О критериях сверхпроводимости соединения PrBa₂Cu₃O_{6,6}

Ф. А. Бойко, Г. В. Букин, В. А. Волошин, А. А. Гусев

Донецкий физико-технический институт им. А. А. Галкина НАН Украины ул. Р. Люксембург, 72, г. Донецк, 83114, Украина E-mail: voloshin@host.dipt.donetsk.ua

Статья поступила в редакцию 7 мая 2001 г., после переработки 25 сентября 2001 г.

Анализируется структура RBa₂Cu₃O_x для выяснения причины отсутствия сверхпроводимости в PrBa₂Cu₃O₇ или ее появления в PrBa₂Cu₃O_{6,6}. Предложена эмпирическая формула с одним подгоночным параметром, описывающая температурные зависимости сопротивления при различных давлениях. Предсказывается температура перехода системы в сверхпроводящее состояние при давлении, превосходящем экспериментально достигнутое.

Проаналізовано структуру RBa₂Cu₃O_x для виявлення причини відсутності надпровідності у PrBa₂Cu₃O₇ або її появи у PrBa₂Cu₃O_{6,6}. Запропоновано емпіричну формулу з одним підгоночним параметром, яка описує температурні залежності опору при різних тисках. Передбачено температуру переходу системи у надпровідне становище при тиску, який перевищує експериментально досягнуте.

PACS: 74.25.-q, 74.72.-h

Введение

До 1998 года считалось, что из всех редкоземельных ВТСП типа $RBa_2Cu_3O_7$ (R — редкая земля) только $PrBa_2Cu_3O_7$ не является сверхпроводником (Се и Ть не образуют подобного

Рис. 1. Температурные зависимости электросопротивления PrBa₂Cu₃O_{6,6} при различных давлениях. Сплошная кривая — расчет по формуле (1). Экспериментальные точки — результаты [2].

© Ф. А. Бойко, Г. В. Букин, В. А. Волошин, А. А. Гусев, 2002

соединения). В 1998 году были получены PrBa₂Cu₃O_{6.6} сверхпроводящие кристаллы [1,2]. Механизм возникновения сверхпроводимости в кристаллах PrBa₂Cu₃O_{6,6} до сих пор остается невыясненным. Некоторые из этих кристаллов стали рекордсменами по росту величины температуры перехода в сверхпроводящее состояние Т_с при их сжатии. Температурные зависимости сопротивления PrBa₂Cu₃O_{6,6} при различных давлениях приведены на рис. 1. Возникают два вопроса:

1. Чем празеодим отличается от других редкоземельных элементов?

2. Каков механизм подавления сверхпроводимости в системе PrBa₂Cu₃O₇ ?

Сверхпроводящие кристаллы PrBa₂Cu₃O_{6,6} получены новым, радиационным методом. Поэтому возникает третий вопрос: что привносит в структуру новый метод получения кристаллов?

Особенности структуры PrBa 2Cu 3O 6.6

Как показано в [3], система RBa₂Cu₃O₇ в зависимости от расстояния между редкоземельным ионом и ионом кислорода может находиться в различных состояниях:

- электронная конфигурация $4f^n$ изолирована от окружения - электронное состояние;

– электронное и ядерное движения редкоземельного иона и ионов кислорода неразделимо смешаны
 – вибронное состояние [4,5].

При построении теоремы Ян и Теллер [6] исключили из рассмотрения редкие земли, что было связано с практической изоляцией 4f-электронов от окружения, однако при высоком давлении и в некоторых других случаях эта изоляция нарушается и теорема Яна-Теллера со всеми её следствиями распространяется и на 4f-конфигурацию. В этих случаях, возможно, образуется вибронное движение [3].

Для образования вибронного состояния необходимо выполнение двух условий: вырождение (но не крамерсово) основного уровня и расстояние между ионом редкой земли и ионом лиганда должно быть равно критическому. Для пары Pr–O критическое расстояние равно 2,38 Å.

Как известно, крамерсово вырождение характеризуется тем, что оно снимается только в магнитном поле и возможно только в случае, когда на f-оболочке иона находится нечетное число электронов. Из ряда редкоземельных элементов следует выделить европий. Несмотря на четное число электронов на f-оболочке, его основной уровень не вырожден. Поэтому он не может образовать вибронное состояние.

В изоморфном ряду $RBa_2Cu_3O_7$ сверхпроводящими являются кристаллы, ионы которых имеют крамерсово вырождение, или вырождение ионов совсем отсутствует, как у иона европия. В таблице 1 приведены температуры сверхпроводящих переходов для образцов $RBa_2Cu_3O_7$ с крамерсовыми и некрамерсовыми (*) ионами.

Данные этой таблицы служат некоторым указанием на то, что вибронное состояние препятствует образованию сверхпроводимости: семь из восьми кристаллов, у ионов которых вырождение крамерсово или вообще отсутствует — сверхпроводники.

Как было сказано ранее, для образования вибронного состояния необходимо, чтобы расстояние между ионом R и ионами лиганда было равно критическому [7]. Критические расстояния в Å для различных редкоземельных ионов представлены в табл. 1.

Из пяти кристаллов, редкоземельные ионы которых имеют четное число электронов на f-оболочке, только HoBa₂Cu₃O₇ и TmBa₂Cu₃O₇ являются сверхпроводящими. Причем ионы Ho и Tm

не образуют вибронного состояния, так как не достигаются критические расстояния, указанные в табл. 1.

Таблица 1

Величины T_c и R_{cr} для образцов $\text{RBa}_2\text{Cu}_3\text{O}_7$ с крамерсовыми и некрамерсовыми (*) ионами

R	$4f^n$	<i>Т_с</i> , К	R _{cr} , Å
Се	4f ¹	_	2,40
Pr*	$4f^2$	_	2,38
Nd	$4f^3$	96	2,36
Pm*	$4f^4$	_	2,34
Sm	$4f^5$	94	2,33
Eu	$4f^{6}$	95	2,32
Gd	$4f^7$	94	2,31
Tb*	$4f^8$	—	2,30
Dy	4f ⁹	92	2,29
Ho*	4f ¹⁰	90	2,28
Er	4 <i>f</i> ¹¹	90	2,27
Tm*	$4f^{12}$	90	2,26
Yb	4 <i>f</i> ¹³	90	2,25

Возникает вопрос, находится ли празеодим в вибронном состоянии в PrBa₂Cu₃O₇. По данным нейтронной дифракции [8], длины всех восьми связей празеодима с кислородом равны приблизительно 2,45 Å, а по данным анализа тонких рентгеновских спектров, часть из них равна 2,27 Å, т.е. ниже критического расстояния [9]. Важно указать на кажущееся противоречие структурных данных [8,9]. Как показано в [10], это противоречие может быть объяснено тем, что система PrBa2Cu3O7 находится в состоянии электрон-вибронного динамического равновесия, т.е. некоторое время система находится в вибронном состоянии ($R < R_{cr}$), а некоторое время — в обычном электронном $(R > R_{cr})$ [11]. При этом методом тонких рентгеновских спектров (с разрешением по времени 10¹⁷ с) регистрируются оба эти состояния, а методом низкотемпературной нейтронной дифракции только средние величины. Итак, можно предположить, что вибронное состояние препятствует образованию сверхпроводимости.

Рис. 2. Зависимость параметра *С* кристаллических ячеек $\text{RBa}_2\text{Cu}_3\text{O}_6$ (тетрагональная симметрия) и $\text{RBa}_2\text{Cu}_3\text{O}_7$ (орторомбическая симметрия) от числа электронов *f*-конфигурации. Средняя величина параметра *C* для образцов $\text{PrBa}_2\text{Cu}_3\text{O}_x$ (*x* = 6,0 (○); *x* = 6,6 (□)) [1,2].

Рассмотрим, как изменяется структура соединений при переходе от $\text{RBa}_2\text{Cu}_3\text{O}_6$ (соединения, не являющиеся сверхпроводниками) к сверхпроводящим $\text{RBa}_2\text{Cu}_3\text{O}_7$ для образцов, выращенных обычным методом [8]. На рис. 2 приведены зависимости параметра *C* кристаллических ячеек соединений (x = 6 или x = 7) от числа электронов 4*f*-конфигурации.

Для несверхпроводящих образцов $PrBa_2Cu_3O_6$, полученных традиционным и новым методами, зависимость параметра *C* почти не отклоняется от линейной зависимости для других систем $RBa_2Cu_3O_6$. Для $PrBa_2Cu_3O_7$ характер этой зависимости нарушается как для образцов, полученных традиционных способом, так и для образцов, полученных в работе [1] радиационным методом. В первом случае параметр *C* значительно меньше ожидаемого (на 0,08 Å), что можно приписать сокращению химических связей при образовании вибронного состояния, а следовательно, уменьшение параметра *C* можно связать с отсутствием сверхпроводимости. Во втором же случае параметр *C* больше ожидаемого.

Как было показано выше, условием подавления сверхпроводимости является существование вибронного состояния, а разрушение этого состояния может привести к ее возникновению. А для этого нужно «растянуть» связь празеодим-кислород. Поэтому для ответа на третий во-

прос необходимо оценить, увеличилась ли длина связи Pr-O в сверхпроводящих кристаллах, полученных радиационным методом. Здесь необходимо заметить, что авторы [1,2] пришли к заключению, что длина этой связи такая же, как и у кристаллов, выращенных традиционным способом. Но по экспериментальным условиям в [1,2] подробный структурный анализ проведен для ненасыщенных кислородом несверхпроводящих кристаллов (т.е. для PrBa₂Cu₃O₆). А как было показано выше, отличие обусловлено параметром С насыщенных кислородом образцов. Для образцов, полученных новым методом, величина параметра С даже несколько больше ожидаемой. В этом случае при сжатии образцов PrBa2Cu3O66 сверхпроводимость будет сохраняться до тех пор, пока параметр С не уменьшится до величины 11,65 Å, когда сверхпроводимость исчезнет.

Итак, ответом на третий вопрос является отсутствие аномально резкого уменьшения параметра C при насыщении образцов кислородом и, по-видимому, в результате этого значительное увеличение длины связи празеодим-кислород.

Электросопротивление

На рис. 1 приведены экспериментальные данные по температурной зависимости электросопротивления сверхпроводящих кристаллов $PrBa_2Cu_3O_{6,6}$, полученные в работах [1,2]. В работе [12] проведено описание этих данных с помощью эмпирической формулы (1), предложенной в [13]:

$$\rho = \frac{\rho_0 + \alpha T}{1 - n[1 - \exp(-\Delta E / 2kT)]} - \frac{\beta T_c}{T - T_c}, \quad (1)$$

где первое слагаемое описывает металлический или полупроводниковый температурный ход сопротивления при различных давлениях в нормальном состоянии, а второе, предложенное в работе [14], учитывает возникновение локальных сверхпроводящих областей, флуктуационно образующихся при температуре выше температуры перехода в сверхпроводящее состояние. На основании анализа этой формулы в работе [13] впервые была высказана гипотеза о том, что переход системы в сверхпроводящее состояние происходит при изменение проводимости от полупроводниковой к металлической. Следует заметить, что экспериментальная кривая получена в температурной области гораздо ниже Т_с. В данном случае экспериментально регистрируется сопротивление при T > 20 K, т.е. в области температур

Рис. 3. Температурные зависимости электросопротивления $PrBa_2Cu_3O_{6,6}$ при различных давлениях. Сплошная кривая — расчет в предположении подавления сверхпроводимости ($\beta = 0$).

 $T < T_c$. Описание экспериментальной зависимости $\rho(T)$ при помощи предложенной формулы (1) обрывается после перехода в сверхпроводящее состояние, так как при $T = T_c$ второе слагаемое равняется бесконечности и формула теряет смысл. Если же условия образования состояния сверхпроводимости будут нарушены (второе слагаемое приравнивается нулю), то кривая, соответственно, продлевается (рис. 3).

Экспериментальные зависимости $\rho(T)$ хорошо описываются формулой (1), что естественно при шести подгоночных параметрах. Несколько удивляет то, что пять из них (кроме T_c) линейно зависят от некоторого параметра, обозначенного p. А если учесть, что подгоночный параметр T_c очень близок к экспериментально определяемой величине T_c , то формулу (1) можно считать однопараметрической:

$$\rho_{0} = \rho'_{0} + 0,000667 \ p \ ,$$

$$\alpha = \alpha_{0} - 0,0000258 \ p \ ,$$

$$n = n_{0} - 0,0185 \ p \ ,$$

$$\Delta E \ / \ 2k = [(\Delta E \ / \ 2k)_{0} - 13,978 \ p] > 0 \ ,$$

$$\beta = \beta_{0} - 0,0001 \ p \ ,$$
(2)

где $\rho'_0 = 0,0078$ мОм · см; $\alpha_0 = 0,00057$ мОм · см/К; $n_0 = 0,942$; ($\Delta E / 2k$) $_0 = 270$ К; $\beta_0 = 0,00183$. Причем параметр p по величине очень близок к вели-

чинам давления *P*, при которых измерялись температурные зависимости сопротивления. В табл. 2 представлены эти величины, а также соответствующие им температуры сверхпроводящего перехода.

Таблица 2

Сопоставление T_c и T_x при различных величинах подгоночного параметра p для сверхпроводящего кристалла $\Pr{Ba_2Cu_3O_{6,6}}$, находящегося при различных давлениях P

<i>Р</i> , ГПа	<i>р</i> , ГПа	<i>Т_с</i> , К	T_{χ} , K
0	0	56,33	96,83
1,2	1,1	64,75	103,3
2,0	1,85	71,19	106,74
3,0	3,1	78,1	111,21
4,0	4,7	85,98	115,28
6,0	7,3	95,3	117,43
9,3	9,3	104,74	115,92

В формуле (1) числовой параметр *n* изменяется от 0 до 1. При нулевом значении *n* первое слагаемое описывает металлический ход температурной зависимости сопротивления. При *n* = 1 эта зависимость становится полупроводниковой. Если принять гипотезу электрон-вибронного динамического равновесия [11], когда время жизни вибронного (или электронного) состояния изменяется от нуля до бесконечности, а доля этого состояния пропорциональна времени жизни и изменяется от нуля до единицы, то можно экспериментальную кривую проводимости представить как сумму полупроводниковой и металлической проводимостей:

$$σ_1 = \frac{1-n}{ρ_0 + \alpha T}$$
 и $σ_2 = \frac{n}{(ρ_0 + \alpha T) \exp(\Delta E / 2kT)}$,
(3)

где (1*- n*) — доля металлической фазы, а *n* — доля полупроводниковой.

На рис. 4 представлены примеры температурных зависимостей этих проводимостей, т.е. каждая кривая на рис. 3 представлена здесь в виде суммы двух кривых: полупроводниковой и металлической проводимостей. Надо отметить, что для разложения кривых при p = 0 и 7,3 ГПа учитывались экспериментальные данные, а при p = 15 ГПа производилось разложение кривой,

Рис. 4. Температурные зависимости полупроводниковой и металлической составляющих проводимости РгВа₂Cu₃O_{6,6} для p = 0; 7,3 и 15 ГПа. Значками (○) и (□) обозначены T_c . На вставке: $\Delta \sigma_c = f(p)$. $\Delta \sigma_c$ разность металлической и полупроводниковой составляющих проводимости, при которой система переходит в сверхпроводящее состояние.

полученной по формуле (1) без второго слагаемого, учитывая зависимость всех пяти параметров от $p. T_x$ — температура, при которой эти проводимости равны. Существуют две принципиально различные области:

— при $T < T_x$ металлическая проводимость больше полупроводниковой;

— при $T > T_x$ металлическая проводимость меньше полупроводниковой.

Значения T_x для состояний сверхпроводящего кристалла $\Pr{Ba_2Cu_3O_{6,6}}$, находящегося при различном давлении [1,2], представлены в табл. 2. Можно заметить, что, если переход от фазы металлического состояния к полупроводниковой происходит в различных кристаллических ячейках в разное время, то при температуре T_x сопротивление во всем кристалле одинаково. Нельзя исключить возможность того, что соотношение величин этих проводимостей, а также времени пребывания в той или иной фазе, связано с переходом в сверхпроводящее состояние.

Анализ всех экспериментальных данных до P = 9,3 ГПа [1,2] показывает, что переход в сверхпроводящее состояние происходит только при условии $\Delta \sigma = (\sigma_1 - \sigma_2) > 0$, т.е. когда металлическая проводимость больше полупроводниковой. Мы предполагаем, что и при дальнейшем повышении давления это условие сохранится. На вставке к рис. 4 точками показаны полученные из экспериментальных данных величины превы-

шения металлической проводимости над полупроводниковой $\Delta \sigma_c$ при температуре перехода в сверхпроводящее состояние T_c при различных величинах давления, а сплошной кривой — одна из возможных зависимостей этой величины в области давления от атмосферного до $p_{\text{max}} = 19,3$ ГПа. Величина p_{max} определяется из формулы (2) при $\Delta E = 0$. Форма $\Delta \sigma_c = f(p)$ получена по подгоночной формуле (1) без второго слагаемого на основании трех условий: 1) $\Delta \sigma$ всегда больше нуля; 2) эта кривая должна включать в себя экспериментальные данные; 3) сплошная кривая $T_c = f(p)$ при 0 должна совпадать с экспериментальными данными. С учетом этих условий фор $ма кривой <math>\Delta \sigma_c = f(p)$ будет описываться следующим выражением:

$$f(x) = \frac{0,23 + 0,000286x}{x / (x - 0,04) - 1,1[0,755 - \exp(-220 / x)]}.$$
(4)

На рис. 5 приведены экспериментальные данные $T_c = f(P)$ (точки) в области 0 < P < 9,3 ГПа и предполагаемые значения Т_с (сплошная кривая) при *р* от атмосферного давления до 16,5 ГПа, исходя из значений Δσ. При этом оказывается, что при p = 10 ГПа максимальное значение $T_{a} = 98,7$ K, а затем начинается барическое подавление сверхпроводимости. Можно предположить, что при уменьшении расстояния Pr-O до 1,73 Å, соответствующего уменьшению параметра С, сжатие будет способствовать повышению величины Т_с. Это предположение, конечно, нуждается в проверке. На рис. 5 также приведена кривая $T_r = f(p)$, значения которой получены из расчеполупроводниковой TOB И металлической

Рис. 5. Зависимости T_x и T_c для $PrBa_2Cu_3O_{6,6}$ от параметра p.

составляющих проводимости. Эта кривая ограничивает область $\Delta \sigma > 0$. Таким образом, значения T_c всегда меньше T_x . При p > 19,3 ГПа параметр $\Delta E / 2k$ меняет знак, и кривые σ_1 и σ_2 не пересекаются, т.е. ситуация выходит за рамки принятой гипотезы.

Заключение

Замечено, что сверхпроводимость в $PrBa_2Cu_3O_{6,6}$ наступает при следующих условиях: увеличение параметра C относительно ожидаемого значения в ряду $RBa_2Cu_3O_7$; металлическая составляющая проводимости больше полупроводниковой.

На основании полученной функции $T_c = f(p)$ можно предсказать любую температуру, при которой происходит переход в сверхпроводящее состояние в области $0 ГПа. Эти предсказания согласуются с экспериментальными данными, исключая область <math>p \approx 9,3$ ГПа, где наблюдается расхождение с экспериментом.

- 1. Z. Zou, J. Ye, K. Oka, and Y. Nishihara, *Phys. Rev. Lett.* **80**, 1074 (1998).
- J. Ye, Z. Zou, A. Matsushita, K. Oka, Y. Nishihara, and T. Matsumoto, *Phys. Rev.* B58, R620 (1998).
- 3. В. А. Волошин, ЖЭТФ 90, 1336 (1986).
- 4. W. Maffit and W. Torson, *Phys. Rev.* **108**, 1251 (1957).
- 5. И. Б. Берсукер, В. З. Полингер, Вибронные взаимодействия в молекулах и кристаллах, Наука, Москва (1983).
- 6. H. A. Jahn and E. Teller, *Proc. Roy. Soc. London* A161, 220 (1937).

- V. A. Voloshin, P. N. Mikheenko, and A. A. Gusev, Supercond. Sci. Technol. 11, 1146 (1998).
- M. Guillaume, P. Allenspach, W. Henggeler, J. Mesot, B. Roessli, U. Staub, P. Fischer, A. Furrer, and V. Trouno, *J. Phys.: Condens. Matter* 6, 7963 (1994).
- C. H. Booth, F. Bridges, J. B. Boyce, T. Claeson,
 Z. X. Zhao, and P. Cervantes, *Phys. Rev.* B49, 3432 (1994).
- В. А. Волошин, А. А. Гусев, А. И. Дьяченко, И. М. Резник, *ЖЭТФ* 110, 2135 (1996).
- V. A. Voloshin, A. A. Gusev, I. A. Danilenko, L. I. Medvedeva, A. D. Prokhorov, and S. I. Khartsev, *Phys. Lett.* A271, 121 (2000).
- В. А. Волошин, А. А. Гусев, Г. Г. Левченко, ФТВД 10, 3, 56 (2000).
- В. А. Волошин, И. С. Абалешева, Г. Ю. Бочковая, Ф. А. Бойко, Н. А. Дорошенко, Я. И. Южелевский, ФТТ 38, 1553 (1996).
- L. G. Aslamazov and A. I. Larkin, *Phys. Lett.* 26A, 238 (1968).

Criterions of PrBa2Cu3O66 superconductivity

F. A. Boyko, G. V. Bukin, V. A. Voloshin, and A. A. Gusev

The RBa₂Cu₃O_x structure is analysed to find out the reasons for the absence of superconductivity in PrBa₂Cu₃O₇ or its occurrence in PrBa₂Cu₃O_{6.6}. An empirical formula with a unique fitting parameter is proposed to describe the temperature dependence of resistivity at various pressures. Temperature of the superconduction transition of system at exceeding experimental pressure is predicted.