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A method is suggested and validated for the deduction of orientational order parameter
values η in molecular crystals consisting of diatomics directly from integrated x-ray diffrac-
tion intensities. This method is applied to pure solid nitrogen in its α phase. It is shown that
to within a good accuracy the integrated intensity of a superstructure reflection is propor-
tional to η2. The η values determined from x-ray powder diffraction measurements agrees well
with the values obtained by NQR and NMR.

PACS: 61.10.–i, 61.66.–f, 65.70.+y

1. Introduction

Experimental determination of the orientational
order parameter is an important issue for the phy-
sics of phase transitions in molecular crystals. In
pure molecular crystals made up of linear molecules
(N2 , CO2 , N2O, etc.), the order parameter η is
defined as a thermodynamic average of the spherical
harmonic of second order in the suitable reference
frame

η = 〈P2(cos θ)〉 , (1)

where P2 is the Legendre polynomial; θ is the angle
made by the molecular axis with the <111> direc-
tion of the Pa 3 structure. Much effort has been
spent to investigate into the problem of the tem-
perature dependence of the order parameter and its
role in the α–β phase transition (for an exhaustive
overview see Ref. 1). In order to determine η values
from experimental data, the resonance techniques of
NMR and NQR are employed (for more details
cf. [1,2]). If the disordering factor is not only
temperature but positional randomness as well (as
is the case in binary alloys), resonance methods can
became inefficient. Reconstruction of η values in
CO2–Ar solid mixtures [3] was attempted directly
from electron diffraction intensities. This approach
possesses sufficient generality for application to the
case of pure crystals, for example, nitrogen. First
attempts to use the integrated intensities of super-

structure reflections as a measure of orientational
order and to evaluate the effect of large-amplitude
librations date back to the sixties in diffraction
measurements of Sa′ndor and coworkers [4,5] on
solid DCl and DBr. Later, with the coming of
computer era, it became feasible to construct and
probe models for the calculation of the molecular
scattering factors, but the procedure is still cumber-
some and the move difficult the larger are the
rotational and other anharmonicities. In this con-
nection the method suggested here does not involve
any models but directly interrelate the (specifi-
cally) x-ray integrated intensities with the correctly
and rigorously defined order parameter.

Although both the structure and the orienta-
tional order parameter have been thoroughly stu-
died [6,7] over the entire domain of existence of the
low-temperature α-phase of N2 , determination of
η directly from diffraction data is nevertheless of
interest for the following reasons. First, this is an
independent method on a par with the NMR and
NQR techniques [2,7]. Second, reconstruction of
this kind will allow assessment of the method’s
efficiency and its applicability for orientational or-
dering of another nature and symmetry.

In Sec. 2 of this paper we present an improved
modification of the method suggested previously [3]
and its validation. Section 3 contains details of
powder x-ray experiment. In the last section we
deduce η values, compare them with the results

© N. N. Galtsov, O. A. Klenova, and M. A. Strzhemechny, 2002



available from NQR measurements, and draw con-
clusions.

2. Theory

The integrated intensity of scattered x-ray radia-
tion can be represented in the form [8,9]

I ∝  Φ(θ) 


∑Fs
s

(q) exp (2πiqRs)




2
 , (2)

where summation runs over positions Rs occupied
by nitrogen atoms in the unit cell; q is the momen-
tum transfer; θ is the diffraction angle; and Fs is
the scattering amplitude. Summing over pairs of
nitrogen atoms within each molecule (sublattice)
we obtain for the structure factor

F(q) = 2fN ∑ 
c

exp (2πiqRc) cos ξ(qmc) . (3)

Here, specifically for α-N2 , fN is the atomic scat-
tering factor for the nitrogen atom; the summation
runs over the four sublattices c of the Pa3 structure
with Rc being the centers of the four molecules in
the four sublattices; mc is the instantaneous di-
rection of the unit vector along the respective mo-
lecular axis in sublattice c; ξ = 2πd/a, where
d = 0,54895 A°  is half of the interatomic spacing in
the nitrogen molecule; a is the lattice parameter,
which is in principle temperature dependent. For
T = 0 and a = 5.648 A° , ξ = 0.61058. Further we
expand the cosine in Eq. (3) in spherical harmonics
by making use of the known formula [10]

cos [ξ(qmc)] = ∑ 

even l ≥ 0

 − 
l
2
(2l + 1)jl(ξq)(Cl(n) ⋅ Cl(mc)) .

(4)

Here jl(y) are the spherical Bessel functions; the
summation is over even l;

(Cl(n) ⋅ Cl(mc)) = ∑ 

m = −l

l

Clm
∗ (n)Clm(mc) , (5)

where Clm(n) and Cl(n) are Racah’s spherical har-
monics and the respective spherical tensors [10]; n
is the unit vector along q, while q is the length of
the momentum transfer vector. As will be shown
below, the expansion in Eq. (4) when truncated at
the second term coincides reasonably well (typi-
cally, to within 0.5–3%) with the exact results, i.e.

the terms with l ≥ 4 can be treated as rather small
corrections. It can be shown (see Appendix) that
the l = 2 term after averaging yields precisely the
orientational order parameter in Eq. (1):

C2m(mc)
________

 = ηC2m(mc0) , (6)

where mc0 are the unit vectors along the corre-
sponding cube diagonals in the Pa 3 structure. Fi-
nally,

cos [2πx(qm)c]
______________

 −∼  j0(ξξξξq) − 5ηj2(ξξξξq)(C2(n) ⋅ C2(mc0)) .

(7)

The scalar product in the right hand side can be
expressed in standard angular variables:

(C2(n) ⋅ C2(mc0)) ≡ Gc(q) = 
3(n ⋅ mc0)

2 − 1

2
 .  (8)

Thus, the total scattering factor F(q) can be
approximated as

F(q) −∼  2fN[j0(ξq) ∑ 
c

exp (2πiqRc) −

− 5ηj2(ξq) ∑ 
c

Gc(q) exp (2πiqRc)] , (9)

where Gc(q) is defined in Eq. (8). The function
Gc(q) is just the Legendre polynomial P2(cos θm,n)
where θm,n is the angle between q and the respec-
tive axis mc0 . It is well known (cf., for example,
Ref. 11) that summing of P2(cos θm,n) over the first
coordination sphere of cubic symmetry yields zero.
Hence, for regular reflections, for which all factors
exp (2πiqcRc) are unity, the second term in Eq. (9)
will be absent. It can be also easily shown that for
the structure under consideration the sum of the
same exponential factors for superstructure reflec-
tions will yield zero in the first term in Eq. (9).
Thus, the structure factor F can be represented in
the form

F = 8fNF0 (10)

where

F0
reg = j0(ξq) (11)

for regular reflections and

F0
sup = − 5

4
 j2(ξq) ∑ 

c
Gc(q) exp (2πiqRc)   (12)
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for superstructure reflections. The quantity ξ de-
pends but weakly on temperature due to variations
of the lattice parameter.

Let us now evaluate the error introduced when
the truncation in Eq. (9) is used instead of the
exact expansion in Eq. (4). To estimate the error
for the simplest case η = 1 we take a few strong
reflections at relatively small diffraction angles,
viz., the regular reflections (111), (002), and (022)
and the superstructure reflections (102) and (112).
We find that the error amounts to –0.35% for
(111), 1.08% for (002), and 1.52% for (002) and to
2.97% for (102) and –0.54% for (112). Thus the
approximate expression is good to within an error of
3% or better, which permits use of this expression
for the deduction of the orientational order parame-
ter directly from integrated diffraction intensities.
Since the integrated intensity I, Eq. (2), is propor-
tional to the respective total structure factor
squared, we conclude that the integrated intensity
of a superstructure line is, to a good accuracy,
proportional to η2.

3. Experiment

There were integrated intensity ratios avail-
able [12] from x-ray studies on N2 published pre-
viously [6]. However, the accuracy of those old
data was insufficient for our purposes, for which
reason we had to measure the powder x-ray intensi-
ties anew.

For calculations we used the data of x-ray meas-
urements carried out in the iron radiation on a
powder diffractometer DRON-3M equipped with a
special-purpose helium cryostat [13]. Samples of
solid nitrogen were grown by depositing the gas
under study in small bursts onto a copper substrate
cooled to 6–8 K. Such a condensation procedure
precluded formation of a pronounced texture, which
could be a serious disadvantage in obtaining reliable
data on the integrated intensities. To remove inter-
nal strains, the polycrystalline samples obtained
(0.1 or 0.2 mm thick with a grain size of about
10−4 cm) were annealed for 1 hour at T = 28–30 K.
Except for the first pattern at 5 K, all other
patterns were taken for the diffraction angles that
included only the reflections (002), (102), (112),
and (022). The temperature range of these studies
was from 5 K to the α–β transition temperature.
The temperature during a single data-taking run
was stabilized to within ± 0.005 K. The errors in
the determination of lattice parameters and total
integrated intensities were respectively ± 0.02% and
1%. Typical diffraction patterns are shown in
Fig. 1.

4. Results and discussion

The integrated intensities of Bragg reflections for
a particular momentum transfer q (or the diffrac-
tion angle θ) were calculated using the formula [9]

I = AfN(θ)P(q)Φ(θ) |F|2 . (13)

Here A is a parameter, the same for all takings
during a single run; fN(θ) is the atomic scattering
factor for the nitrogen atom; P(q) is the reflection
repetition number;

Φ(θ) = 
1 + cos2θ

sin2 θ cos θ
(14)

for the diffraction method used; and F is the struc-
ture factor as defined in Eq. (3). To remove the
poorly defined coefficient A in Eq. (13) from fur-
ther consideration, we take the ratio of the inte-
grated intensity of a superstructure reflection (sub-
script s) to that of a regular one (subscript r)

R(qs ,qr) −∼  
B(qs)

B(qr)
 







F0(qs)

F0(qr)








2

η2 . (15)

Fig. 1. Typical powder x-ray patterns for α-N2 at 5 K
(a) and slightly above the transition point, where the
structure is hexagonal (b).
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Here F0 are the functions defined in Eqs. (11) and
(12); and B(q) = fN(q)P(q)Φ(q). Equation (13) al-
lows us to obtain η values as

η −∼  
F0(qr)

F0(qs)
 






R(qs ,qr) 

B(qr)

B(qs)








 1/2

 . (16)

We point out here that absolute η values are ob-
tained in this way.

Our calculation procedure was as follows. From
diffraction patterns for every temperature point, we
determined the rms lattice parameter as well as the
integrated intensities and angular positions of re-
flections (111), (002), (102), (112), and (022).
Those data allowed us to calculate all the pertinent
quantities involved in Eq. (2).

Since, as was shown above, the integrated inten-
sities of regular reflections depend weakly on the
order parameter, we can use them to assess the
texture factor of our polycrystal samples. The inten-
sity ratios between regular reflections (111), (002),
and (022) give evidence that the texture was not
very pronounced, amounting to about 10% with a
preference for the axes of type <100>. The η values
were calculated from three or four superstructure-
to-regular reflection intensity ratios. An average of
the η values for every temperature point are plotted
in Fig. 2 as solid squares. These values compare
fairly well with the η values calculated from NQR
frequencies [7]. The rather large scatter of our order
parameters as compared to those derived from NQR
data is mainly due to the rather appreciable texture
factor. We did not try to recalculate η with allow-
ance for the texture. It is obvious that this factor
will be nonexistent if diffraction data are taken on
a single crystal.

In conclusion, we have shown that the orienta-
tional order parameter can be successfully calcu-
lated directly from diffraction data, either polycrys-
talline or single-crystal. The method applied to the
orientational phase of solid nitrogen yielded results
in good agreement with those obtained with reso-
nance techniques and with the most advanced the-
ory. Being simple and straightforward, this method
allows control at every step of the calculations, and
the intrinsic errors can be easily taken into account.
The method can be elaborated on other types of
orientational order. Moreover, this approach can be
extended to other techniques (for example, optical)
where the response is sensitive to the orientational
order in the sample under investigation.
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Appendix

The spherical harmonics C2m(mc) in Eq. (7),
where mc are the unit vectors along the momentary
orientations of the molecular axes in sublattice c,
should be transformed from the laboratory frame to
the same intrinsic axis, for example, <111>. Then
the harmonics in the two frames will be related as

C2m(mc) = ∑ 
n

Dmn
(2)∗ (χ)C2n(mc

′ ) , (A.1)

where mc′  is the vector in the old (laboratory)
frame and mc is the same vector in the new (intrin-
sic) frame; Dmn

(2) (χ) is the Wigner function, and χ is
the set of angles that determine the rotation of the
frame. In the absence of defects of any kind it is
quite natural to assume that the molecular axes are
distributed axially symmetrically [15] around the
chosen z axis (direction <111>) both in time and

Fig. 2. Orientational order parameter as a function of
temperature. The filled squares are our data; the empty
circles are the data of Brookeman, McEnnan, and
Scott [7]. The solid line is a guide for the eye, which
virtually coincides with the self-consistent theory [14]
that takes into account anharmonic and correlation ef-
fects in the rotational subsystem. The error bars for our
results are mainly due to the texture of our polycrystal-
line samples.
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from site to site within the same sublattice. This
means that after averaging of Eq. (A.1) only the
m = 0 component will survive, namely (remember-
ing that C20(mc) = P2(cos θ)),

C2n(mc
′ )

_______
 = ηδn0 . (A.2)

Since by the definition of the angles involved
Dm0

(2)∗ (χ) = C2m(mc0), from Eq. (A.1) we obtain
within an arbitrary frame

C2m(mc)
________

 = ηC2m(mc0) . (A.3)

We point out once again that mc0 is the direction
<111> (around which the unit vectors mc fluctu-
ate) expressed in an arbitrary (laboratory) frame.
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