УДК 621.039.5:681.3

Е. И. Белодед, Ю. П. Ковбасенко

Государственный научно-технический центр по ядерной и радиационной безопасности, г. Киев, Украина

Некоторые характеристики топлива с обогащением выше 5 % гипотетической кассеты ТВСА реактора ВВЭР-1000

На основании конструктивных параметров и материалов топливных кассет ТВСА производства АО «ТВЭЛ», Россия, которые широко используются в настоящее время на АЭС Украины, проведено сравнение штатных ТВСА со средним обогащением 4,386 % и гипотетических ТВСА с обогащением 10 %. Показано, что внедрение новых ТВС приводит к улучшению использования топлива и повышению коэффициента использования установленной мощности. В то же время для выполнения существующих критериев ядерной безопасности потребуется, скорее всего, модернизация систем обращения со свежим и отработавшим топливом. Проанализирована возможность возникновения критичности на разных стадиях развития тяжелых аварий, связанных с плавлением активной зоны, при использовании топлива повышенного обогащения.

К лючевые слова: обогащение топлива, ядерная безопасность, коэффициент размножения нейтронов, плавление активной зоны.

Є. І. Білодід, Ю. П. Ковбасенко

Деякі характеристики палива із збагаченням вище, ніж 5 %, гіпотетичної касети ТВЗА реактора ВВЕР-1000

За конструкційними параметрами та матеріалами паливних касет ТВЗА виробництва АТ «ТВЕЛ», Росія, які широко використовуються на АЕС України, проведено порівняння штатних ТВЗА із середнім збагаченням 4,386 % і гіпотетичних ТВЗА із збагаченням 10 %. Показано, що впровадження нових ТВЗ сприяє поліпшенню показників використання палива та підвищенню коефіцієнта використання встановленої потужності. Водночас для виконання критеріїв ядерної безпеки виникне, скоріш за все, потреба в модернізації систем поводження із свіжим та відпрацьованим паливом. Проаналізовано можливість виникнення критичності на різних стадіях розвитку важких аварій, пов'язаних з розплавом активної зони в разі використання палива підвищеного збагачення.

К лючові слова: збагачення палива, ядерна безпека, коефіцієнт розмноження нейтронів, плавлення активної зони.

© Е.И.Белодед, Ю.П.Ковбасенко, 2016

момента начала эксплуатации легководных реакторов (PWR, ВВЭР) наблюдается устойчивая тенденция к повышению начального обогащения ядерного топлива, формируемая, в основном, стремлением к снижению стоимости топливного цикла [1]. Стоимость топливного цикла снижается либо за счет удлинения кампании реактора с 12 до 18 и даже 24 месяцев, либо за счет снижения количества ежегодно перегружаемого топлива — 1/3, 1/4, 1/5 активной зоны.

В настоящее время начальное среднее обогащение топлива неуклонно приближается к 5 %, а допустимое среднее выгорание уже превысило 50 МВт·сут/кг U. На повестку дня выносится переход в диапазон начальных обогащений 5-10 % с выгоранием до 100 МВт сут/кг U. Наличие мощного экономического стимула делает данный процесс необратимым несмотря на то, что его сильно затормозила авария на АЭС «Фукусима», значительно ухудшив перспективы развития атомной энергетики в целом. Единственным препятствием на этом пути может стать возможное ухудшение безопасности атомных энергоблоков. Цель статьи - проанализировать некоторые вопросы безопасности, связанные с повышением начального обогащения топлива. (Публикация подготовлена по материалам доклада, представленного на конференции МАГАТЭ "Light Water Reactor Fuel Enrichment Beyond 5 % Limit: Perspectives and Challenges", 12-16 okтября 2015 г.)

Программы и исходные данные. Все расчетные результаты, представленные в статье, получены с помощью американского пакета программ SCALE, разработанного в Ок-Риджской Национальной лаборатории США по заказу Комиссии по ядерному регулированию США (US NRC). Разработка системы кодов была направлена на анализ критичности, радиационной безопасности, теплопередачи и выгорания. Начиная с первого выпуска SCALE в 1980 году, пакет применяется многими организациями во всем мире для моделирования систем обращения со свежим и отработавшим ядерным топливом (OЯT), в частности хранилищ ядерного топлива.

Для расчетов с помощью SCALE можно использовать девять библиотек нейтронно-физических констант, разработанных на основе файлов оцененных данных ENDF/B-IV, V, VI и VII. Из названных библиотек восемь (шесть из них созданы специально для анализа вопросов критичности) могут автоматически запрашиваться программой в ходе вычислений [2].

Пакет программ SCALE разработан и валидирован с целью расчета топливных систем реакторов типа PWR и BWR, но в последние годы широко используется также для моделирования систем обращения с топливом реакторов BBЭP и PБМК [3].

Анализ проведен на основе кассеты ТВСА, которая в настоящее время является базовой для топливных загрузок значительной части реакторов ВВЭР-1000. Максимальное начальное среднее обогащение штатных ТВСА, используемых на АЭС Украины, составляет в настоящее время 4,386 %. Проведем сравнение некоторых параметров безопасности этих ТВС с гипотетическими ТВС, аналогичными по конструкции и материалам, но с начальным обогащением топлива 10 %.

Повышение размножающих свойств TBC в начале кампании приводит к увеличению начальной концентрации борной кислоты в замедлителе, что, в свою очередь может привести к нежелательному изменению знаков некоторых

Рис. 1. Схема решетки твэлов + + твэгов рассматриваемых ТВС: *а* — штатная ТВСА со средним обогащением 4,386 %; *б* — гипотетическая ТВСА с обогащением топлива 10 %

коэффициентов реактивности в начале кампании (в первую очередь, плотностного коэффициента реактивности). Для предотвращения этого явления в ТВСА с обогащением 10 % количество твэгов, содержащих 5 % масс. интегрированного в топливо выгорающего поглотителя Gd_2O_3 , увеличено до 36 штук против шести в ТВСА с начальным обогащением 4,386 % (рис. 1). Это делает размножающие свойства обоих ТВС в свежем, невыгоревшем состоянии практически одинаковыми.

Анализ размножающих свойств свежего топлива. Количество твэгов в ТВСА с повышенным обогащением подобрано так, чтобы размножающие свойства свежих ТВС в неборированной воде плотностью 1 г/см³ были практически одинаковыми:

 $k_{\rm eff} = 0,88161 \pm 0,00083$ — отдельно расположенная штатная ТВСА;

 $k_{\rm eff} = 0,88133 \pm 0,00085$ — отдельно расположенная ТВСА с обогащением 10 %.

Во многих странах (в том числе и в Украине) анализ безопасности рекомендуется проводить без учета выгорающих поглотителей и поглотителей, растворенных в воде. В этом случае возникает существенная разница в размножающих свойствах рассматриваемых типов ТВС:

 $k_{\rm eff} = 0.90597 \pm 0.00090$ — отдельно расположенная штатная ТВСА;

 $k_{\rm eff} = 1,00351 \pm 0,00086$ — отдельно расположенная ТВСА с обогащением 10 %.

Полученные результаты свидетельствуют о возможном возникновении трудностей при обосновании безопасности транспортирования свежих ТВС, поскольку, как известно, в большинстве стран в качестве критерия ядерной безопасности используется соотношение $k_{\rm eff} + \delta < 0.95$, где δ — сумма всех погрешностей (методической, систематической, статистической) определения коэффициента размножения нейтронов.

Эксплуатация ТВС в активной зоне. Рассмотрим реакторную ячейку, состоящую из центральной ТВС, окруженную со всех сторон половинками соседних ТВС (рис. 2). На границах ячейки задавались граничные условия зеркального отражения. Здесь и далее в расчетах учитывалась рабочая плотность воды в активной зоне ВВЭР-1000, равная приблизительно 0,72 г/см³, концентрация борной кислоты в теплоносителе — 3 г/кг. Изменение размножающих свойств ТВСА с различным начальным обогащением на номинальной мощности (3000 MBт/163 TBC = 18,4 MBт/TBC) в зависимости от продолжительности эксплуатации показано на рис. 3. Как видно из этого рисунка, начальные размножающие свойства рассматриваемых ТВС практически одинаковы. Продолжительность эксплуатации ТВСА с начальным обогащением 3,44 % составляет чуть больше 1000 эфф. сут (приблизительно 3 года). Эти ТВС характеризуются отсутствием в них твэгов, содержащих выгорающий поглотитель. Продолжительность эксплуатации ТВСА с начальным обогащением 4,386 %, содержащей шесть твэгов,

Рис. 2. Реакторная ячейка, используемая при моделировании параметров ТВС в активной зоне реактора: *а* — модель без стержней СУЗ; *б* — модель со стержнями СУЗ

ISSN 2073-6231. Ядерна та радіаційна безпека 2(70).2016

Рис. 3. Изменение размножающих свойств ТВСА

составляет более 1300 эфф. сут (приблизительно 4 года). Продолжительность эксплуатации ТВСА с начальным обогащением 10,0 %, содержащей, как уже указывалось, 36 твэгов, составляет более 2500 эфф. сут (около 8 лет), при тех же размножающих свойствах выгружаемых ТВС.

Повышение обогащения ТВС до 10 % и связанное с ним увеличение количества стержней с выгорающим поглотителем приведет к снижению эффективности регулируюших стержней. Рассмотрим этот эффект количественно. Расчеты проводились с использованием модели реакторной ячейки, показанной на рис. 2. Как видно из рис. 2, б, в такой модели на 160 TBC приходится 60 TBC со стержнями СУЗ. Эти данные незначительно отличаются от реальных параметров активной зоны ВВЭР-1000 (из 163 ТВС 61 находятся под стержнями СУЗ):

 $k_{\rm eff} = 1,27$ — штатная ТВСА без стержней СУЗ;

 $k_{\text{eff}}^{\text{cff}} = 1,17848 \pm 0,00032$ — штатная ТВСА + СУЗ;

 $k_{\text{eff}}^{\text{III}} = 1,20787 \pm 0,00031 - \text{ТВСА с обогащением 10 \% + СУЗ.}$

Анализ аварийной ситуации, связанной с расплавом активной зоны. Для анализа аварийных ситуаций приведем некоторые справочные данные относительно плотности и температуры плавления наиболее характерных реакторных материалов:

Материал	Плотность, г/см ³	Температура плавления, °С		
Сталь	7,7—7,9	1450-1520		
Zr	6,49	1852		
Gd_2O_3	7,407	2350		
B₄C J	2,52	2350		
UO ₂	10,9	2800		

Как видно из приведенных данных, именно топливо двуокись урана — наиболее долго сохраняет свои геометрические формы с повышением температуры. Этот факт необходимо учесть при разработке математических моделей различных стадий развития аварийной ситуации. Наиболее тяжелые аварийные ситуации связаны с потерей теплоносителя в результате каких-либо повреждений трубопроводов или потерей электроснабжения с последующим выкипанием теплоносителя. Итак, рассмотрим модели, приведенные на рис. 2, но без воды внутри и вокруг ТВС.

Рис. 4. Модель распухания топлива в результате повышения температуры, вызванного потерей теплоносителя

Для штатной TBCA:

 $k_{\rm eff} = 0,63211 \pm 0,00016$ — со стержнями СУЗ в активной зоне;

 $k_{\rm eff} = 0,67279 \pm 0,00029$ — без стержней СУЗ.

Для ТВСА с обогащением 10 %:

 $k_{\rm eff} = 0,97378 \pm 0,00040$ — со стержнями СУЗ в активной зоне;

 $k_{\rm eff} = 1,02315 \pm 0,00036$ — без стержней СУЗ.

Последний результат является особенно неблагоприятным: он свидетельствует о возможности достижения критичности в топливной системе без замедлителя.

Дальнейшее повышение температуры приводит к распуханию топливных стержней с соответствующим уменьшением плотности топлива (рис. 4). Коэффициент размножения несколько увеличивается:

 $k_{\rm eff} = 0.73165 \pm 0.00036$ — штатная ТВСА; $k_{\rm eff} = 1.06682 \pm 0.00046$ — ТВСА с обогащением 10 %.

Дальнейшее развитие аварии приводит к началу плавления активной зоны. Предположим, что в результате плавления топлива в верхней части ТВС (которая раньше осталась без воды) происходит заполнение расплавленным топливом межтвэльного пространства в нижней части ТВС (длина перекрытия расплавленным топливом межкассетных зазоров — 1,5 м, рис. 5).

Если предположить наличие стержней СУЗ, то

 $k_{\rm eff} = 0,65100 \pm 0,00035$ — штатная ТВСА; $k_{\rm eff} = 1,04933 \pm 0,00048$ — ТВСА с обогащением 10 %.

Если же предположить, что поглощающие стержни и направляющие каналы в самом начале процесса расплавились и стекли в нижнюю часть корпуса реактора (КР), получим:

 $k_{\rm eff} = 0,70747 \pm 0,00042 -$ штатная TBCA;

 $k_{\text{eff}} = 1,06725 \pm 0,00045 - \text{TBCA с обогащением 10 \%}.$

Дальнейшее развитие аварийной ситуации в результате различных температур плавления различных материалов приводит к тому, что первыми на днище КР стекают расплавленные конструкционные материалы, и если днище еще холодное (например, охлаждается снаружи), застывают на нем. Сверху на них стекает расплавленное топливо (рис. 6). В этом случае

 $k_{\rm eff} = 0,74560 \pm 0,00051$ — штатная ТВСА; $k_{\text{eff}}^{\text{сп}} = 1,05735 \pm 0,00062 - \text{ТВСА с обогащением 10 \%}.$

Рис. 5. Модель начала плавления топлива в активной зоне: при наличии в активной зоне стержней СУЗ; б – стержни СУЗ отсутствуют

Затем расплавленные конструкционные материалы, как более легкие, всплывают над расплавленным топливом (рис. 7). В этом случае

 $k_{\text{eff}} = 0.71890 \pm 0.00044$ — штатная ТВСА; $k_{\text{eff}} = 1.06048 \pm 0.00049$ — ТВСА с обогащением 10 %.

Некоторые характеристики обращения с отработавшим ядерным топливом (активность ОЯТ и остаточное энерговыделение). Активность и остаточное энерговыделение в ОЯТ в зависимости от времени его послеэксплуатационного

Рис. 6. Положение расплава в начальной фазе плавления аварийной зоны: 1 — расплавленное топливо; 2 — расплав конструкционных материалов (в том числе поглотителей)

ISSN 2073-6231. Ядерна та радіаційна безпека 2(70).2016

охлаждения приведены на рис. 8 и 9. Как видно из графиков, с увеличением начального обогащения топлива и, соответственно, глубины его выгорания необходимое время охлаждения ОЯТ увеличивается не пропорционально, а значительно быстрее (более чем в 3 раза, см. рис. 9). Следствие — неизбежное переполнение бассейна выдержки.

Результаты расчетов по изотопному составу ОЯТ представлены в табл. 1. В качестве условия для сопоставления

Рис. 7. Положение расплава в заключительной фазе плавления аварийной зоны: 1 — расплавленное топливо; 2 — расплав конструкционных материалов (в том числе поглотителей)

Обогащение ТВС, %	$k_{\rm eff}$	Вигпир ГВт∙сут/т U	U-235	Pu-239	Pu-241	Cs-134	Cs-137	Eu-154
			r/т U					
4,386	0,9119	50	1,06E+04	6,30E+03	1,63E+03	1,63E+02	1,61E+03	3,39E+01
10	0,9151	100	2,23E+04	8,89E+03	2,60E+03	3,55E+02	3,10E+03	8,20E+01

Таблица 1. Концентрация некоторых изотопов в отработавшем топливе

концентрации изотопов выбрано равенство размножающих свойств ОЯТ в конце эксплуатации: ТВСА со средним обогащением 4,386 % и выгоранием 50 МВт·сут/кг U имеет размножающие свойства такие же, как и ТВСА со средним обогащением 10,0 % и выгоранием 100 МВт·сут/кг U. Как следует из приведенных данных, концентрация U-235 в ОЯТ увеличивается более чем в 2 раза. Существенно увеличивается и концентрация делящихся изотопов плутония, из-за чего, скорее всего, возрастет привлекательность переработки ОЯТ.

Выводы

Преимущества повышения обогащения топлива свыше 5 %:

 увеличение длительности кампании с 12 до 18— 24 месяцев или уменьшение количества ежегодно перегружаемого топлива, т. е. улучшение топливоиспользования за счет снижения продолжительности перегрузки и повышения коэффициента использования установленной мощности;

2) снижение количества отработавших ТВС на единицу выработанной электроэнергии, т. е. улучшение показателей back-end части топливного цикла.

Недостатки:

 повышение стоимости топлива (как следствие повышения обогащения);

2) увеличение необходимого времени выдержки отработавших ТВС в бассейне выдержки, поскольку ТВС выгружаются более горячими и высокоактивными (за счет увеличения выгорания).

Проблемные вопросы анализа безопасности:

 необходимость дополнительных анализов безопасности при использовани современных систем обращения с топливом — дополнительных анализов критичности и радиационной безопасности;

2) возможность достижения критичности уже с одной TBC;

3) возможность ситуации, когда потеря гетерогенности системы приводит к повышению ее размножающих свойств;

4) возможность достижения критичности в системе без замедлителя (т. е. при полной потере воды). Как показали дополнительные расчеты, для модели ТВСА без утечки нейтронов (на границах расчетной ячейки использовались условия отражения) достаточно обогащения 6,5 %;

5) все расчеты, касающиеся отработавшего топлива, были проведены в предположении "свежего топлива", т. е. без учета снижения размножающих свойств топлива с выгоранием. По-видимому, при обосновании безопасности существует необходимость более широкого внедрения принципа "burnup credit" с учетом значительно большего, чем принято на сегодняшний день, количества изотопов в отработавшем топливе из-за изменения баланса делящихся изотопов в отработавшем топливе;

6) необходимость дополнительного адекватного (по геометрии и материальным характеристикам систем) валидационного материала для анализа изотопного состава и критичности, т. е. необходимость дополнительных бенчмарк-экспериментов.

Список использованной литературы

1. Optimum Cycle Length and Discharge Burnup for Nuclear Fuel: Phase II: Results Achievable with Enrichments Greater than 5.0 w/o, EPRI, Palo Alto, CA and U.S. Department of Energy, Washington, DC: 2002. 1003217.

2. SCALE User's Manual. NUREG/CR-0200 Revision 6. RNL/ NUREG/CSD-2/V2/R6.

3. Y. Kovbasenko, V. Khalimonchuk, A. Kuchin, Y. Bilodid, M. Yeremenko, O. Dudka, NUREG/CR-6736, PNNL-13694 "Validation of SCALE Sequence CSAS26 for Criticality Safety Analysis of VVER and RBMK Fuel Designs", Washington, U.S. NRC, 2002.

References

1. Optimum Cycle Length and Discharge Burnup for Nuclear Fuel, Phase II, Results Achievable with Enrichments Greater than 5.0 w/o, EPRI, Palo Alto, CA and U.S. Department of Energy, Washington, DC, 2002, 1003217.

2. SCALE User's Manual, NUREG/CR-0200 Revision 6, RNL/ NUREG/CSD-2/V2/R6.

3. Kovbasenko, Yu., Khalimonchuk, V., Kuchin, A., Bilodid, Ye., Yeremenko, M., Dudka, O. (2002), NUREG/CR-6736, PNNL-13694 "Validation of SCALE Sequence CSAS26 for Criticality Safety Analysis of VVER and RBMK Fuel Designs", Washington, U.S. NRC.

Получено 26.10.2015.