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Exact shape of Peierls barriers are calculated for <a> edge and screw dislocation gliding on basal and pris-
matic planes in magnesium by using of several popular interatomic potentials. Comparison of these potentials is 
performed in order to describe their abilities and limitations. Stability of different types of dislocation cores are 
analyzed as well as their mutual transformations during dislocation slip. It was found that the Peierls stresses and 
barrier height are dependent on core type. It was concluded that transformations of dislocation cores along min-
imal energy paths have to be taken into account for development of analytical models of the slip in magnesium. 
The results are compared with available first-principles calculations. 

PACS: 61.72.Lk Linear defects: dislocations, disclinations; 
62.20.fq Plasticity and superplasticity; 
82.20.Wt Computational modeling; simulation. 
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1. Introduction

Magnesium (Mg) and its alloys are perspective light-
weight materials [1] that are widely used in biomedical [2] 
and energy storage applications [3,4]. It crystallizes in 
hexagonal close packed (hcp) lattice and, similarly to other 
hcp materials, its plastic deformation is characterized by 
the presence of a variety of slip and twinning modes [5,6]. 
The main dislocations responsible for the plastic defor-
mation by slip have Burgers vectors 1/ 3 01 12〈 〉  and move 
predominantly by basal slip on the {0001}  planes contain-
ing the Burgers vector. However, basal slip alone is not 
able to accommodate the deformation along the c-direction 
of the hcp lattice. This implies that 1120 { }1010〈 〉  pris-
matic and 1123 { }1122〈 〉  pyramidal systems may be acti-
vated together with deformation twinning. It is important 
to emphasize that both prismatic and pyramidal slip sys-
tems are difficult to activate at room temperature. This 
leads to a significant activity of twinning and to a wide-
spread belief that Mg is a hard-to-deform material, which 
limits its applicability as a construction material. The ways 
to improve the deformation characteristics of Mg include 
grain refinement [7,8] and alloying with rare-earth ele-

ments [9]. Both procedures are expensive and their appli-
cation potential is thus limited. Understanding the slip pro-
cesses controlling the thermally activated glide of disloca-
tions in this material is thus an important task that can lead 
in the future to significant improvements of its ductility. 

Atomistic calculations have been utilized in the past to 
calculate the critical resolved shear stresses (CRSS) to 
move the a-type dislocations on basal and prismatic planes, 
but these values are quite scattered. In particular, the re-
ported ratios of CRSS (prismatic): CRSS (basal) vary from 
100:1 to 8:1 [6,10,11]. Such variations are often attributed 
to a significant temperature dependence of the CRSS at 
low temperatures [12] as well as high temperatures [6]. 
The hardening processes are also important [10]. Direct 
molecular dynamics simulations of slip processes in Mg 
are still impractical due to limitations molecular dynamics 
timescale, despite lower activation energies to move the a-
type dislocations in comparison to those typical for more 
open structures. In principle, this limitation may be cir-
cumvented by making the calculation at much higher 
stresses (and thus also strain rates) or higher temperatures 
than those typical for real deformation experiments, but it 
is not clear to what extent this change affects the results of 
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such calculations. A more elegant solution of this problem 
is to develop thermodynamic models of slip that provide 
the dependence of the activation enthalpy on the applied 
stress, its character and orientation. The most prominent 
models developed to date are those by Seeger [13], Dorn 
and Rajnak [14], Celli et al. [15], Koizumi et al. [16] and 
Suzuki et al. [17]. The adjustable parameters in these mod-
els have to be determined by higher-level calculations, 
typically by a number of molecular statics simulations of 
isolated dislocations under stress [18]. One such example 
is the model of thermally activated cross-slip in Mg alloys 
developed by Yasi et al. [19,20]. 

When the plastic deformation is controlled by disloca-
tions overcoming large Peierls barriers, these models de-
pend sensitively not only on the height of this barrier but 
on its entire shape [21]. The reason is that the activation 
enthalpy, which determines the velocity of the dislocation 
and thus the plastic strain rate, is obtained by integrating 
over the shape of the Peierls barrier. The calculations of 
the core structures of individual dislocations in Mg and the 
critical stresses to move these dislocations at 0 K (the 
Peierls stresses) can be found in Refs. 22–26. Nevertheless, 
the calculations of complete Peierls barriers and their de-
pendencies on the applied stress are still rare [21,27]. 

The objective of this paper is to compare theoretical 
predictions of slip activity obtained from several popular 
interatomic potentials for Mg with the results of first prin-
ciples calculations and experiments. The obtained results 
can be used for more deep understanding of low tempera-
ture plasticity of magnesium. As described above, they can 
be used for further development of thermodynamic models 
for magnesium plasticity in wide range of temperature. In 
Sec. 2, we review and compare lattice parameters, cohesive 
energies and elastic constants predicted by each potential. 
In Sec. 3, we investigate the stability and energies of gene-
ralized stacking faults on basal and prismatic planes and 
identify all metastable faults. The purpose of Sec. 4 is to 
identify all core structures of a-type edge and screw dislo-
cations. In Sec. 5, we utilize the Nudged Elastic Band 
(NEB) [28–30] method to calculate the Peierls barriers for 
glide of the a-type edge and screw dislocations on basal 

and prismatic planes. The most important findings are dis-
cussed in Sec. 6 which also concludes this paper. 

2. Interatomic potentials and geometry 
 of the simulation block 

All calculations in this paper will be made using three 
popular empirical interatomic potentials for Mg of the Em-
bedded Atom Method (EAM) type, developed by Liu et al. 
[31], Sun et al. [32] and Sheng et al. [33]. The molecular 
statics calculations as well as the energies and forces of in-
dividual images in the NEB calculations were obtained us-
ing the LAMMPS code [35] and visualized in OVITO [36]. 
Nudged elastic band calculations were performed by using 
of NEB atoms code [37]. Calculations were performed at 
0 K. A comparison of lattice parameters, cohesive energies 
and elastic constants predicted by these potentials is given in 
Table 1. Here, we use an improved version of Mg–Mg inter-
actions from a recent Mg–Y potential provided by Dr. Sheng 
(private communication) and, therefore, the values in Table 
1 marked “Sheng et al. (private communication)” are slight-
ly different from those reported in Ref. 33. 

Let us consider a single isolated dislocation with the 
Burgers vector 1120〈 〉  parallel to the a-axis of the crystal. 
If direction of the dislocation line is parallel to the a-axis, 
it is a screw dislocation that can move on both {0001} ba-
sal and {1100}  prismatic planes, as well as on any other 
plane in the zone of the a-axis. However, if the dislocation 
line is parallel to 0001〈 〉  (c-axis), it represents the a-type 
edge dislocation whose slip plane coincides with the pris-
matic {1100}  plane. The edge dislocation with basal glide 
plane has dislocation line along [1010]  direction. 

For all calculations, the orientation of the atomic block 
is such that the direction of the dislocation line is always 
parallel to the z-axis. In the studies of the a-type edge dis-
location moving on the basal plane, the x-axis is parallel to 
the [1210]  direction and the y-axis parallel to the [1010]  
direction. The x axis was parallel to [12 10]  and the y-axis 
parallel to the [0001]  direction in the case of prismatic slip 
of edge dislocation. The x-axis of block was parallel to 
[1010]  and y-axis parallel to [0001] direction in the case of 
screw a-type dislocation. 

Table 1. Fundamental predictions of the three EAM potentials that were used for all calculations in this paper 

 Liu et al. [31] Sun et al. [32] Sheng et al. (private communication) Experiment [34] 
a [Å] 3.195 3.184 3.211 3.207 
c/a 1.623 1.628 1.588 1.624 

Ecoh [eV] –1.510 –1.528 –1.512 – 
C11 [GPa] 65.56 69.43 60.54 63.5 
C12 [GPa] 25.46 25.23 24.79 25.9 
C13 [GPa] 21.76 16.00 20.35 21.7 
C33 [GPa] 63.42 69.83 78.22 66.5 
C44 [GPa] 17.93 12.76 20.16 18.4 
C66 [GPa] 20.05 22.07 17.86 18.8 
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The simulation box used for calculations of dislocation 
structures had a cylindrical geometry, where the rotation 
axis of the cylinder was made to coincide with the z-axis and 
thus the direction of the dislocation line. The block size was 
equal to 3 periodical distances in the z-direction. In the per-
pendicular xy plane, the circular cross-section of the block 
was subdivided into the region I at /r a R≤  and the region II 
at / 3R r a R< < + , where R  was chosen between 50 and 
80 to minimize the impact of boundary conditions. The dis-
location was inserted into the center of the box parallel to 
the z-axis by displacement all atoms in the regions I and II 
using the anisotropic elastic strain field of the dislocation 
obtained from Stroh’s sextic formalism [38] (see also 
Ref. 39). The atoms corresponding to the region II were then 
fixed, while those in the region I were relaxed using a cho-
sen interatomic potential. The periodic boundary conditions 
applied along the z-direction make the dislocation effective-
ly infinite. At the same time, the thickness of the region II of 
the block in the radial direction is larger than the cut-off 
radius of atomic interactions and thus the relaxations of at-
oms in the region I are unaffected by the termination of the 
block in the xy plane. 

3. Structure and stability of generalized stacking faults 

We will first investigate the stability of generalized 
stacking faults by calculating the γ  surfaces [40] using the 
three interatomic potentials for Mg. These were obtained 
by cutting a perfect crystal along the basal or prismatic 
planes and displacing the upper part relative to the lower 
by a number of discrete vectors t  that span one unit cell in 
the plane of the cut. After each such displacement, all at-
oms were relaxed in the direction perpendicular to the 
plane of the cut. The energy of the fault was then deter-
mined as 

 coh( )
( ) ,

E NE
S

−
γ =

t
t   (1) 

where cohNE  is the potential energy of an unfaulted crystal 
comprising N atoms, ( )E t  the potential energy of the block 
with the fault defined by the vector t, and S  the area of the 
fault. The γ  surfaces corresponding to planar faults on the 
basal and prismatic planes obtained using the potentials of 
Liu et al., Sun et al. and Sheng et al. are shown in Fig. 1. 

The basal-plane γ  surfaces are mapped by creating a se-
ries of planar faults using the fault vector B =t

11/3[1120] Bt= 2100[1 ] ,Bt+  where 1 2 [0,1],B Bt t ∈ . All three 

potentials predict local minima and thus metastable stacking 
faults at 1 2 (1/( , 2,) 1/6),B Bt t =  whose energies are given in 
Table 2. The prismatic-plane γ  surfaces are generated by 
considering fault vectors 1 2201/3[11 ] [0001]P P Pt t= +t  with 
1 2 [0,1],P Pt t ∈ . Here, only the potentials of Liu et al. and Sun 

et al. predict the existence of local minima, whereas the po-
tential of Sheng et al. does not predict any metastable stack-
ing fault. The positions of the minima predicted by the for-
mer potentials are not the same, in particular 1 2( , )P Pt t =

(1/2,1/10)=  for Liu et al. and 1 2 (1/( , 2,) 3/20)P Pt t =  for Sun 
et al. The lack of metastable faults on the prismatic plane as 
predicted by the potential of Sheng et al. results in a hard 
prismatic slip for pure Mg when studied by this potential. 
However, this may not be a problem in studies of ordered 
Mg–Y alloys for which this potential was primarily con-
structed. The positions and energies of metastable stacking 
faults on the prismatic-plane γ  surfaces are again summa-
rized in Table 2. 

The γ  surfaces in Fig. 1 identify the positions of meta-
stable stacking faults into which the dislocation can disso-
ciate. All three potentials predict that the 1/ 3[1120]  dislo-
cation may dissociate on the basal plane into two partial 
dislocations with the Burgers vectors 1/ 3[1010]  and 

01/ 3[ 110]  with a stacking fault (SF) in between. A similar 
albeit more complicated dissociation of the [1120]  disloca-
tion on the prismatic plane is predicted only by the poten-
tials of Liu et al. and Sun et al. In particular, these are 

20 1/30[5 5 10 3] 1/30[5 5 1/3[ 1011 ]  3] SF→ + +  for the 
potential of Liu et al. and 20 1/60[10 101/3  20[11 ]  9]→ +  

1/60[10 10  920 ] SF+ +  for the potential of Sun et al. 

4. Dislocation core structures 

In order to examine possible dislocation core structures, 
the origin of the elastic field of the dislocation (and thus the 
center of the dislocation) was inserted at different positions 
relative to the unit cell of the crystal in the xy plane and thus 
perpendicular to the line direction of the dislocation. 

Three core structures of the a-type screw dislocations 
were found in our simulations. These are characterized as: (i) 
basal core (B) that is dissociated on the basal plane into two 
partials with a stacking fault ribbon in between, and (ii) two 
undissociated compact cores extended on the prismatic plane 
(C1 and C2). These are shown in Fig. 2 for all potentials con-
sidered in this paper. The potential of Liu et al. predicts the 
existence of only the C1 core in agreement with the results 

Table 2. Positions and energies of metastable stacking faults on the γ surfaces of Mg obtained using the three potentials 

 Liu et al. [31] Sun et al. [32] Sheng et al. (private communication) 
basal 
plane 

1 2( ) (1/2,1/6, )B Bt t =  
20.3533 eV/nmγ =  

1 2( ) (1/2,1/6, )B Bt t =  
20.2955 eV/nmγ =  

1 2( ) (1/2,1/6, )B Bt t =  
20.1726 eV/nmγ =  

prismatic 
plane 

1 2 ) (1/2 1 0)( 1, , /P Pt t =  
20.733 eV/nmγ =  

1 2 ) (1/2 3 0)( 2, , /P Pt t =  
20.835 eV/nmγ =  

no metastable fault 
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reported previously by Yasi et al. [20], whereas all three 
cores were found using the potential of Sun et al. The relative 
energies of these three cores are ( 2) ( 1) ( )E C E C E B> >  
which show that the dislocation dissociated on the basal 
plane is the most stable. The only core predicted by the po-
tential of Sheng et al. of the B-type. 

The core structures of a-type edge dislocations are 
shown in Fig. 3. The calculations made using all three po-
tentials show that the dislocation is dissociated into two 
partials on the basal plane. The width of the intermediate 
stacking fault ribbon is the smallest for the potential of Liu 
et al. the largest for the potential of Sheng et al. As ex-
pected, this sequence agrees inversely with the ordering of 
basal-plane stacking fault energies obtained from the γ  
surfaces in Sec. 3. 

5. Peierls barriers and stresses 

We have utilized the NEB method to determine the min-
imum energy path of a dislocation between two equivalent 
positions in the lattice. For this purpose, we have first creat-
ed two atomic blocks of the cylindrical geometry, as de-
scribed earlier in this paper, which contain the dislocation at 
two different positions in the slip plane for which the total 
potential energy of the system is the same. These are the 
initial ( 0)I =  and final ( 1)I M= +  configurations (or “im-
ages”) used in NEB simulations. The trial guess of the min-
imum energy path of the system represents a linear interpola-
tion of the coordinates of atoms between the two fixed 
images using a set of M  discrete intermediate (or movable) 
images. The minimum energy path was accepted if the fol-

Fig. 1. (Color online) γ surfaces representing the energies of generalized stacking faults on the (0001) basal plane (upper panels) and on 
the (1010)  plane (lower panels) obtained using the potentials of Liu et al., Sun et al. and Sheng et al. The vectors marked SF represent 
the fault displacements t that create metastable stacking faults. 
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lowing two conditions were satisfied simultaneously for the 
movable images [37]. The first criterion is max | |E⊥∇ <  

0.01 e ,V/Å<  where | |E⊥∇  is the L2 norm of the force act-
ing on each image in the direction perpendicular to the path. 
The second criterion is 2 2

( 1, )max | |I I−∆ − ∆ <  6 210 nm ,−  
where ( 1, )I I−∆  is the distance between images 1I −  and I  
in the 3N-dimentional space spanned by the coordinates of all 
atoms in the region I of the block and ∆  the average distance 
between two adjacent images. The last condition assures that 
the images are distributed equidistantly along the path but it 
does not necessarily guarantee that the positions of the dislo-
cation along the path are uniform (for details, see [37]). 

The shape of the Peierls barrier can be related to the 
magnitude of the Peierls stress by a well-known formula 

 max( / )P dV db =σ ξ   (2) 

where b  is the magnitude of the Burgers vector of the dis-
location, )(V ξ  the Peierls barrier and Pσ  the Peierls 
stress. Here ξ  is the position of the dislocation that is zero 
in the initial configuration and reaches its maximum in the 
final configuration. 

5.1. Basal slip 

The Peierls barriers for basal slip of the a-type screw dis-
locations are shown in Figs. 4(a),(b) for the B- and C1-type 
dislocation cores, respectively. For all potentials considered, 
the Peierls barriers for the B-type core are about 3 orders of 
magnitude lower than those for the C1 core, which is not 
surprising owing to the large spreading of the former in the 
slip plane. The motion of the B-type core dislocation takes 
place without changes of core type. 

The Peierls stresses for the B-type core dislocations are 
3.9 MPa and 2.4 MPa for the Sun and Sheng potentials, re-
spectively. The first value is comparable with the value of 
3.6 MPa reported for the Sun potential by Yasi et al. [26] 
and obtained by a direct measurement of the stress necessary 

for dislocation motion. These values are somewhat lower 
than 9.6–13.1 MPa obtained from the orbital-free density 
functional method [27]. The Peierls barriers for the C1-type 
cores, shown in Fig. 4(b), exhibit a local minimum in the 
middle of the path for the potential of Sun et al. and a very 
shallow minimum for the potential of Liu et al. These mini-
ma correspond to the B-type core that is metastable for the 
Sun potential. However, no such core was found in Sec. 3 
using the Liu potential, which is presumably due to a very 
shallow stability well of its Peierls potential (see Fig. 4(b)). 
The Peierls stresses obtained from the lower panels of 
Fig. 4(b) using Eq. (2) are 1494 MPa and 539 MPa for the 
Liu and Sun potentials, respectively. These values are more 
than two orders of magnitude higher than the stresses for the 
B-type core. However, they can affect the plastic defor-
mation of Mg. The core transformation between the B-type 
to C1-type would happen during cross-slip of dislocation 
between prismatic and basal slip systems. These high values 
of stress are necessary only in order to initiate cross-slip. 
Subsequent dislocation glide needs much lower stresses and 
certainly is not accompanied by mutual core transfor-
mations. 

The Peierls barriers for basal slip of the a-type edge dis-
locations are shown in Fig. 5. These are very low for the 
Sun and Sheng potentials as compared to the barrier ob-
tained from the potential of Liu et al. There are no inter-
mediate minima along the Peierls barrier for any potential 
which is consistent with the finding that the edge disloca-
tion adopts a dissociated B-type core where the two partial 
dislocations correspond to the positions of the metastable 
stacking faults of the γ  surfaces calculated in Sec. 3. The 
Peierls stresses obtained from the shapes of the Peierls 
barriers in Fig. 5 are 15.38 MPa for Liu, 0.21 MPa for Sun 
and 0.06 MPa for Sheng potentials. These values are in 
agreement with those previously reported in Ref. 27 which 
give the values of 14 MPa and 0.3 MPa for the Liu and 
Sun potentials, respectively. 

Fig. 2. (Color online) Dislocation cores of a-type screw disloca-
tions. The x axis is parallel to [1010]  (a-direction) and the y axis 
parallel to [0001]  (c-direction). The atoms are color-coded ac-
cording to the energy corresponding to each atom. 

Fig. 3. (Color online) Dislocation cores of a-type edge disloca-
tions. The x-axis is parallel to [1210]  and the y-axis is parallel to 
the [1010]  direction (figures on the left) or to [0001]  direction 
(figures on the right). The atoms are color-coded according to the 
energy corresponding to each atom. 
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5.2. Prismatic slip 

In Fig. 6(a), we plot the Peierls barriers for a-type screw 
dislocations originally adopting the B-core type moving on 
the prismatic plane as calculated using the potentials of Sun 
et al. and Sheng et al. There is no intermediate minimum on 
the Peierls barrier for the Sheng potential, which is consistent 
with the lack of metastable stacking faults on the γ  surfaces 

calculated for this potential in Sec. 3. On the contrary, the 
Peierls barrier obtained by the potential of Sun et al. shows a 
deep intermediate minimum in the middle of the path which 
corresponds to the C2-type core. The Peierls stresses derived 
from the curves are the following. The stresses are 784 MPa 
and 3866 MPa for the Sun and Sheng potentials, respectively. 
The Peierls barriers for the a-type screw dislocation moving 
on the prismatic plane and having originally the C1-type core 

Fig. 4. (Color online) Peierls barriers for the a-type screw dislocation with B-type core (a), and C1-type core, moving on the basal plane (b). 
Additional minima in the central part of path can correspond to metastable core configurations. These configurations are marked by corre-
sponding letters. 

Fig. 5. (Color online) Peierls barriers for the a-type edge dislocation with the B-type core moving on the basal plane. 
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are shown in Fig. 6(b). For both potentials Liu et al. and Sun 
et al., there are intermediate minima along the path which 
correspond to the transformation of the core to the metastable 
C2-type core. The Peierls stresses estimated from these po-
tentials using Eq. (2) are 40 MPa and 42 MPa for Liu and 
Sun potentials, respectively. 

The Peierls barriers for the a-type edge dislocation 
moving on the prismatic plane are shown in Fig. 7. Similar 
to the screw dislocations, the height of the barrier is much 
larger for the Sheng potential than for the Liu and Sun po-
tentials. This is consistent with the small core of a pris-
matic edge dislocation shown for the Sheng potential in 
Fig. 3 as compared to the other two potentials. It also cor-
relates well with large energies of stacking faults repre-
sented by the γ  surface for this potential in Sec. 3. The 
corresponding Peierls stresses are 19.0 MPa, 19.1 MPa and 
265.6 MPa for Liu, Sun and Sheng potentials, respectively. 

In Table 3, we show the Peierls stresses calculated us-
ing the three EAM potentials and their comparison with 
the results of DFT calculations [27]. For the a-type screw 
dislocation, the DFT calculations predict easy glide on 
the basal plane, whereas prismatic slip requires roughly a 
factor of 4 larger Peierls stress. This trend is captured by 
the potentials of Sun et al. and Sheng et al., where the 

Peierls stresses obtained from the Sun potential are very 
close to the DFT values. The potential of Liu et al. pre-
dicts easier glide of the screw dislocation on the prismatic 
plane, which disagrees with DFT calculations. In the case 
of the a-type edge dislocation, the DFT calculations show 
a strong preference for basal slip, which is in agreement 
with the predictions made from the potentials of Sun et 
al. and Sheng et al. Again, the Peierls stresses obtained 
from the potential of Sun et al. are the closest to the DFT 
values. The potential of Liu et al. gives a marginal prefe-

Table 3. The Peierls stresses calculated by the three EAM po-
tentials and their comparison with DFT calculations [27]. The 
numbers in bold are the lower of the two values for each disloca-
tion and determine the primary slip plane that agrees with DFT 
calculations. All values are in MPa 

 Liu 
et al. 

Sun 
et al. 

Sheng 
et al. 

DFT 

a-screw 
basal slip 1493 4.0 2.43 10.6 

prismatic slip 39.7 41.5 3866 42.0 

a-edge 
basal slip 15.4 0.2 0.06 0.6 

prismatic slip 19.0 19.1 265.6 12.6 

 

Fig. 6. (Color online) Peierls barriers for the a-type screw dislocation with B-type core (a), and C1-type core (b), moving on the prismatic 
plane. Additional minima in the central part of path can correspond to metastable core configurations. These configurations are marked by 
corresponding letters. 
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rence for the basal slip which again does not agree with 
overwhelming preference towards the basal slip predicted 
by DFT calculations. 

6. Conclusions 

We compare Peierls barriers shapes predicted by three 
popular EAM potentials for magnesium. All three consid-
ered potentials show different behavior. The basal slip is 
hard for Liu potential. In contrast Sheng potential result in 
very hard prismatic slip. Both basal and prismatic slip sys-
tem can be activated with Sun potential.  

Among three potentials, the Sun et al. potential pro-
vides the best agreement with experimental data and data 
obtained from ab-initio calculations. 

Variety of stable and metastable dislocation core are 
predicted by considered potentials. Dislocation cores trans-
form to each other during dislocation slip. These transfor-
mations are often connected to dislocation cross-slip be-
tween basal and prismatic glide planes. The Peierls stresses 
and barrier height are dependent on core type. Peierls bar-
riers obtained by NEB often have additional minima in 
their upper part. These minima correspond to metastable 
core types and the energy barrier between these core can 
be interpreted as barrier for cross-slip. The whole shapes of 

energy barriers for cross-slip are reported first time. Trans-
formations of dislocation cores along minimal energy paths 
have to be taken into account for development of analytical 
models of the slip in magnesium. 
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