi}=2\cdot 10^{-4}$ моль/дм³; $I_{_{Люм}}-$ интенсивность люминесценции

Комплексообразование ионов Tb(III) с ОФ и НФ происходит в интервале рН 3 – 11, максимальная интенсивность люминесценции наблюдается при рН 7 – 8 (рис. 3). Интенсивность люминесценции Tb(III) в комплексах значительно увеличивают (на 1 – 2 порядка) анионные ПАВ: додецил-(ДДС), тридецил- (ТДЦ), тетрадецил- (ТТДС) и гексадецилсульфат натрия (ГДС) (табл.1).

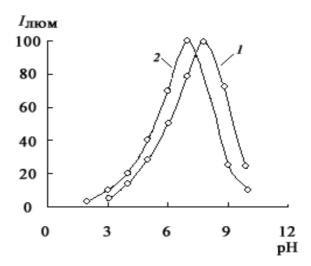


Рис.3. Зависимость интенсивности люминесценции комплексов Tb(III) с офлоксацином (1) и норфлоксацином (2) от pH раствора. $C_{\rm Tb}=1\cdot 10^{-5}$, $C_{\rm L}=2\cdot 10^{-4}$ моль/дм³

Таблица 1. Влияние ПАВ на интенсивность люминесценции комплексов Ть (III) с антибиотиками

Антибиотик	I/I ₀ *			
Антионотик	ДДС	ТДЦ	ТТДС	ГДС
Норфлоксацин	186	209	235	181
Офлоксацин	22	110	115	72

 $[*]I_0$ – интенсивность люминесценции в отсутствие ПАВ; I – то же при добавлении различных ПАВ (см. пояснения в тексте).

Установлено, что в присутствии этих ПАВ происходит значительное снижение энергии триплетного уровня лиганда: для ОФ – на 560, для НФ – на 775 см⁻¹, при этом энергия триплетных уровней хинолонкарбоновых кислот снижается и составляет 20500 см⁻¹. Близость энергетического уровня иона тербия 5D_4 (20500 см⁻¹) в присутствии ПАВ способствует уменьшению безызлучательных потерь энергии возбуждения и более

эффективной передаче энергии на ион лантанида. Исследование кинетики затухания люминесценции иона Тb(III) в комплексе с НФ показало, что в присутствии ПАВ продолжительность жизни возбужденного состояния комплекса значительно возрастает (от 43 до 637 мкс). Полученные результаты свидетельствуют о вхождении молекулы ПАВ во внутреннюю координационную сферу комплекса в качестве второго лиганда.

Интенсивная люминесценция Tb (III) в комплексах с ОФ и НФ сохраняется на твердой матрице, в частности в слое сорбента на хроматографической пластинке. Среди испытанных материалов наиболее четкие изображения пятен антибиотиков получены при использовании пластинок Sorbfil.

В качестве подвижных фаз были испытаны следующие индивидуальные растворители и их смеси: бензол, толуол, хлороформ, этилацетат, уксусная кислота, бутанол, пропанол, ацетон, этанол, метанол, ацетонитрил, водный аммиак, формамид. Установлено, что оптимальная подвижность и селективность разделения пятен фторхинолонов наблюдаются при использовании смеси метанол — 25%-ный раствор аммиака — этилацетат — ацетонитрил (1:1:2:1). Подвижность ОФ и НФ при этом составляет соответственно 0,65 и 0,40. Использование других подвижных фаз при возрастании либо снижении подвижности антибиотиков способствует значительному уменьшению селективности разделения пятен.

Оптимальный объем пробы, наносимой на пластинку, составляет 2 мм³. При меньших и больших количествах пробы пятна на пластинке приобретают вытянутую форму. Интенсивность люминесценции Tb(III) на пятне хроматограммы зависит от концентрации Tb(III) следующим образом:

Оптимальная концентрация Tb(III) составляет 1·10⁻³ моль/дм³.

Максимальная интенсивность люминесценции сорбатов комплексов ОФ и НФ с Тb(III), как и в водных растворах, обнаруживается при рН 7 – 8. Для создания необходимой величины рН при проявлении пластинки к раствору $TbCl_3$ добавляли уротропин. Как видно из приведенных ниже данных, интенсивность люминесценции сорбатов максимальна в присутствии TTДC при концентрации $1\cdot 10^{-3}$ моль/дм³:

Методика определения. Методика разработана на сточных водах фармацевтического предприятия ОАО "ИнтерХим". В пробы сточных

вод объемом 10 см³ вводили различные количества этанольных растворов ОФ и НФ и разбавляли до 100 см³ дистиллированной водой. Анализируемую пробу объемом 2 мм³ наносили шприцем на линию старта пластинки размером 20х80 мм, параллельно наносили стандартный раствор ОФ и НФ. В качестве стандартных использовали водно-этанольные (2:1) растворы $O\Phi$ и $H\Phi$ с концентрацией $1 \cdot 10^{-5} - 1 \cdot 10^{-3}$ моль/дм³ (в зависимости от предполагаемого содержания ОФ и НФ в образце). Пластинку подсушивали и помещали в хроматографическую камеру в подвижную фазу. Когда фронт растворителя достигал высоты 70 мм, пластинку извлекали из камеры и отмечали положение фронта растворителя. Полученную хроматограмму высушивали и равномерно обрабатывали проявителем — раствором, который содержал $1 \cdot 10^{-3}$ моль/дм³ хлорида тербия, $1\cdot 10^{-3}$ моль/дм³ ТТДС и 40 г/дм³ уротропина. Идентификацию ОФ и НФ на пластинке проводили по появлению зеленой люминесценции Тb(Ш) при освещении люминесцентной лампой, визуально сравнивая свечение пробы и стандарта.

Количественное определение ОФ и НФ проводили по градуировочным графикам, для построения которых поступали следующим образом. На пластинку наносили различные количества стандартных растворов ОФ и НФ и далее проводили хроматографирование и проявление хроматограммы, как описано выше. Затем из пластинки вырезали пятна с ОФ и НФ, помещали в кювету для твердых образцов, интенсивность люминесценции измеряли при 545 нм.

Предел обнаружения НФ составлял 0,001, а для для ОФ – 0,01 мкг. Точность и достоверность определения этих препаратов проверена методом статистической обработки результатов анализа, которые приведены в табл. 2.

Tаблица 2. Pезультаты определения антибиотиков в сточной воде (n=5): P=0.95)

Антибиотик	Введено	Найдено	C
Антиоиотик	MIT/	$S_{ m r}$	
Норфлоксацин	1,0	$1,02 \pm 0,08$	0,06
	5,0	$5,1 \pm 0,3$	0,05
	10,0	$10,2 \pm 0,6$	0,05
Офлоксацин	5,0	$5,1 \pm 0,4$	0,06
	10,0	$9,6 \pm 0,7$	0,06
	20,0	$20,1 \pm 1,2$	0,05

Выводы. Разработанные методики являются достаточно чувствительными, надежными, простыми в исполнении и, по нашему мнению, пригодными для применения в контроле загрязнения сточных вод антибиотиками.

Резюме. Встановлено оптимальні умови люмінесценції комплексів Tb(III) з антибіотиками оксохінолонового ряду у твердій фазі сорбенту. Розроблено методику визначення офлоксацина (межа виявлення 0,01 мкг) та норфлоксацина (межа виявлення 0,001 мкг) в стічних водах фармацевтичних підприємств за допомогою тонкошарової хроматографії. Хроматографічну платівку оброблюють сумішшю розчинів хлориду Tb(III) та тетрадецилсульфату натрію і вимірюють інтенсивність люмінесценції плям.

S.V. Beltyukova, E.V. Malinka, E.O. Liventsova

THE DETERMINATION OF OFLOXACIN AND NORFLOXACIN IN SEWAGE OF THE PHARMACEUTICAL ENTERPRISES USING THE SENSITIZED LUMINESCENCE OF Tb(III) COMPLEXES

Summary

Optimum conditions of the luminescence of the complexes Tb (III) with oxoquinolone antibiotics in a solid phase of a sorbent are established. The technique of determination of ofloxacin (detection limit 0,01 mg) and of norfloxacin (detection limit 0,001 mg) in sewage of the pharmaceutical enterprises by a thin layer chromatography method is developed. The chromatographic plate is treated by a mixture of solutions of Tb (III) chloride and sodium tetradecyl sulfate and intensity of a luminescence of spots is measured.

- 1. Rieutord A., Vazquez L., Soursac M. et al. // Anal.Chim.Acta.— 1993.— **290**. P. 215—225.
- 2. *Eng G.Y., Maxwell R.J., Cohen E. et al.* // J.Chromatogr. A.– 1998.– **799**.– P. 349 354.
- Golet E., Alder A., Hartmann A., Terres T. // Anal.Chim. 2001. 3, N 15. –
 P. 3632 3638.
- 4. Паркер С. Фотолюминесцения растворов. М.: Мир, 1972. 320 с.
- 5. *Бельтюкова С.В., Егорова А.В., Теслюк О.И.* //Журн.аналит.химии. 2000. **55**, № 7. С.760 763.

Физ.-хим. ин-т им. А.В. Богатского НАН Украины; Нац. академия пищ. технологий, г. Одесса, Украина Поступила 25.12.2006