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Rashba spin-splitting of single electrons and Cooper pairs 
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Electric weak links, the term used for those parts of an electrical circuit that provide most of the resistance 
against the flow of an electrical current, are important elements of many nanodevices. Quantum dots, nanowires 
and nano-constrictions that bridge two bulk conductors (or superconductors) are examples of such weak links. 
Here we consider nanostructures where the electronic spin-orbit interaction is strong in the weak link but is un-
important in the bulk conductors, and explore theoretically the role of the spin-orbit active weak link (which we 
call a “Rashba spin splitter”) as a source of new spin-based functionality in both normal and superconducting 
devices. Some recently predicted phenomena, including mechanically-controlled spin- and charge currents as 
well as the effect of spin polarization of superconducting Cooper pairs, are reviewed. 

PACS: 72.25.Hg Electrical injection of spin polarized carriers; 
72.25.Rb Spin relaxation and scattering. 

Keywords: spin-orbit interaction, Rashba spin splitter, Josephson effect, electric weak link. 
 

 
1. Introduction 

In classical electrodynamics an electric field affects the 
spatial (orbital) motion of a charged particle while a mag-
netic field also leads to a precession of the magnetic mo-
ment of a stationary magnetic particle. Additional dynam-
ics occur if the magnetic particle moves in an electric field 
since the spatial motion of the particle generates a preces-
sion of its magnetic moment. This precession occurs be-
cause in the reference frame of the moving particle the 
electric field is time-dependent and therefore, according to 
Maxwell’s equations, generates a magnetic field. It follows 
that the rate of the electric-field induced precession is pro-
portional to both the momentum p of the particle and to the 
strength of the electric field E, giving rise to a Larmor cor-
rection in the kinetic energy of the electron of the form [1,2] 

 ( )1= ,
2

E
mc

∆ ⋅ ×μ p E  (1) 

where μ  is the magnetic moment of the electron. Since 
electrons carry both charge and magnetic moment (spin), 
they are subjected to this type of coupling between orbital 
and magnetic degrees of freedom, known as the spin-orbit 
(SO) interaction. Remarkably, if in the classical result (1) 

one lets ( / )e mc→ −μ s , where = | |e e  and = ( / 2)s σ  is 
the electron spin operator (the components of the vector σ  
are the Pauli matrices , ,x y zσ ), and if one also replaces eE  
by V , the gradient of the crystal potential, the result co-
incides with the SO coupling term so  in the Pauli equa-
tion (the low-velocity approximation of the Dirac equa-
tion) [3], 

 2 2= [ ( )] .
4

so V
m c

− ⋅ ×σ p r

   (2) 

Being a relativistic effect, the SO coupling is small for free 
electrons in an external electric field but can be quite large 
for electrons moving in a crystal. There, the internal elec-
tric (crystal) field can be very strong, leading in turn to 
spin-split energy bands. This is the case for crystals lack-
ing spatial inversion symmetry as discovered by Dressel-
haus [4] for zinc blende structures (e.g., GaAs, InSb, and 
CdTe), and by Rashba and Sheka [5] for wurtzite struc-
tures (such as GaN, CdS, and ZnO). 

Other examples of systems without spatial inversion 
symmetry, which are more relevant in the context of this 
review, are those with a surface or an interface. Motivated 
by experimental work on semiconductor heterostructures at 
the time, Vas’ko [6] and Bychkov and Rashba [7] showed 
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theoretically that a surface potential may induce an SO 
coupling of the electrons, that lifts the spin degeneracy of 
the energy bands. The main contribution to the crystal field 
turns out to be not due to the surface potential itself, but to 
its effect on the atomic orbitals near the surface, which 
become distorted (mixed) so that their contributions to the 
SO coupling are not averaged out by symmetry. Although 
it is possible in principle to calculate an effective SO Ham-
iltonian for this case ab initio [8], starting from Eq. (2), or 
using a semiquantitative tight-binding approach [9], it is 
convenient to adopt the phenomenological SO Hamiltonian 
proposed in Ref. 7. In the notation of Ref. 10, this “Rashba” 
Hamiltonian, which is valid for systems with a single high-
symmetry axis that lack spatial inversion symmetry, reads 

 
*

ˆ= ( ).so
so

k
m

⋅ ×σ p n


 (3) 

Here n̂ is a unit vector along the symmetry axis (the c axis 
in a hexagonal wurtzite crystal, the growth direction in 
a semiconductor heterostructure, the direction of an exter-
nal electric field), *m  is the effective mass of the electron, 
and sok  is the strength of the SO interaction in units of in-
verse length [11], usually taken from experiments. 

The exploration of the “Rashba physics” that follows 
from Eq. (3) is today at the heart of the growing research 
field of “spin-orbitronics”, a branch of spintronics that fo-
cuses on the manipulation of nonequilibrium material 
properties using the SO coupling (see, e.g., the recent re-
views [12,13]). 

Semiclassically, the effect of the SO interaction given 
by Eq. (3) on an electron can be viewed as a precession of 
its spin around an effective magnetic field, soB , whose 
direction is perpendicular to both the symmetry axis n̂ and 
the momentum p of the electron as it propagates along a 
trajectory (orbit). When the electron’s trajectory is bent, as 
in Fig. 1(a), the orientation of the precession changes along 
the trajectory, which makes the picture of the spin evolu-
tion more complicated than a simple precession. We will 
call the resulting transformation “spin twisting”. 

Spin-control of electronic transport can be achieved in 
principle by incorporating a finite-length SO-active ele-
ment into a device, for example, by using a nanowire made 
of a material with strong SO coupling as a weak link be-
tween two SO-inactive bulk conductors. If quantum spin-
coherence is preserved during the transfer of electrons 
through the weak link, the Rashba SO interaction makes it 
possible to manipulate the spin currents through such de-
vices. This is because the strong spatial inhomogeneity of 
the SO coupling prevents the electronic spin from being a 
good quantum number and produces a twisting of the spin 
of the electrons that enter such a spin-active weak link. As 
we shall see, the net spin twisting accumulated by the elec-
trons as they leave the SO-active weak link can be con-
trolled by mechanically bending the nanowire and possibly 

also by using a strong external electric field to tune the SO 
coupling strength [10,14]. 

A semiclassical picture of the spin evolution for an 
electron propagating through a nanowire-based weak elec-
tric link is presented in Fig. 1(b) for the simple case of an 
SO interaction caused by an external electric field. Here 
the spin twist that accompanies the propagation of an elec-
tron through the straight one-dimensional wire is pictured 
as a semiclassical precession of the spin during the time it 
takes for the electron to pass through the SO-active wire 
from the source to the drain electrode. Quantum mechani-
cally, the effect of such a spin rotation can be accounted 
for by an extra semiclassical phase, /dδ ⋅∫ p r , which is 
acquired by the electron wave function because of the 
renormalization of the electronic momentum, → +δp p p , 
as the electrons enter the weak link. This renormalization 
is necessary for the total energy to be conserved in the 
weak link, where the SO interaction modifies the energy. 
For a free electron, whose kinetic energy is 2 / (2 )mp  be-
fore entering the weak link, this extra Aharonov–Casher 
phase [15] follows from Eq. (1) [where we let 

/ (2 )e mc→ −μ σ ]. To lowest order in the SO interaction 
it takes the form 

 2= ( ) .
4

AC
e d

mc
ϕ − × ⋅∫ σ E r  (4) 

The Aharonov–Casher phase arises from the interaction 
between the magnetic moment (spin) of an electron and 
a static electric field. It is dual to the Aharonov–Bohm 
phase [16], which is an extra phase induced by the interac-
tion between the charge of an electron and a static magnetic 
field. 

Since σ  is an operator in spinor space, the Aharonov–
Casher phase (4) manifests itself in a splitting of the spin 

Fig. 1. (a) In a semiclassical picture, the spin = ( / 2)s σ  (which 
we for convenience label by σ  rather than by s) of an electron 
moving with momentum p  along a curved trajectory precesses 
around the effective magnetic field soB  caused by a spin-orbit 
(SO) interaction, induced in this simple example by an external 
electric field E . Being perpendicular to both p  and E , the direc-
tion of soB  and hence the direction of the precession axis chang-
es along the trajectory leading to a complex “spin twisting” ef-
fect. (b) The spin evolution for an electron propagating through 
an SO-active weak link bridging two SO-inactive leads. The spin 
twist that accompanies the propagation of the electron through 
the straight one-dimensional wire is pictured as a semiclassical 
precession of the spin during the time it takes for the electron to 
pass from the source to the drain electrode. 
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state of an electron that enters the wire (in a “spin-up” state, 
say) into a coherent superposition of spin-up and spin-
down states. We call such a splitting of electronic waves in 
spin space “Rashba spin splitting” and the SO-active weak 
links that give rise to it “Rashba (spin) splitters”. 

It is instructive to demonstrate the spin splitting explic-
itly for a simple case. Consider the motion of an electron 
along the x̂ direction. Let ˆ= EE z for > 0x  and = 0E  for 

< 0x , and ˆ=d dxr x . With the convenient notation 
2= / (4 )sok eE mc  in Eq. (4), one finds 

 e = e = cos ( ) sin ( ).
ik xi so yAC so y sok x i k x

− σϕ − σ


   (5) 

When this phase factor acts on the spin state < = (1,0) = |Tχ ↑〉 
(where the subscript <  indicates < 0x ), in which the spin 
is aligned along the positive ẑ  axis, the resulting spin state 
is >χ  (with > denoting the region > 0),x  where 

> <
cos ( )

= e = cos ( ) | sin ( ) |
sin ( )

i soAC so so
so

k x
k x k x

k x
ϕ  

χ χ = ↑〉 + ↓〉 
  



 



 

  (6) 

is a coherent superposition of the spin-up and spin-down 
states [see also Fig. 1(b), where sok x  is denoted by ϕ]. 
Note that the explicit form of the initial spin state <χ  mat-
ters for the result of the scattering process described by 
Eq. (6). A complementary view comes from noting that >χ  
is an eigenfunction of sin ( ) cos ( )so x so zk x k xσ + σ  , which 
corresponds to a rotation of the spin quantization axis in 
the XZ-plane as the electron propagates along the x̂ axis [11]. 

Before ending this part of the Introduction we mention 
that strain is another mechanism for inducing an SO coupl-
ing, the precise form of which depends on the material and 
type of strain involved. In a single-wall carbon nanotube, 
for instance, strain can be thought of as occurring when a 
flat graphene ribbon is rolled up to form a tube. The strain-
induced SO coupling in a one-dimensional model of such a 
nanotube is described by the Hamiltonian 

 strain strain ˆ= ,so F sok ⋅σ n v  (7) 

where Fv  is the Fermi velocity, strain
sok  is a phenomenolog-

ical parameter that gives the strength of the SO interaction 
in units of inverse length, and n̂ is a unit vector pointing 
along the longitudinal axis of the nanotube. Equation (7) is 
a simplified form of the SO Hamiltonian derived for a real-
istic model of such a nanotube [17]. 

A number of consequences of the Rashba spin splitting 
for transport phenomena suggested recently will be review-
ed here. Two groups of phenomena will be considered. The 
first concerns incoherent electron transport, where the pos-
sible spin-coherence of the Rashba split states does not 
play any role. In this case the Rashba weak-link can be 
viewed as a spin-flip scattering center for the transferred 
electrons. The kinetic consequences of such a spin-flip 

relaxation are considered in Secs. 2 and 3. Spin-coherent 
effects in non-superconducting devices only occur in mul-
tiply-connected geometries [18] and are outside the scope 
of this review. Non-trivial interference effects in singly-
connected geometries do occur in superconducting struc-
tures; these are reviewed in Sec. 4. In particular, the way 
by which a supercurrent [19] flowing through a weak link 
acting as a Rashba spin splitter is affected by the SO inter-
action is rather unique. An SO-active superconducting 
weak link brings the opportunity to affect the spin-sen-
sitive pairing of electrons in the superconducting conden-
sate and can be a tool that allows a spin design of super-
conducting Cooper pairs. Some immediate consequences 
of such a spin-polarization of the Cooper pairs are present-
ed in Sec. 4. 

Is the Rashba spin-splitting experimentally important? 
Clearly, for this to be the case it is necessary that 1ACϕ  ; 
the Aharonov–Casher phase accumulated during the prop-
agation of an electron through the spin-split device under 
consideration must be of order one. In a free-electron model 

ACϕ  is given by Eq. (4). Its magnitude for a straight SO-
active channel of length d , placed in a perpendicular elec-
tric field E , and when the spin-polarization axis is roughly 
perpendicular to both the electric field and the direction of 
the channel, is 2( ) / (4 )AC eEd mcϕ  . Since 2 = 0. V,5 Memc  
this gives for = 1 md µ  a rather small value, 310AC

−ϕ  , 
even for an electric field as strong as = 1E  V/nm. Allow-
ing for an effective electron mass *m m≠  and a g  factor 
different from two would add a factor *( / 2 )gm m  which 
could be significant if the effective mass is small and the g  
factor is large. Even so it seems challenging — although 
perhaps not impossible — to find a situation where the 
Rashba spin-splitting directly due to an external electric 
field is important. An external electric field may well have 
an indirect effect on the SO interaction, by influencing the 
mixing of the atomic orbitals particularly in nanoscale sys-
tems with poor screening and large surface to volume ratios. 

To estimate the scale of the SO interaction due to crystal 
fields associated with atomic orbitals (in a crystal lacking 
spatial inversion symmetry) one may consider the electric 
field at a small distance r  from an atomic nucleus of charge 
Ze, given in SI units by the expression 2

0= / (4 )E Ze rπε  
where 12

0 = 8.9·10−ε  F/m is the permittivity of vacuum. 
For = 10Z  and m= 0.05 nr  (= Ba , the Bohr radius) one 
finds 125·10 V/mE  , which in conjunction with Eq. (4) 
gives 1ACϕ   for the same 1 mµ  long channel as above. 
Rather than trying to improve on this estimate by a full 
band-structure calculation, it is common to determine the 
SO coupling strength from experiments. Finally, we note 
that when the SO interaction in a nanowire bridging two 
bulk (SO-inactive) electrodes is induced by a crystal field, 
then although the direction of the crystal field cannot be 
independently controlled, the spin precession axis in the 
wire can still be varied with respect to the spin quantiza-
tion axes in the bulk electrodes by bending the wire. Gen-
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erally, a large mechanical deformability of nanostructures, 
originating from their composite nature complemented by 
the strong Coulomb forces accompanying single-electron 
charge transfer, offer an additional functionality of electro-
nic nanodevices [20,21]. Coherent nanovibrations in sus-
pended nanostructures, with frequency in the gigahertz range, 
were detected experimentally [22]. 

2. Suspended nanowires as mechanically-controlled 
spin splitters 

In charge transport, electronic beam-splitters (e.g., us-
ing tunnel barriers) are key ingredients in interference-
based devices. Tunnel-barrier scatterers may serve as co-
herent splitters of the electronic spin when the tunneling 
electrons also undergo spin (Rashba) scattering. This al-
lows one to map various interference-based phenomena in 
charge transport onto electronic spin transportation. Such 
spin-splitters can be made functional by adding to them 
a mechanical degree of freedom that controls their geomet-
rical configuration in space, to which the Rashba interac-
tion is quite sensitive. Because of this, one achieves me-
chanical coherent control and mechanical tuning of the 
spin filters [23]. 

A suspended nanowire, acting as a weak link between 
two electronic reservoirs, is a good candidate for such a 
Rashba spin-splitter [14]. The amount of spin splitting 
brought about by the Rashba interaction on the weak link 
can be controlled by bending the wire. This can be me-
chanically tuned, by exploiting a break junction as a sub-
strate for the wire (see Fig. 2) or by electrically inducing a 
Coulomb interaction between the wire and an STM tip 
electrode (also displayed in Fig. 2). This Rashba scatterer 
is localized on the nanowire, and serves as a pointlike scat-
terer in momentum-spin space for the electrons incident 
from the bulky leads. When there is a spin imbalance 
population in one of the leads (or both), and the Rashba 
spin-splitter is activated (i.e., the weak link is open for 
electronic propagation) spin currents are generated and are 
injected from the pointlike scatterer into the leads. The 
Rashba splitter thus redistributes the spin populations be-
tween the leads. This source of spin currents need not be 
accompanied by transfer of electronic charges. We empha-
size that although this setup is similar in the latter aspect to 
the Datta–Das one [27], our splitter is functional even 
when the leads are unbiased. 

Such a coherent scatterer, whose scattering matrix can 
be “designed” at will by tuning controllably the geometry, 
can be realized in electric weak links based on clean car-
bon nanotubes (CNT). Carbon nanotubes have a significant 
Rashba SO coupling (mainly due to the strain associated 
with the tube curvature) [24,28,29]. Moreover, CNT’s are 
known to have quite long mean-free paths (longer for sus-
pended tubes than for straight ones), allowing for experi-
mental detections of interference-based phenomena (e.g., 

Fabry–Perot interference patterns) [30]. Further tunability 
of the Rashba spin-splitter can be achieved by switching on 
an external magnetic field, coupled to the wire through the 
Aharonov–Bohm effect [16]. This is accomplished by quan-
tum-coherent displacements of the wire, which generate 
a temperature dependence in the Aharonov–Bohm magnet-
ic flux (through an effective area) [31]. 

The model system exploited in the calculations is de-
picted in Fig. 3. The tunneling amplitudes through the 
weak link are calculated in Appendix A. It is shown there 
that the linear Rashba interaction manifests itself as a ma-
trix phase factor on the tunneling amplitude [32]. In the 
geometry of Fig. 3, this phase is induced by an electric 

Fig. 2. (Color online) A break junction supporting a na-
nowire of length d  attached by tunnel contacts to two 
biased electrodes ([L] and [R]). The small vibrations of the 
wire induce oscillations in the angle θ around some value 

0θ . The upper electrode ([G]) is an STM tip biased differ-
ently. The Rashba interaction can be controlled via the 
bending angle θ of the wire. The latter can be modified 
both mechanically, by loads (shown by the arrows) applied 
to the substrate and electrically, by biasing the STM. Re-
printed figure with permission from R.I. Shekhter et al., 
Phys. Rev. Lett. 111, 176602 (2013) © 2013 by the Ameri-
can Physical Society. 

Fig. 3. (Color online) Illustration of the geometry used to 
calculate the spin-orbit coupling dependence of the tunnel-
ing amplitude. Two straight segments are tunnel-coupled 
to left L and right R electronic electrodes, with possibly 
different, spin-dependent, chemical potentials ,L σµ  and 

,R σµ . The setup lies in the XY  plane; a magnetic field ap-
plied along ẑ  is shown by ⊗. The setup corresponds to a 
configuration in which the wire is controlled only mechan-
ically, and the STM is not shown. Reprinted figure with 
permission from R.I. Shekhter et al., Phys. Rev. Lett. 111, 
176602 (2013) © 2013 by the American Physical Society. 
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field perpendicular to the XY  plane [see Eq. (3)], with 
= { , }L L Lx yR  for the left tunnel coupling and 
= { , }R R Rx y−R  for the right one, where both radius vec-

tors LR  and RR  are functions of the vibrational degrees of 
freedom (as specified in Sec. A3). The quantum vibrations 
of the wire which modify the bending angle, make the 
electronic motion effectively two dimensional. This leads 
to the possibility of manipulating the junction via the 
Aharonov–Bohm effect, by applying a magnetic field 
which imposes a further phase on the tunneling amplitudes 

( ) 0 ( ) ( )= ( / )( )L R L R L RBx yφ − π Φ , where 0Φ  is the flux 
quantum (a factor of order one is absorbed [31] in B ). 

The calculation of the spin-resolved current through 
such a junction is detailed in Appendix B, see in particular 
Sec. B2, Eq. (B.21). The flux of electrons of spin σ  emerg-
ing from the left terminal can be presented in the form 

 , ,
, =0

= 2 ( )L L R nn
n n

I P n
∞

′ ′σ σσ
′ ′σ

×∑ ∑     

 
( ) , , 0, ,

[ ( ) ], , 0

( )
(1 e ) ,

e 1

L RL R
n nL R

n nβ µ −µ ′σ σ′σ σ
′β µ −µ + − ω′σ σ

′µ −µ + − ω
× −

−
 (8) 

where ( )L R  is the density of states at the common chem-
ical potential of the left (right) lead, and   is the spin-
dependent transmission [33] 

 2 2
, 0 ,= | | | | [e e ] | | .i iR Lnn W n n− ψ − ψ
′ ′ ′σσ σ σ ′〈 〉  (9) 

Here, 0W  is the transmission amplitude in the absence of 
the SO interaction. (The configuration in which the densi-
ties of states are spin dependent is discussed in Sec. 3.) 
In Eq. (8), the free vibrations are described by the Einstein 
Hamiltonian (A.20) with frequency 0ω , n is the vibrations 
quantum number, and the weight function ( )P n  is given in 
Eq. (B.19). For the geometry of Fig. 3, 

 
= ( ) ,

= ( ) .
L L so L y L x

R R so R y R x

k x y

k x y

ψ φ − σ − σ

ψ φ − σ + σ
 (10) 

The flux of particles emerging from the right lead is ob-
tained upon interchanging the roles of the left and the right 
side of the junction in Eq. (8). One notes [14] that while 
the phase due to the magnetic field disappears in the ab-
sence of the vibrations, this is not so for the spin-orbit-
phase [18] (as Lψ  and Rψ  do not commute). 

Combining the expressions for the incoming spin cur-
rents [Eq. (8) and the corresponding one for ,RI σ ] yields a 
net spin current, which is injected from the Rashba scatter-
er into the leads. Therefore, the scatterer can be viewed as 
a source of spin current maintained when the leads have 
imbalanced populations. The spin current, 

 spin spin, , ,= = ( ) ,L RJ J I Iσ σ σ
σ σ

+∑ ∑  (11) 

tends to diminish the spin imbalance in the leads, through 
spin-flip transitions induced by the Rashba interaction. In 

the limit of weak tunneling, we expect the spin imbalance 
to be kept constant in time by injecting spin-polarized elec-
trons into the reservoirs, so that the (spin-dependent) che-
mical potentials do not vary. 

The explicit expressions for the two spin currents yield 
dramatic consequences. (i) Independent of the choice of 
the spin-quantization axis, spin,J σ is given solely by the 
term with =′σ σ  in Eq. (8) and the corresponding one for 

,RI σ  (σ  is the spin projection opposite to σ). This implies 
that only the off diagonal amplitudes (in spin space) con-
tribute. (ii) Adopting the plausible geometry detailed in 
Sec. A3 [see the discussion preceding Eq. (A.19)] one finds 

 (
2

sin (2 )
4 20e e = e 1 2cos sin ( / 2)

Bdi
i iR L sok d

π
θ

Φ− ψ − ψ − θ +  

 )2cos sin ( ) sin (2 )sin ( / 2) .y so z soi k d i k d+ σ θ − σ θ  (12) 

This result is independent of the choice of the spin polari-
zations in the leads, and does not involve xσ . (iii) As 
Eq. (12) indicates, spin flips are realized for any orienta-
tion of the leads’ polarization. Furthermore, when the av-
erage angle 0θ  [see Eq. (A.19)] differs from zero, then 
both terms on the second line in Eq. (12) yield spin flips 
even for the non-vibrating wire. In this respect, the spin-
orbit splitting effect is very different from that of the 
Aharonov–Bohm phase. As mentioned, the latter requires 
the transport electrons to cover a finite area and therefore 
in our setup is entirely caused by the mechanical vibra-
tions. When 0θ  vanishes, there are spin flips only if the 
polarization is in the XZ  plane. To be concrete, we present 
below explicit results for a quantization axis along ẑ . The 
more general configuration is considered in Sec. 3. 

In the linear-response regime the spin current loses its 
dependence on the bias voltage (expressions for these cur-
rents beyond linear response are given in Ref. 14) and be-
comes 
 spinspin, = ,J UG↑ −  (13) 

where it has been used that 

( ) ( )
( ) ( )( ), ( ),= , = ,

2 2
L R L R

L R L RL R L R
U U

↑ ↓µ µ + µ µ −  (14) 

such that = ( ) / 2L RU U U+ , and the spin conductance 
spinG  is 

 2
spin 0

=0 =1
= sin ( ) ( )so

n
G G k d P n

∞ ∞
×∑ ∑



  

 

2
sin(2 )

4 2 00
0

2
| | e cos | | .

e 1

Bdi
n n

π
θ

Φ
β ω
βω

× 〈 θ + 〉
−



  (15) 

Here 0G  is the zero-field electrical conductance divided by 
2e , and = 1/ ( )Bk Tβ  is the inverse temperature. The amount 
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of spin intensity is obtained upon expanding θ in the oper-
ators of the vibrations [see Eq. (A.19)]. One then finds 

 2 2
spin 0= sin ( ) cos ( ) ,soG k d G Bθ  (16) 

where ( )G B  is precisely the magnetoresistance (divided 
by 2e ) of the wire, as analyzed in Ref. 31, and thus has 
the same behavior at low and high temperatures (as com-
pared to the vibrations’ 0ω ). In particular, 

 

2
0

02 2
0 0

2 2
0 0

1 , 1 ,
6( ) = | |

exp [ / ] , 1 ,

B
G B W B

B B

 βω
− βω




− βω





 (17) 

where 0 0 0 0 0= 2 / [ cos ( ) cos (2 )]B daΦ π θ θ  ( 0a  is the am-
plitude of the zero-point oscillations and 0Φ  is the flux 
quantum). 

3. Spin-resolved transport 

The formalism presented in Appendix B enables us to 
study the case where the current through a mechanically-
deformed weak link is provided by a battery of uncompen-
sated electronic spins. When the magnetic polarizations in 
the electronic reservoirs forming the electrodes are not 
identical, then quite generally both charge and spin cur-
rents result from the transport of electrons through the 
junction. The situation at hand resembles in a way thermo-
electric transport in a two-terminal junction: the two cur-
rents (charge and spin), flow in response to two affinities, 
the voltage difference and the difference in the amount of 
magnetic polarization between the two reservoirs. “Non-
diagonal” phenomena, analogous to the thermoelectric 
Seebeck and Peltier effects, can therefore be expected. For 
instance, it is possible to generate a spin current by inject-
ing charges into the material, which in turn may give rise 
to a spatially inhomogeneous spin accumulation. 

However, the two opposite spins can still contribute 
equally to the charge transport, resulting in zero net spin 
propagation, much like the vanishing of the thermopower 
when electron-hole symmetry is maintained. In the case of 
combined spin and charge transport, non-diagonal spin-
electric effects appear once the spin and charge transports 
are coupled in a way that distinguishes between the two 
spin projections. One may achieve such a spin-dependent 
transport by exploiting magnetic materials in which the 
electronic energy is spin-split. When the magnetization is 
spatially inhomogeneous (as happens in composite mag-
netic structures) the spin-dependent part of the energy is 
inhomogeneous as well, leading to a spin-dependent force 
acting on the charge carriers. Another possibility, feasible 
even in magnetically-homogeneous materials, is to exploit 
the Rashba SO interaction. When this interaction varies in 
space, the electronic spin is twisted. The end result is the 
same as in the first scenario above: a spin-dependent force 
(resulting from the Rashba interaction) is exerted on the 

electrons, opening the way for non-diagonal spintro-elec-
tric transport. 

The setup we propose is illustrated in Fig. 4. It com-
prises a nanowire bridging two leads, firmly coupled to the 
left and right electronic reservoirs, held at spin-dependent 
electrochemical potentials, 

 ,

,

= ,

=
L L L

R L R

U

U
σ

σ

µ µ + σ

µ µ + σ
 (18) 

[generalizing Eq. (14)]. The two bulk metals forming the 
reservoirs are each polarized along its own polarization axis, 
denoted by the unit vectors ˆ Ln  and ˆ Rn , respectively. The 
wire vibrates in the XY  plane, such that the angle θ it makes 
with the x̂ axis oscillates around an equilibrium value, 0θ . 
An additional (weak) magnetic field, applied along ẑ , gives 
rise to an instantaneous Aharonov–Bohm effect [31]. 

Since the electrodes are magnetically-polarized, the den-
sity of states in each of them depends on both the internal 
exchange interaction and the external spin pumping as ex-
pressed by the energy split of the electrochemical potentials 

,L RU  that determine the kinetic energy of the electrons par-
ticipating in the transport. However, assuming the spin bias-
es ( )L RU  to be much smaller than the Curie temperature in 
the magnetic leads, the latter dependence is weak, and to 
lowest order in , /L RU µ , where = ( ) / 2L Rµ µ +µ  is the 
common chemical potential of the entire device, it may be 
neglected. 

As shown in Appendix B2 [see in particular Eq. (B.21)], 
the spin-resolved particle currents emerging from the left 
and the right electrodes are [generalizing Eq. (8) to include 
spin-dependent densities of states in the two bulky reser-
voirs] 

 , , , ,
, =0

= 2 ( )L L R nn
n n

I P n
∞

′ ′ ′σ σ σ σσ
′ ′σ

− π ×∑ ∑     

 
( ) , , 0, ,

[ ( ) ], , 0

( )
(1 e )

e 1

L RL R
n nL R

n nβ µ −µ ′σ σ′σ σ
′β µ −µ + − ω′σ σ

′µ −µ + − ω
× −

−
 (19) 

Fig. 4. (Color online) A curved nanowire lying in the XY  plane is 
coupled to two magnetically-polarized electronic reservoirs with 
arbitrarily-oriented magnetization axes, ˆ Ln  and ˆ Rn . Externally-
pumped spins give rise to spin-dependent electrochemical poten-
tials. The bending of the nanowire is specified by the angle it 
makes with x̂ , with an instantaneous value θ around the equilibri-
um angle 0θ . Reprinted figure with permission from R.I. Shekhter 
et al., Phys. Rev. B 90, 045401 (2014) © 2014 by the American 
Physical Society. 
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and 

 , , , ,
, =0

= 2 ( )R R L nn
n n

I P n
∞

′ ′ ′ ′σ σ σ σσ
′σ

− π ×∑ ∑     

 
( ) , , 0, ,

[ ( ) ], , 0

( )
e 1 .

e 1

L RL R
n nL R

n nβ µ −µ ′σ σ′σ σ
′β µ −µ + − ω′σ σ

′µ −µ + − ω × − 
  −

 (20) 

Particle number is conserved, as can be seen by adding 
together Eq. (19) summed over σ  and Eq. (20) summed 
over ′σ . 

The spin indices of the matrix element squared forming 
the transmission,  , in Eqs. (19) and (20) deserve some 
caution: the quantization axes of the magnetization in 
the two electronic reservoirs are generally different (see 
Fig. 4), and they both may differ from the quantization axis 
which is used to describe the Rashba interaction on the 
nanowire. Specifying the quantization axis in the left 
(right) reservoir by the angles Lθ  ( Rθ ) and Lϕ  ( Rϕ ), then 

 †2 2
, 0= | | | | [ e e ] | | ,i iR Lnn LRW n n− ψ − ψ
′ ′ ′σσ σ σ ′〈 〉    (21) 

where the rotation transformations ( )L R  are given by 

( ) ( )
( ) ( )2 2

( )
( ) ( )

( ) ( )2 2

e cos e sin
2 2= .

e sin e cos
2 2

L R L Ri iL R L R

L R
L R L Ri iL R L R

ϕ ϕ
− −

ϕ ϕ

 θ θ 
 
 
 θ θ
 −
  

  (22) 

For instance, when the quantization axes in both electrodes 
are identical, ˆ ˆ=L Rn n , then =L R   just rotates the direc-
tion of the quantization axis of the Rashba interaction. 

The linear-response regime. In the linear-response re-
gime, the spin-resolved particle currents, Eqs. (19) and (20) 
become 
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with the transmission 

 0
, , ( ) 0=0=0

( )
= ( ) ( ) .
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nnn
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∞ ∞
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  (24) 

The first term in Eq. (24) gives the contribution to the spin-
resolved transport from the elastic tunneling processes. 
The second is due to the inelastic processes, and is active 
at finite temperatures. 

Our final expressions for the charge currents are then 

 , 1 3 2= ( ) ,L L L R R LeI e I e eU eUσ
σ

≡ µ −µ − +∑     (25) 

with , =R R LeI e I eI′σ′σ
≡ −∑ . The spin currents emerging 

from the left and right reservoirs are 

 spin
, 2 4 1= ( ) ,L L R R LLI I U Uσ

σ
≡ σ µ −µ − +∑      

 spin
, 3 1 4= = ( ) .R R L R LRI I U U′σ

′σ

′σ µ −µ + −∑     (26) 

In Eqs. (25) and (26) we have introduced the linear-
response transport coefficients 
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 (27) 

giving the various transmission probabilities of the junc-
tion [33]. 

The Onsager relations. As mentioned, there is a certain 
analogy between the configuration studied here and that of 
thermoelectric transport. In order to further pursue this 
point we consider the entropy production in our device, 
assuming that the spin imbalance in each of the two reser-
voirs does not vary with time and that all parts of the setup 
are held at the same temperature T . Under these circum-
stances the entropy production, S , is 

 , , , ,= L L R RTS I I′ ′σ σ σ σ
′σ σ

µ + µ =∑ ∑   

 spin spin= ( ) ,L L R L RL RI U I U Iµ −µ + +  (28) 

where the various currents are given in Eqs. (25) and (26). 
Obviously, the first term on the right-hand side of Eq. (28) 
is the dissipation due to Joule heating. The other two terms 
describe the dissipation involved with the spin currents. 

The entropy production may be presented as a scalar 
product of the vector of driving forces (the “affinities"), 
{ ( ) / , , }R L RLV e U U≡ µ −µ  and the resulting currents, 

spin spin{ , , }L L ReI I I . In the linear-response regime these two 
vectors are related to one another by a (3×3) matrix , 

 spin

spin

=
L

LL

RR

eI V
I U

UI

               

  (29) 

with 

 

2
1 2 3

2 1 4

3 4 1

= .
e e e
e
e

 −
 

− 
 − − 

  
   

  
 (30) 

The matrix  contains the transport coefficients which do 
not depend on the driving forces. One notes that this matrix 
obeys the Onsager reciprocity relations: reversing the sign 
of the magnetic field, i.e., inverting the sign of the Aharo-
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nov–Bohm phases Lφ  and Rφ  [see Eqs. (10) and (21)], and 
simultaneously interchanging the vibration states indices n 
with n′ and the spin indices σ  with ′σ  in Eqs. (21) and (24) 
leaves all off diagonal terms in the matrix  unchanged. 

The transport coefficients. The full calculation of the 
transmission matrix   that determines the transport coeffi-
cients i  [see Eqs. (24) and (27)] is quite complicated, and 
requires a numerical computation. When the coupling of 
the charge carriers to the vibrational modes of the wire is 
weak, one may obtain an approximate expression by ex-
ploiting the different magnitudes that coupling takes in the 
magnetic Aharonov–Bohm phase and in the Rashba one. In 
order to see this, it is expedient to present the phase factors 
in the transmission amplitude [see Eq. (10)] in the form 

 exp ( )exp ( ) e ( ) ,i
R Li i A i− φ− ψ − ψ ≡ + ⋅σV  (31) 

where A  and V  are functions of the instantaneous bending 
angle θ, Eq. (A.19), 

 

2 2

2

2

= 1 2cos ( )sin ( / 2) ,

= {0,cos ( ) sin ( ), sin (2 ) sin ( / 2)} ,

= 1 ,

so

so so

A k d

k d k d

A

− θ

θ − θ

+ ⋅

V

V V

 (32) 

and = L Rφ φ + φ  is the instantaneous Aharonov–Bohm flux 
in units of the flux quantum 0Φ . The components of the 
spin-orbit vector V  are given in the coordinate axes de-
picted in Fig. 4. 

The effect of the electron-vibration interaction on the 
Rashba coupling is of the order of the zero-point amplitude 
of the vibrations divided by the wire length, 0 /a d . On the 
other hand, using Eq. (A.19), one finds that the Aharonov–
Bohm phase, 2

0= [ / (4 )]sin(2 )Bdφ − π Φ θ  (B  is the strength 
of the magnetic field), is 

 
2

†0
0 0 0

0 0
sin (2 ) cos ( ) cos (2 )( ) .

4 2
a dBBd b b
ππ

φ ≈ − θ − θ θ +
Φ Φ

  

  (33) 

(The creation and destruction operators of the vibrations 
are denoted †b  and b .) The dynamics of the Aharonov–
Bohm flux is thus determined by the flux enclosed in 
an area of order 0a d  divided by the flux quantum. The latter 
ratio can be significantly larger than 0 /a d . For instance, 
the length of a single-walled carbon nanotube is about 

= 1 md µ , while the vibrations’ zero-point amplitude is 
estimated to be 510 m− µ . This leads to 5

0 / 10a d −≈ , while 
0 0( ) /Ba d Φ  is of the order of 210−  for magnetic fields of 

the order of a few Teslas (at which the effect of the mag-
netic field on the transport through the Rashba weak link 
becomes visible). 

The disparity between the way the electron-vibration 
coupling affects the Rashba phase factor and the manner by 
which it dominates the magnetic one results in a convenient 
(approximate) form for the transmission matrix   [14,33], 

 = ( , ) .d nd

nd d
G T B

 
 
 

 


 
 (34) 

The conductance ( , )G T B  (divided by 2e ) derived in 
Ref. 31 [see Eqs. (15) and (16) for the definition, and 
Eq. (17) for the limiting behaviors], gives the transmission 
of the junction in the absence of the Rashba interaction; it 
depends on the temperature and on the perpendicular mag-
netic field. 

The spin-dependent part of the transmission is given by 
the matrix in Eq. (34), 

 2 2
0 0 0 0

0 0

= 1 ,

ˆ ˆ ˆ ˆ= ( ) 2
ˆ ˆ2( )( ) .

d nd

d nd L R L R

L R

A V A

+

− − ⋅ + ⋅ × +

+ ⋅ ⋅

n n V n n
V n V n

 

   (35) 

Here 0A  and 0V  are given by the values of A  and V  de-
fined in Eqs. (32) at equilibrium, i.e., when the angle θ 
there is replaced by 0θ . Their physical meaning is ex-
plained below: 2= sin ( )nd γ , where γ  is the twisting an-
gle of the charge carriers’ spins, and 2= cos ( )d γ . 

Using the explicit expression (34) for the transmission 
matrix   it is straightforward to find the transport coeffi-
cients i . Retaining only terms linear in the difference be-
tween the densities of states of the two spin orientations, 
we obtain 
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8 ( , ) ,
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      
    
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 (36) 

where ,L R  is the total density of states of each electronic 
reservoir (summed over the two spin directions). Glancing 
at Eq. (25) for the charge current, and taking into account 
the first of Eqs. (35), shows that the conductance, G , of the 
junction is independent of the spin-orbit interaction, and is 
given by 

 2= 4 e ( , ) .L RG G T Bπ    (37) 

Rashba twisting. When the junction is not subjected to a 
perpendicular magnetic field and the charge carriers pass-
ing through it do not collect an Aharonov–Bohm phase due 
to it, one may safely ignore the effect of the quantum flex-
ural nano-vibrations of the suspended wire [14]. The scat-
tering of the electrons’ momentum, caused by the spatial 
constraint of their orbital motion inside the nanowire, also 
induces scattering of the electronic spins. The latter results 
from the SO Rashba interaction located at the wire. Conse-
quently, an electronic wave having a definite spin projec-
tion on the magnetization vector of the lead from which it 
emerges, is not a spin eigenstate in the other lead. Thus, a 
pure spin state | σ〉  in one lead becomes a mixed spin state 
in the other, 
 1 2| | | ,σ〉 ⇒ α σ〉 + α σ〉  (38) 
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with probability amplitude 1α  to remain in the original 
state, and probability amplitude 2α  for a spin flip ( =σ −σ). 
During the propagation through the weak link the spins of 
the charge carriers are twisted, as is described by the 
transmission amplitude [see Eq. (31)], 0 0A i+ ⋅V σ . It fol-
lows that the probability amplitude for a spin flip, 2α , is 
given by 
 †

2 0 0= [ ( ) ] ,LR A i σσα + ⋅V σ   (39) 

with ,L R  given in Eq. (22). The Rashba twisting angle, γ , 
can now be defined by 

 2 = sin( ) e ,iδα γ  (40) 
with 
 2 2

2| | = sin ( ) = ,ndα γ   (41) 

yielding a clear physical meaning to the transmissions d  
and nd  [see Eqs. (35)]. The physical quantities depend 
only on the relative phase between 1α  and 2α . Therefore, 
we choose 1 = cosα γ . It is then easy to check that the av-
erage of the vector σ  in the state of Eq. (38) is equal to 
{sin (2 )cos ( ),sin (2 )sin ( ),cos (2 )}γ δ γ δ γ . This vector is 
rotated by the angle 2γ  relative to its direction in the ab-
sence of the spin-orbit interaction. This rotation of the 
electronic moments in each of the two leads is a “twist” of 
the spins. It is distinct from simple spin precession since 
the axis of this precession changes its direction during the 
electronic motion along the curved trajectory. 

In the simplest configuration of parallel magnetizations 
in both electrodes, i.e., 

 ˆ ˆ ˆ= ,L R ≡n n n  (42) 
Eqs. (35) yield 
 2 2 1/2

0 0ˆsin( ) = [ ( ) ] .Vγ − ⋅n V  (43) 

Interestingly enough, in this simple configuration sin( )γ  is 
determined by the component of the Rashba vector 0V  
normal to the quantization axis of the magnetization in the 
electrodes. Mechanically manipulating the bending angle 
that determines the direction of the Rashba vector 0V , one 
may control the twisting angle γ . Note also that had the 
vectors ˆ Ln  and ˆ Rn  been antiparallel to one another then 

2 2 1/2
0 0ˆsin( ) = [1 ( ) ]Vγ − + ⋅n V . 

An even more convenient way to monitor the twisting 
effect may be realized by studying the spintro-voltaic ef-
fect in an open circuit, i.e., when the total charge current 
vanishes. One then finds that the spin-imbalanced popula-
tions in the electrodes give rise to an electric voltage, svV . 
Assuming that the spin imbalances in the two reservoirs 
are identical, i.e., =L RU U U≡ , Eq. (25) yields 

 3 2

1
= .svV U

− 


 (44) 

The ratio of the voltage created by the spin imbalance, svV , 
to the amount of spin imbalance in the electrodes (ex-

pressed by U ) can be found upon using Eqs. (36), in con-
junction with Eqs. (35) and (41), 

 2= sin ( ) .L R L R
sv

L R
V U↑ ↓ ↓ ↑−

γ
   

 
 (45) 

The voltage generated by the Rashba interaction gives di-
rectly the twisting angle; the proportionality between 

/svV U  and sin( )γ  is the magnetic mismatch parameter of 
the junction. 

The twisting angle γ  determines also the various spin 
conductances of the junction. From Eqs. (29) and (30) we 
find [34] 

 spin spin
2 3 1 4= ( ) ( )( )L RL RI I eV U U+ − + + − =      

, , , ,
2= 2 ( ) ,

2
L R L R
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G U U eV
e
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+ +

   


 
 (46) 

where G  is the charge conductance, Eq. (37), and we have 
made use of Eqs. (36) for the  ’s. One now observes that 
both the spin conductance, spinG  (normalized by the 
charge conductance) 

 
spin spin

spin
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I I
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U U G e

+

+
 (47) 

and the cross spin conductance, spinG×  (again normalized 
by the charge conductance), 

 
spin spin

spin
= =02= | ,

/
L R

U UL R
I I

G
eVG e

×
+

 (48) 

are determined by nd , that is by the twisting angle γ , 
Eq. (41) (the second requires the asymmetry in the spin-
resolved densities of states). 

For parallel magnetizations in the leads, the twisting 
angle [see Eq. (43)] depends solely on the SO coupling and 
on the equilibrium value of the bending angle. The spin 
twisting disappears for any direction of the polarizations in 
the leads at 0 = / 2θ π . This can be easily understood with-
in a classical picture for the spin rotation caused by the 
Rashba interaction. The spin evolution of the tunneling 
electron can be regarded as a rotation around an axis given 
by the vectorial product of the velocity and the electric 
field (directed along ẑ  in our configuration). At this value 
of 0θ  the tunneling trajectory is oriented along ŷ (because 
then = = 0R Lx x ) and so the electron “rattles” back and 
forth along ŷ. This leads to a cancellation of the Rashba 
contribution to the tunneling phase [see Eq. (10)]. The oth-
er special case is when the wire is not bended, i.e., 0 = 0θ . 
The spin twisting for leads’ magnetizations along ŷ van-
ishes, while for devices with ferromagnetic magnetizations 
along the x̂ or ẑ  directions it reaches its maximal value, 
sin ( )sok d . The reason for this has also to do with the ori-
entation of the spin-rotation axis. At small values of 0θ  the 
electronic trajectory is primarily along x̂. Then, when the 
spin of the incident electron is directed along ŷ it is paral-
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lel to the rotation axis and no rotation is taking place. In 
contrast, when the spin of the incident electron is oriented 
along x̂ or ẑ , it is perpendicular to the rotation axis, lead-
ing to a full rotation. 

Thus, one can have spintro-electric functionalities if 
one uses a vibrating suspended weak link, with both a 
magnetic flux and an (electric field dependent) Rashba 
spin-orbit interaction. The twisting of the electronic spins 
as they move between the (spin-polarized) electrodes can 
be manipulated by the bias voltage, the bending of the 
weak link wire, and the polarizations in the electrodes. The 
twisting angle, which determines the probability amplitude 
of the Rashba splitting, can be measured electrically 
through a spintro-voltaic effect. 

4. Spin polarization of Cooper pairs in spin-orbit-active 
superconducting weak links 

A remarkable consequence of superconductivity, known 
as the proximity effect, allows a supercurrent to flow be-
tween two superconductors connected by a non-supercon-
ducting material of a finite width. This phenomenon was 
actively studied during several decades starting with the 
pioneering prediction by Josephson [19] in the early 1960’s 
that a non-dissipative current may flow through a tunnel 
junction formed by a layered superconductor-insulator-
superconductor (S–I–S) structure. A number of other so-
called superconducting weak links, involving a normal 
metal, a quantum dot and various micro-constrictions, have 
been studied theoretically and experimentally during the past 
decades in order to explore and exploit this phenomenon. 

A phase transition to a superconducting state is accom-
panied by the formation of a new ground state, which is 
different from the standard metal ground state and which 
can be viewed as a condensate of paired electrons (Cooper 
pairs). The pairing is supported by an indirect attractive 
inter-electronic interaction usually described in terms of 
a “pairing potential”. In inhomogeneous superconductors 
this potential is coordinate dependent and can, in particu-
lar, be suppressed in a layer perpendicular to the direction 
of the superconducting current. In this case electron pairs 
that carry the supercurrent are injected into a region where 
pairing is no longer supported by a pairing potential. How-
ever, the coherent properties of the electrons established 
inside the superconducting injector can be preserved for 
a certain distance (the superconducting coherence length), 
which allows a non-dissipative current to flow through 
a non-superconducting layer of a sufficiently small width. 
Nevertheless, the spatial segregation of the Cooper pairs 
from the pairing potential responsible for their stability 
suggests a unique way for manipulating the Cooper pairs 
during their propagation through a superconducting weak 
link. 

Consider, for example, the well-known fact that elec-
trons, which form a Cooper pair in a conventional (singlet 
BCS) superconductor, are in time-reversed quantum states 

and therefore their spins are aligned in opposite directions 
so that the pair as a whole carries no spin. This spin order-
ing can be distorted inside the weak link, which allows for 
an intentional “spin design” to be achieved by means of a 
superconducting weak link. In this section we describe a 
particular mechanism for this kind of spin design, viz. an 
SO interaction localized to the non-superconducting weak 
link as presented in Ref. 10. 

We show that the splitting of the spin state of the paired 
electrons that carry the Josephson current may transform 
the spin-singlet Cooper pairs into a coherent mixture of 
singlet and triplet spin states. This mixture gives rise to 
interference between the channel in which both electrons 
preserve their spins and the channel where they are flipped. 
The resulting interference pattern, that appears in the Jo-
sephson current but does not show up in the normal-state 
transmission of the junction, allows for electrical and me-
chanical control of the Josephson current between two 
spin-singlet superconductors; it corresponds to a new type 
of “spin-gating” [35] of superconducting “weak links”. 

To illustrate our calculation, Fig. 5 uses a semiclassical 
analogue of the quantum evolution of the spin states of 
electrons which move between two bulk leads via a weak 
link, where they are subjected to the Rashba SO interac-

Fig. 5. Schematic illustrations of the lowest-order perturbation 
expansion steps for tunneling (in the Coulomb blockade regime) 
through a straight nanowire weak link subjected to the Rashba 
spin-orbit (SO) interaction caused by an electric field along ẑ . In 
a semiclassical picture, the spin of each electron (denoted by an 
arrow) is rotated in the XY plane as it goes through the link. 
(a) Single electron tunneling from one normal metal to another, 
via an intermediate (rotating) state (dashed circle). When the 
electron enters the second normal metal, its spin has been rotated. 
(b) Sequential tunneling in four steps of a Cooper pair between 
two superconductors connected by the same weak link. Because 
the two electrons that form the Cooper pair are in time-reversed 
states, the SO interaction rotates their spins in opposite directions. 
(c) As they enter the second superconductor, the Cooper pairs are 
in a coherent mixture (dash-dotted circle) of a spin-singlet and a 
spin-triplet state. Inside this superconductor, this state is then 
projected onto the singlet state (full circle). Reprinted figure with 
permission from R.I. Shekhter et al., Phys. Rev. Lett. 116, 217001 
(2016) © 2016 by the American Physical Society. 
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tion. For simplicity we assume for now that the weak link 
is a straight 1D wire along the x̂  axis. The SO interaction 
in the wire is due to an electric field, which for the moment 
is assumed to point along ẑ  and therefore corresponds to 
an effective SO-interaction-induced magnetic field directed 
along ŷ. Figure 5(a) illustrates a single-electron transfer 
from one normal metal to another. Without loss of general-
ity, we choose the ẑ  axis in spin space to be along the di-
rection of the polarization of the electron in the first (left) 
metal. Semiclassically, the spin of the injected electron 
rotates in the XZ plane as it passes through the wire. As 
a result, the spins of the electrons that enter the second 
metal from the wire are rotated around the ŷ axis by an 
angle proportional to the strength of the SO interaction and 
the length of the wire. This rotation depends on the direc-
tion of the “initial” electron’s polarization. It occurs only if 
the polarization has a component in the XZ plane. Quantum 
mechanically, the electron’s spinor in the left metal is an 
eigenfunction of the Pauli spin-matrix zσ , and the spinor 
of the outgoing electron is in a coherent superposition of 
spin-up and spin-down eigenstates of zσ . 

How can this picture be generalized to describe the 
transfer of the two electrons of a Cooper pair between two 
bulk superconductors? The simplest case to consider, which 
we focus upon below, is when the single-electron tunneling 
is Coulomb-blockaded throughout the wire. While the blo-
ckade can be lifted for one electron, double electron occu-
pancy of the wire is suppressed, i.e., a Cooper pair is main-
ly transferred sequentially, as shown in Fig. 5(b). Each 
electron transfer is now accompanied by the spin rotation 
shown in Fig. 5(a). However, since the two transferred 
electrons are in time-reversed quantum states, the time 
evolution of their spins are reversed with respect to one 
another, and their rotation angles have opposite signs 
[step 4 in Fig. 5(b)]. This final state [Fig. 5(c)] can be ex-
pressed as a coherent mixture of a spin-singlet and a spin-
triplet state, but only the former can enter into the second 
superconductor. As we show below, this projection onto 
the singlet causes a reduction of the Josephson current. 

We consider a model where a Cooper pair is transferred 
between superconducting source and drain leads via virtual 
states localized in a weak-link wire [see Fig. 6(a)]. The 
corresponding tunneling process, which supports multiple 
tunneling channels, was analyzed in detail in Ref. 36. 
For simplicity, it is assumed throughout this section that 
the angle θ remains fixed, that is, the wire does not vibrate. 
A significant simplification occurs in the Coulomb-blo-
ckade regime, defined by the inequality = ( 1)e CE E N + −

( ) | |CE N− ∆ , where | |∆  is the energy gap parameter in 
the superconducting leads [37], and ( )CE N  is the Coulomb 
energy of the wire when it contains N  electrons. In this 
regime, tunneling channels requiring two electrons to be 
simultaneously localized in a virtual state in the wire can 
be neglected, and hence the tunneling processes are se-
quential. Another simplification follows from our assump-

tion that the length of the wire d  is short compared to the 
superconducting coherence length 0 / | |Fξ ≡ ∆v  [37], so 
that the dependence of the matrix element for a single elec-
tron transfer on the electron energy in the virtual states can 
be ignored. A final simplification, facilitated by the device 
geometry, concerns the conservation of the electrons’ lon-
gitudinal momenta as they tunnel between the two leads. In 
Fig. 6, the wire ends are placed on top of the metal leads 
and are separated from them by thin but long tunneling 
barriers. Since the direction of tunneling is nearly perpen-
dicular to the direction of the current along the wire, such a 
geometry is conductive to longitudinal momentum conser-
vation [38]. 

These simple but realistic assumptions allow us to de-
scribe the transfer of a Cooper pair between the two super-
conductors in terms of single-electron tunneling, as given 
by the Hamiltonian (B.6) [see also Eqs. (B.1)–(B.5)], with 
the tunneling matrix elements derived in Appendix A. We 
assume a weak link containing a bent wire [see Fig. 6(a)]. 
The actual calculations are done for the geometry shown in 
Fig. 6(b), where the weak link comprises two straight one-
dimensional wires, LR  and RR , of equal length / 2d , con-
nected by a “bend”. The angles between these wires and 
the x̂  axis are θ and −θ , respectively. 

In the absence of the SO interaction, the supercurrent 
scales as the transmission of the junction when in the nor-
mal state [39,40]. As detailed in Appendix B, the SO cou-
pling modifies this transmission by the factor Tr †{ } , 
where 

 ˆ ˆ= e e ,ik ikso L so R− ⋅ × − ⋅ ×σ R n σ R n  (49) 

and the trace is carried out in spin space. When sok  vanishes, 
this factor is simply 2, the spin degeneracy; i.e., the SO in-
teraction does not affect the electric conductance (unless 
the junction allows for geometrically-interfering process-
es [18]). The superconducting Josephson current is 

2 2 2

0

( ) 1 1= | | | | = | | ,
( ) 2 2

J
J σσ σσ σσ

σ σ

ϕ   − −  ϕ  
∑ ∑    (50) 

Fig. 6. (Color online) Sketch (a) and simplified model (b) of 
a device that would allow the effects predicted in the text to be 
studied. Reprinted figure with permission from R.I. Shekhter et 
al., Phys. Rev. Lett. 116, 217001 (2016) © 2016 by the American 
Physical Society. 
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where 0 ( ) sin( )J ϕ ∝ ϕ  is the equilibrium Josephson current 
in the absence of the SO interaction [39], and ϕ  is the su-
perconducting phase difference. 

Hence, the SO interaction modifies significantly the 
amplitude of the Josephson equilibrium current, while 
leaving the transmission of the junction in its normal state 
as in the absence of this coupling. The matrix  , that de-
termines these quantities, depends crucially on the direc-
tion n̂ of the electric field [see Eq. (3)]. In the configura-
tion where n̂ is normal to the plane of the junction, which 
is described semiclassically in Fig. 5, ˆ ˆn z , and then 

 2 2= [cos ( / 2) sin ( / 2)cos (2 )]so sok d k d− θ +   

 2ˆ ˆ[ sin ( ) cos ( ) sin ( / 2)sin (2 )] .so soi k d k d+ ⋅ θ + θσ y z  (51) 

In contrast, when the electric field is in the plane of 
the junction, e.g., ˆ ˆ=n y, we find 

 ˆ= cos [ cos( )] sin [ cos( )] .so sok d i k dθ − ⋅ θσ z  (52) 

When the SO interaction is given by Eq. (7), one finds that 
  of the strain-induced case has the same form as 
Eq. (51), except that ŷ is replaced by x̂. The resulting ex-
pressions for the Josephson current and for the normal-
state transmission turn out to be the same as for the SO 
interaction of Eq. (3), with ˆ ˆn z . 

The matrix element σσ  depends on the quantization 
axis of the spins. Choosing this axis to be along ẑ , then 
when ˆ ˆn z  Eq. (51) yields (cf. Fig. 7) 

 2 2 21 2 | | = 1 2cos ( )sin ( ) .sok dσσ− − θ  (53) 

In contrast, when the electric field is in the plane of the 
junction, ˆ ˆ=n y, the matrix   is diagonal [Eq. (52)], 

0( ) = ( )J Jϕ ϕ , and the superconducting current is not af-
fected by the spin dynamics. Similar qualitative results are 
found for all the directions of the spin quantization axis. 
For example, for spins polarized along ŷ, one finds 

2 4 2| | = sin ( / 2)sin (2 )sok dσσ θ  when ˆ ˆn z , while when 
ˆ ˆn y  it is 2 2| | = sin [ cos( )]sok dσσ θ . In most cases, the 
splitting of the Cooper-pair spin state by the SO interaction 
reduces significantly the Josephson current through the 
superconducting weak link under consideration. 

Two features determine the magnitude of the effect for 
a given spin quantization axis in the leads (in addition to 
the strength sok  of the SO interaction and the length d  over 
which it acts). One is the extent to which the nanowire is 
bent (θ in Fig. 6), and the other is the orientation n̂ of the 
electric field responsible for the SO coupling relative to the 
spin quantization axis. Both break spin conservation, 
which results in Rabi oscillations between the singlet and 
triplet spin states of the (originally spin-singlet) Cooper 
pairs passing through the SO-active weak link. The conse-
quence is a spin splitting of the Cooper pairs that reach the 
second superconducting lead, where their spin state is pro-
jected onto the singlet state. This splitting can result in a 

Josephson current that is an oscillatory function of the “ac-
tion” sok d  of the SO interaction (Fig. 7); the effect may be 
absent for special directions of the electric field. Both re-
sults can be understood in terms of a semiclassical picture, 
Fig. 5. 

As seen in Eq. (50), the Josephson current can be writ-
ten as a sum of two contributions. One, 2| |σσ , comes 
from a channel where the spin projections of the Cooper 
pair electrons, when leaving and entering the weak link, 
are identical; the other, 2| |σσ , arises from another chan-
nel, where the electron spins are flipped during the pas-
sage. It is remarkable that the two contributions have op-
posite signs. This is due to a Josephson tunneling “π-shift” 
caused by electronic spin flips (and is similar to the effect 
predicted for tunneling through a Kondo impurity [41]). In 
particular, a total cancellation of the Josephson current is 
possible when, e.g., = 0θ  and = / 4sok d π ; in the limit 

= 0θ  and = / 2sok d π  the Josephson current even changes 
its sign. This spin-orbit induced interference effect on the 
Josephson current is specific to a weak link subjected to 
SO interaction between superconductors. There is no such 
effect on the current through a single weak link connecting 
two normal metals. 

According to Eq. (50), none or both of the Cooper pair 
electrons must have flipped their spins as they leave the 
weak link in order to contribute to the Josephson current. 
This is because only spin-singlet Cooper pairs can enter the 
receiving s-type bulk superconductor. However, single-flip 
processes, where only one of the two tunneling electrons 
flips its spin, are also possible results of injecting Cooper 
pairs into a Rashba weak link. Those processes correspond 
to a triplet component of the spin state of the transferred 
pair, and can be viewed as evidence for spin polarization 
of injected Cooper pairs. The triplet component could be 

Fig. 7. (Color online) The Josephson current ( )J ϕ  divided by its 
value without the SO interaction, 0( )J ϕ , for the SO interaction 
Eq. (3), as a function of / (2 )sok d π . The largest amplitude is 
for zero bending angle, = 0θ , decreasing gradually for 

= / 6, / 5, / 4, / 3,θ π π π π  and / 2.5π . Relevant values of sok  are 
estimated in Sec. 5. Reprinted figure with permission from R. I. 
Shekhter et al., Phys. Rev. Lett. 116, 217001 (2016) © 2016 by 
the American Physical Society. 
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responsible for a spin-triplet proximity effect [42], and 
would presumably contribute a spin supercurrent if higher-
order tunneling processes were taken into account. 

Thus, the supercurrent can be tuned by mechanical and 
electrical manipulations of the spin polarization of the 
Cooper pairs. In particular, the Josephson current through 
an electrostatically-gated device becomes an oscillatory 
function of the gate voltage. We emphasize that these re-
sults follow from the interference of two transmission 
channels, one where the spins of both members of a 
Cooper pair are preserved and one where they are both 
flipped, and that this interference does not require any ex-
ternal magnetic field. It is important, however, that those 
parts of the device where the superconducting pairing po-
tential is nonzero and where the SO coupling is finite are 
spatially separated. To lowest order in the tunneling this 
separation prevents the superconductivity in the leads to 
have any effect on the dynamical spin evolution in the 
wire. 

5. Conclusions 

In addition to the charge of electrons, their spin degree 
of freedom can also play an important role when nanome-
ter-sized devices are used for electronics applications. The 
electron spin naturally comes into play if magnetic materi-
als or external magnetic fields are used. However, even in 
non-magnetic materials the spin may couple strongly to 
an effective magnetic field induced by the spin-orbit (SO) 
interaction, which is a relativistic effect that couples the 
electron’s spin degree of freedom to its orbital motion. 
Such a coupling, first discovered in bulk materials without 
spatial inversion symmetry, can be significantly enhanced 
in nanostructures where the screening of an electrostatic 
field is suppressed and spatial inversion symmetry can be 
lifted by internal or external electric fields. The concept of 
an enhanced spin-orbit coupling in the vicinity of crystal 
surfaces [6,7], can therefore naturally be extended to nano-
structures, where the surface to volume ratio can be rather 
high. 

Carbon nanotubes and semiconductor wires seem par-
ticularly suitable to be used as spin-splitters. Measured 
Rashba spin-orbit-coupling induced energy gaps in 
InGaAs/InAlAs ( = 2 5so F sok∆ ≈v  meV) [43] and 
InAs/AlSb ( 4so∆ ≈  meV) [44] quantum wells correspond 
to 64·10sok ≈  m 1− . The strain-induced SO energy gap for 
a carbon nanotube is strain strain= 2 0.4so F sok∆ ≈v  meV, cor-
responding to strain 60.4 ·10sok ≈  m 1−  for 60.5 ·10F ≈v  m/s 
[28]. For d  of the order of µm, (strain)

sok d  can therefore be 
of order 1 5− . 

In this article we have presented a short review of re-
cent theoretical predictions, which may bring new func-
tionality to nanoscale devices through the electronic spin 
degree of freedom. The “twisting” of the electronic spin 
induced by an SO interaction that is geometrically local-
ized to a weak link between bulk electrodes, can be viewed 

as a splitting of electronic waves in spin space — a phe-
nomenon we call Rashba spin-splitting. A common feature 
of the investigated Rashba spin-splitting devices is the pos-
sibility to tune the electronic transport through an SO-
active weak link mechanically and possibly also electro-
statically by “spin gating” [35]. We have shown that this is 
possible both for normal and superconducting electron 
transport. Nevertheless, more research has to be done in 
order to develop a complete theory of Rashba gating of 
normal and superconducting weak links. Here we would 
like to mention a few possible directions for future work. 

Role of the “spin quantization axis” in the leads. The 
electron spin projection on an arbitrary chosen axis can 
take the two possible values / 2± , meaning that these are 
the eigenvalues of a certain operator acting on the spin 
wavefunction. The corresponding eigenfunctions span the 
full Hilbert space. When the electronic spin is decoupled 
from other degrees of freedom and external fields, this spin 
operator commutes with the Hamiltonian and therefore the 
same eigenfunctions are also eigenfunctions of the Hamil-
tonian and thus represent stationary spin states for any 
choice of the spin quantization axis. This is no longer the 
situation if the spin is coupled to an external magnetic 
field, in which case the eigenstates correspond to a spin 
quantization axis that is parallel to the magnetic field. It is 
also not the case for an SO-active material where the spin 
eigenstates correspond to wave-vector dependent direc-
tions of the spin quantization axis. When an SO-active 
weak link connects two SO-inactive electrodes, the spin 
quantization axis will in general point in different direc-
tions in different parts of the device. Which spin state the 
electrons occupy in the source electrode is therefore im-
portant. It follows that the choice of spin quantization axis 
in the leads, which can be accomplished by applying a 
weak external magnetic field (see the discussion in Sec. 3), 
is another tool for spin-controlled electron transport phe-
nomena that needs to be fully investigated. 

Spin-vibron coupling in nano-electromechanical weak 
links. The sensitivity of spin-controlled transport through 
an SO-active weak link to a mechanical deformation of the 
link, which has been demonstrated in this review, leads to 
the question of how transport is affected by the coupling 
between the spin and the mechanical vibrations. Such a 
coupling can be strong enough to cause spin-acoustic func-
tionality in SO-active nano-electromechanical devices, 
which deserves to be investigated. 

Singlet-to-triplet spin conversion in spin-orbit active 
superconducting weak links. The possibility of an SO-
induced “spin redesign” of Cooper pairs passing through a 
Rashba weak link, which was demonstrated in Sec. 4, rais-
es the question of what kind of links can be established 
between two superconductors based on pairs of electrons 
in different spin states. The spin polarization of Cooper 
pairs that may result from their propagation through an 
SO-active Rashba spin-splitter allows for a gradual change 
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of their spin state and hence for a transformation between a 
spin-singlet Cooper pair and a spin-triplet pair. The com-
plete theory of the above conversion can be connected to 
the interesting problem of proximity-induced spin polariza-
tion of superconductors. 

Role of the Coulomb interaction in spin-gated devices. 
Charge and spin are two fundamental properties of elec-
trons and we have shown that, due to the SO interaction, 
spin as well as charge couples to an electric field. There-
fore, the question of how electron transport through a weak 
link is affected by the interplay between the Coulomb 
blockade of tunneling processes and the phenomenon of 
spin splitting is an intriguing task for future research. For 
example, in the study of a superconducting SO-active weak 
link [10] (see also Sec. 4), the Coulomb blockade phenom-
enon was used to simplify the process of spin polarization 
of a Cooper pair by decomposing it into a sequence of spin 
twists of single electrons. What the result of lifting the 
Coulomb blockade will be, is an important question for 
future research. 

To conclude we emphasize that the study of spin-con-
trolled transport through SO active weak links is only in its 
infancy. We believe that the early progress, some of it re-
viewed here, has laid a solid foundation for a wealth of 
future experimental and theoretical achievements. 
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Appendix A: Tunneling elements 

In a simplified model, the weak links between the elec-
trodes are pictured as straight segments connected at con-
torted bends. Considering the bent regions as scattering 
centers, this Appendix outlines the derivation of the tunnel-
ing elements representing the weak links. The probability 
amplitude for tunneling from one lead to the other is con-
structed from products of propagators along the straight 
segments and a transfer amplitude across the contorted 
parts. 

The propagator of the electron along a straight segment 
in the presence of spin-orbit interactions and a Zeeman 
field is found in Sec. A1. Confining the discussion to a 
bent wire that couples two electrodes, the effective tunnel-
ing elements in-between them are derived in Sec. A2. The 
effect of the mechanical degrees of freedom on the tunnel-
ing elements is introduced in Sec. A3: the vibrations’ dy-
namics is incorporated into the effective tunneling [31]. 

A1. Propagation along a straight segment 

The electron’s propagation along a straight segment is 
described by the Green’s function corresponding to the 

Hamiltonian there. Assuming that the motion is ballistic, 
the spatial part of the wave function is taken as a plane 
wave. The propagator from point ′r  to point r is then 

 | | 1( ; ) = e [ 0 ( )] ,ikG E dk E i′− + −′− + −∫ r rr r k  (A.1) 

where E  is the electron’s energy, and the vector k , whose 
length is k , lies in the direction of the segment connecting 
connecting ′r  with r. When the SO interaction is the one 
given in Eq. (3), the Hamiltonian is (adopting units in 
which = 1 ) 

 
2

* *
ˆ( ) = ( ) .

2
sokk

m m
+ σ ⋅ ×k k n  (A.2) 

Inserting this expression into Eq. (A.1) and carrying out 
the integration over the length k , one obtains the propaga-
tor as given in Ref. 45 (see also Ref. 18). 

Here we extend that calculation in two directions. First, 
we allow for other forms of the SO interaction. For in-
stance, SO coupling may be induced by strains, as happens 
in carbon nanotubes, where the spin dynamics is described 
by the effective interaction [17,46] 

 strain strain ˆ= .so F sok ⋅k σ v  (A.3) 

Here, Fv  is the Fermi velocity [see also Eq. (7)]; for 
60.5·10F ≈v  m/sec, one finds strain 60.4·10sok ≈  m 1−  [28]. 

Second, one may wish to find the propagator in the pres-
ence of a magnetic field B . The orbital effect of this field 
on the motion along a one-dimensional wire can be ac-
counted for by assigning an Aharonov–Bohm phase factor 
to the propagator, the phase being the magnetic flux (in 
units of the flux quantum) accumulated from the field upon 
moving along the segment. (Naturally, this phase factor de-
pends on the choice of the coordinate origin; the physical 
quantities, however, include only the total Aharonov–Bohm 
flux through closed loops [16].) The magnetic field is coupl-
ed also to the spin, adding to the Hamiltonian ( )k  the 
Zeeman interaction, Bµ ⋅B σ . It follows that the generic 
form of the (ballistic) Hamiltonian on the straight segment is 

 
2

( ) = ( ) .
2
k
m∗

+ ⋅k Q k σ  (A.4) 

For example, for the SO interaction Eq. (3), 

 
*

ˆ( ) = ( ) .so
B

k
m

× +µQ k k n B  (A.5) 

Note that ( )Q k  combines together the Zeeman magnetic 
field, and the effective magnetic field representing the SO 
interaction. 

The Hamiltonian (A.4) is easily diagonalized: the ei-
genvalues are 

 
2

*
( ) = ( ) ,

2
k Q
m

±ε ±k k  (A.6) 
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and the projection operators into each of the corresponding 
subspaces are 

 
ˆ1 ( )( ) = ,
2±

± ⋅
Π

Q k σk  (A.7) 

where ˆ ( )Q k  is a unit vector in the direction of the vector 
( )Q k , whose length is ( )Q k . Using the diagonalized form 

in Eq. (A.1) yields 

 | |( ; ) = eikG E dk ′−′− ×∫ r rr r   

 
( ) ( )

.
0 ( ) 0 ( )E i E i
+ −
+ +

+ −

 Π Π
× +  + − ε + − ε 

k k
k k

 (A.8) 

The poles of the integrand in Eq. (A.8) are given by the 
relation 
 2 2 *0= 2 ( ) 0 ,k k m Q k i +

± +  (A.9) 

where 2 *0 = 2k m E . Hence, 

 
| '|*e( ; ) = ( )

ikmG E i k
k

−+
+ +

+


′ − π Π +




r r
r r   

 
| '|e ( ) .

ikm k
k

−∗ −
+ −

−


+ Π



r r
 (A.10) 

(Note that the angles of the vector k  are not changed along 
the straight segment, and therefore the integration is car-
ried out over the magnitude, k .) The energy E  corresponds 
to the Fermi energy in the leads; assuming that it is much 
larger than the energy scales of the SO interaction and the 
magnetic field, one may use the approximation 

 
*

0 0
0

( ) ,mk k Q k
k± ≈   (A.11) 

to obtain 
 0( ; ) = ( ; )G E G E′ ′− − ×r r r r   

| | | |0 0
0 00 0e ( ) e ( )

m Q m Q
i i

k kk k

∗ ∗′ ′− −
−

+ −

 
 
 × Π + Π =
 
 
 

r r r r
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m Q
G E

k

  ′−′− − 
   

r r
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* 0

0
0

| | ˆsin
m Q

i
k

 ′− − ⋅ 
   

r r
σ Q  (A.12) 

Here, 
 *0 0 0( ; ) = ( / ) exp [ | |] ,G E i m k ik′ ′− π −r r r r  (A.13) 

is the propagator on the segment in the absence of the SO 
interaction and the magnetic field, and 

 0 0= ( ) ,kQ Q  (A.14) 

where the angles of the vector k  are those of the straight 
segment. The spin dynamic, caused by the spin-orbit inter-

action and the Zeeman field, is contained in the second 
factor of Eq. (A.12). 

A2. Weak links with a bend 

Figure 6(b) illustrates the model system used in the cal-
culations. The weak link between two electrodes, taken to 
lie in the XY  plane, is replaced by two straight one-
dimensional wires, LR  and RR , of equal length / 2d , con-
nected by a bent. The angles between these wires and the x̂ 
axis are θ and −θ , respectively. This means that the direc-
tion of the vector k  [see, e.g., Eq. (A.5)] of the left wire is 
{cos ,sin ,0}θ θ  and that of the right wire is {cos , sin ,0}θ − θ . 
These unit vectors determine the corresponding vectors 0Q , 
Eq. (A.14). For this configuration, the tunneling amplitude, 
a 2×2 matrix in spin space, is 

 0= ,W W   (A.15) 
with 
 0 0 0= (| |; ) (| |; ) ,L RW G R E G R E  (A.16) 

where   is the transfer matrix through the bent in the wire. 
This scalar amplitude comprises all the characteristics of 
the tunneling element that are independent of the spin dy-
namics. The latter is embedded in the matrix  , 

 = exp [ ] exp [ ] ,L Ri i− ψ × − ψ  (A.17) 
where 

 0 ( )
( ) 0 ( )

0

ˆ= .
2

L R
L R L R

m Q d
k

∗

ψ ⋅σ Q  (A.18) 

The unitary matrix   performs two consecutive spin rota-
tions of the spins, around the axes 0

ˆ
LQ  and 0

ˆ
RQ . For the 

SO interaction given in Eq. (3), and in the absence of the 
Zeeman field, one finds that *0 0 0= = /L R soQ Q k k m , and 

0 ( ) ( )
ˆ ˆ= ( / 2)L R L Rd ×Q R n . Equation (A.15) is derived to 

lowest possible order in the tunneling; the explicit depend-
ence of 0W  on the momenta is omitted for brevity. 

A3. Vibrational degrees of freedom 

Coupling the charge carriers with the mechanical vibra-
tions of the suspended nanowire forming the junction adds 
an interesting aspect to the tunneling elements. For exam-
ple, it was shown that this coupling can render the con-
ductance through a single-channel wire to be affected by 
a constant magnetic field. The bending vibrations modify 
geometrically the spatial region where an orbital magnetic 
field is present, leading to a finite Aharonov–Bohm 
effect [31], which in turn gives rise to a magnetic-field 
dependence of the transmission. Likewise, the effect of 
the SO interaction can be modified by the effective area 
covered by the vibrating wire [14]. 

Consider for instance the setup depicted in Fig. 6(b). 
Within this plausible geometry, = = ( / 2)sinL Ry y d θ and 

= = ( / 2)cosL Rx x d θ, where θ is the instantaneous bend-
ing angle. (An alternative geometry, with = = / 2L Rx x d  
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and = = ( / 2) tanL Ry y d θ, gives similar results.) In order 
to mimic the bending vibrations of the wire we assume that 
once the wire is bent by the (equilibrium) angle 0θ , then 
the distance along x between the two supporting leads is 
fixed, while the bending point vibrates along y . As a result, 
tan = 2 / [ cos ]y dθ θ , implying that = (2 / [ cos ])d∆θ θ ×

2
0cos y× θ ∆ . (Here 0cosd θ  is the wire projection on the x̂ 

direction.) It follows that 

 †
0 0 0 0= = ( cos / )( ) ,a d b bθ θ + ∆θ θ + θ +  (A.19) 

where 0a  is the amplitude of the zero-point oscillations and 
b  ( † )b  is the annihialtion (creation) operator of the vibra-
tions. Their free Hamiltonian is described by the Einstein 
model, 
 †

vib 0= .b bω  (A.20) 

Details of the derivation of the current through a vibrating 
wire are given in Sec. B2. 

Appendix B: Spin-resolved currents 

This Appendix is divided into two parts. The spin-
resolved currents through the weak link discussed in Secs. 
A1 and A2 are derived in Sec. B1; that part ignores the 
effect of the mechanical vibrations. For the sake of com-
pleteness, we allow for the possibilities that the junction 
couples two superconducting electrodes, a superconducting 
and a normal one, or two normal-state electrodes. In all 
these cases we assume that each electrode is described by a 
free electron gas, augmented (in the case of a supercon-
ducting lead) by the BCS Hamiltonian. The currents 
through a vibrating nanowire are considered in Sec. B2. 
For simplicity the discussion there is confined to a junction 
connecting two normal electrodes. 

B1. Spin-resolved current through static weak links 

We consider the simplified, though realistic, model, in 
which two electrodes are connected via a spin-dependent 
tunnel Hamiltonian, 

 †
, ,

, ,
= ( [ ] h.c.) .T c W c′σ σ σ′σ

′σ σ
+∑ ∑ p k kp

k p
  (B.1) 

Here, 
 , , , ,[ ] = ([ ] )W W ∗

′ ′σ σ − − −σ −σp k p k  (B.2) 

are elements of a matrix in spin space, which obey time-
reversal symmetry [47]. (In the presence of a Zeeman inter-
action the sign of the magnetic field in the matrix element on 
the right-hand side is reversed.) The relation (B.2) adds to 
the one imposed by the hermiticity of the Hamiltonian, 

 , , , ,[ ] = ([ ] ) .W W ∗
′ ′σ σ σ σp k k p  (B.3) 

The operator †
( )c σk p  creates an electron in the left (right) 

electrode, with momentum ( )k p  and a spin index σ , which 
denotes the eigenvalue of the spin projection along an arbi-

trary axis. The construction of the matrix elements is de-
tailed in Secs. A1 and A2. 

As mentioned, the electrodes are considered as BCS su-
perconductors, 

 †
( ) ( ) ( )( )

( )
=L R c c σσξ +∑ k p k pk p

k p
   

 † †
( ) ( ) ( )

( )
h.c. ,L R c c

↑ − − ↓

 
 + ∆ +
 
 

∑ k p k p
k p

 (B.4) 

where ( ) ( )=ξ ε −µk p k p  is the quasi-particle energy in the 
left (right) bulk superconducting lead, and µ is the com-
mon chemical potential. The superconductor order parame-
ter ( )L R∆  is given by the self-consistency relation 

 ( ) ( ) ( )
( )

= ,L R BCSV c c− − ↓ ↑∆ 〈 〉∑ k p k p
k p

 (B.5) 

where BCSV  denotes the attractive interaction among the 
electrons. The total Hamiltonian of the junction is thus 

 = .L R T+ +     (B.6) 

Additional comments on the calculation of the current in-
between two superconducting leads are given below [48]. 

The spin-resolved particle current emerging from the 
left electrode, ,LI σ, is found by calculating the time evolu-
tion of the number operator of electrons with spin projec-
tion σ , ,LN σ

 , 

 †
, , =L L

dI N c c
dtσ σ σσ− ≡ 〈 〉 =∑ kk

k

   

 †
, ,

,
= 2 Im [ ] ,W c c′σ σ σ′σ

′σ
∑∑ p k kp
k p

 (B.7) 

where we have used the relation (B.3) and the self-
consistency requirement (B.5). 

The angular brackets in Eq. (B.7) denote the quantum-
thermal average, which we calculate within second-order 
perturbation theory in the tunneling Hamiltonian T , 
Eq. (B.1), 

†
, , ,

,
= 2Re [ ] ( ) ( ), ( ) .

t

L TI dt W c t c t t′σ σ σ σ′σ
′σ −∞

 ′ ′
 ∑∑ ∫ p k kp

k p
  

  (B.8) 

The time-dependence of the operators should be handled 
with care. When both electrodes are superconducting the 
difference between the phases of the two order parameters 
evolves in time according to the Josephson relation, lead-
ing to an ac current. This is not taken into account in the 
second-order perturbation calculation presented below, and 
therefore when the junction couples two superconducting 
leads, our treatment is valid only for the equilibrium situa-
tion, where no bias is applied across the junction. In that 
case the quasi-particle current vanishes. However, the 
comparison between the amplitude of the current in the 
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normal state of the junction, i.e., the transmission of the 
junction, and that of the Josephson current, is of great in-
terest since the SO interaction modifies them differently. 
For this reason both currents are kept. In the standard per-
turbation calculation carried out here, the normal-state 
transmission is derived from that of the quasi-particles. 
Accordingly, the particle current is separated into two 
parts, 

 , , ,= ,S N
L L LI I Iσ σ σ+  (B.9) 

with 

 2
, , ,

,
= 2 Re | [ ] |

t
S
LI dt W ′σ σ σ

′σ −∞

′ ×∑∑ ∫ p k
k p

  

 † †( ) ( ) ( ) ( )c t c t c t c tσ − −σ′ ′σ − −σ ′ ′× 〈 −k kp p   

 † †( ) ( ) ( ) ( ) ,c t c t c t c t− −σ σ′ ′− −σ σ′ ′− 〉k kp p  (B.10) 

and 

 2
, , ,

,
= 2 Re | [ ] |

t
N
LI dt W ′σ σ σ

′σ −∞

′ ×∑∑ ∫ p k
k p

  

† † † †( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .c t c t c t c t c t c t c t c t′ ′σ σ σ σ′ σ σ ′σ σ′ ′ ′ ′×〈 − 〉k p p kk kp p   

  (B.11) 

The quantum-thermal average is found by introducing 
the Green’s functions of the bulk (left) lead, 

†

† † †

( ) ( ) ( ) ( )
ˆ ( ; , ) = ,

( ) ( ) ( ) ( )

ˆ ˆ( ; , ) = [ ( ; , )] ,

c t c t c t c t
G t t i

c t c t c t c t

G t t G t t

↑ − ↓ ↑↑+−

− ↓↑ − ↓ − ↓
−+ +− ∗

 ′ ′〈 〉 〈 〉
 ′
 ′ ′〈 〉 〈 〉  

′ ′

k k kk

kk k k

k

k k

 (B.12) 

and their Fourier transforms, 

( ) e ( )ˆ ( , ) = [1 ( )] ,
e ( ) ( )

( )ˆ ˆ( , ) = ( , ) .
1 ( )

i L
L i L

L

L

A B
G i f

B A
fG G

f

ϕ
+−

− ϕ

−+ +−

 ω ω
 ω − ω
 ω −ω 

ω
ω − ω

− ω

k k

k k

k

k k

 (B.13) 

Analogous expressions pertain for the right lead, with k  
replaced by p, and L  by R . The superconducting gap func-
tion of the left BCS lead is = | | exp [ ]L L Li∆ ∆ ϕ , and 
the coherence factors there are = | | exp [ / 2]k k Lu u i− ϕ  

and = | | exp [ / 2]k k Liϕv v , with 2 2| | = 1 | | =k ku − v

= (1 / ) / 2k kE+ ξ , and 2 2= | |k k LE ξ + ∆ . The spectral 
functions in Eq. (B.13) are 

[ ]

2 2( ) = 2 | | ( ) | | ( ) ,

( ) = 2 | | ( ) ( ) ,

k k k k

k k k k

A u E E

B u E E

 ω π δ ω+ + δ ω− 
ω − π δ ω+ − δ ω−

k

k

v

v
 (B.14) 

and ( )Lf ω  is the Fermi function of the quasi-particles in 
the left lead. 

Inserting the relations (B.12) and (B.13) into Eq. (B.10) 
gives the equilibrium Josephson current, 

 , 2
,

( ) ( )= sin ( )
2

S
L L R

d d f fI σ
′ ′ω ω ω − ω

ϕ −ϕ ×
′ω−ωπ

∑ ∫
k p
   

 { }2 2
, , , ,( ) ( ) | [ ] | | [ ] | ,B B W Wσ σ σ σ′× ω ω −p k p k p k  (B.15) 

where we have used the symmetry ( ) = ( ) =B B−ω ωk k
= ( )B− −ωk  and 1( ) = ( ) ( ) = (exp [ ] 1)L Rf f f −ω ω ≡ ω βω +  
(β is the inverse temperature), since as mentioned, the 
supercurrent is calculated at equilibrium;   denotes the 
principal part, and σ  is the spin direction opposite to σ . 
The transmission of the junction in the normal state is 
found by inserting the relations (B.12) and (B.13) into 
Eq. (B.14) for the normal part of the spin-resolved current, 

 2
, , ,

,
= [ ( ) ( )](| [ ] |

2
N
L L R

dI f f Wσ σ σ
ω

ω − ω +
π∑∫ p k

k p
  

 2
, ,| [ ] | ) ( ) ( ) .W A Aσ σ+ ω ωp k k p  (B.16) 

Here we have used the symmetry ( ) = ( )A A−ω ωk k . As men-
tioned, the quasi-particle current N

LI , Eq. (B.16), vanishes 
for the unbiased junction for which ( ) = ( )L Rf fω ω . 

A comparison of the two expressions, Eqs. (B.15) and 
(B.16), reveals the different ways by which the total effec-
tive magnetic field [the Zeeman field and the effective 
magnetic field due to the SO interaction, see Eq. (A.4)] 
affects the Josephson current and the particle current in the 
normal state. One notes that the diagonal (in spin space) 
elements of the tunneling matrix appear in these two ex-
pressions with the same sign, as opposed to the off-dia-
gonal ones. This implies that there is a significant differ-
ence between the effect of the component of an effective 
magnetic field normal to the junction plane, and an effec-
tive magnetic field in the junction’s plane. 

B2. Spin-resolved currents through vibrating nanowires 

When the wire connecting the two electrodes [see 
Fig. 6(b)] is vibrating, the tunneling amplitude is a dynam-
ical variable (see Sec. A3), and hence depends on time. 
This modifies the calculation of the current. For conveni-
ence, the discussion is confined to the case where the weak 
link connects two normal electrodes. In second-order per-
turbation theory, the starting point is still Eq. (B.8), but one 
has to include in the calculation the time dependence of 
the hopping amplitude. As a result, Eq. (B.8) is modified, 

 †
, , ,

,
= 2 Re [[ ] ( ) ( ) ( ), ( )]

t

L TI dt W t c t c t t′σ σ σ σ′σ
′σ −∞

′ ′ =∑∑ ∫ p k kp
k p

  
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 , , , ,
,

= 2 Re ( [ ] ( )[ ] ( )
t

dt W t W t′ ′σ σ σ σ
′σ −∞

′ ′〈 〉 ×∑∑ ∫ p k k p
k p

  

 † †( ) ( ) ( ) ( )c t c t c t c t′σ σσ ′σ′ ′× 〈 〉〈 〉 −k pk p   

† †
, , , ,[ ] ( )[ ] ( ) ( ) ( ) ( ) ( ) ) .W t W t c t c t c t c t′ ′ ′σ σ σ σ σ σσ ′σ′ ′ ′−〈 〉〈 〉〈 〉k p p k k pk p   

  (B.17) 

The quantum thermal averages over the electronic opera-
tors are obtained as in Sec. B1, using Eqs. (B.12) and (B.13) 
(with = = 0L R∆ ∆ ). The thermal average over the tunnel-
ing amplitudes is carried out with the Einstein Hamiltoni-
an, Eq. (A.20). Using the notations introduced in 
Eqs. (A.16), (A.17), and (A.18), we find 

 , , , ,[ ] ( )[ ] ( ) =W t W t′ ′σ σ σ σ ′〈 〉p k k p   
( ) ( ) ( ) ( )2

0 , ,= | | [e e ] [e e ]i t i t i t i tR L L RW ′ ′− ψ − ψ − ψ − ψ
′ ′σ σ σ σ〈 〉 =  

 ( ) ( ) 20 ,
,

= ( )e | | [e e ] | | .i n n t t i iR L

n n
P n n n′ ′− ω − − ψ − ψ

′σ σ
′

′〈 〉∑   

  (B.18) 

Here | n〉  indexes the eigenfunctions of the Einstein Hamil-
tonian and 

 
0

0 0
v

e( ) = = e (1 e ) ,
Tr e

n
n

ib
P n

− βω
− βω −βω

−β
−


 (B.19) 

such that 

 0
0=0 =0

1( ) = 1 , ( ) = ( ) .
e 1

B
n n

P n P n n N
∞ ∞

βω
≡ ω

−
∑ ∑  (B.20) 

Inserting the expressions for the quantum thermal averages 
into Eq. (B.17) yields 

 2
, 0 , ,

,
= 2 | | ( )

4L L R
n n

d dI W P n′σ σ σ
′ ′σ

′ω ω
×

π ∑ ∑∫     

 0( ( )[1 ( )] [ ( ) ] |L Rf f n n′σ σ ′ ′ ′× ω − ω δ ω−ω + − ω ×   

 2
,| [e e ] | |i iR Ln n− ψ − ψ
′σ σ ′× 〈 〉 −   

 0( )[1 ( )] [ ( ) ] |R Lf f n n′σ σ′ ′ ′− ω − ω δ ω −ω+ − ω ×   

 
† †

2
,| [e e ] | | ) .i iL Rn nψ ψ
′σ σ ′×〈 〉  (B.21) 

Here, ( ),L R σ  are the spin-resolved densities of states at 
the common chemical potential of the device, 

= ( ) / 2L Rµ µ +µ  [see Eqs. (14) and (18), and the discus-
sion following the latter]. The reservoirs are represented by 
their respective electronic distributions determined by the 
spin-dependent electrochemical potentials, 

 
( ) 1, ,

, ,
( ) 1, ,

, ,

( ) = [e 1] ,

( ) = [e 1] ,

k L
L k

p R
R p

f

f

β ε −µ −σ σ
σ σ

β ε −µ′ ′ −σ σ
′ ′σ σ

ε +

ε +
 (B.22) 

with 1 = Bk T−β . 

As expected, the coupling with the vibrational modes of 
the wire introduces inelastic processes into the tunneling 
current, in which the charge carriers exchange energy with 
the mechanical degrees of freedom. Another point to notice 
it that the current is not spin-resolved unless the electrodes 
are polarized. This point is further discussed in the main 
text. It reflects the conclusion reached in Sec. B1: the con-
tributions to the normal-state particle current coming from 
the diagonal elements of the tunneling amplitude and that 
of the off diagonal ones add together. 

 
1. S.M. Al-Jaber, X. Zhu, and W. C. Henneberger, Eur. J. 

Phys. 12, 268 (1991). 
2. In a reference system that moves with velocity v relat-

ive to a static electric field E one finds a magnetic field 
B = –(1/c)(v × E) The expression in Eq. (1) is half as large as 
the interaction energy –µ·B calculated using this Lorentz 
transformation result for B. The occurrence of this “Thomas 
half” is due to general requirements of relativistic invariance. 
A change of reference frame also leads to a time transform-
ation and, consequently, to a change of the Larmor frequency; 
see §41 of Ref. 3. 

3. V.B. Berestetskii, L.P. Pitaevskii, and E.M. Lifshitz, Landau 
and Lifshitz, Vol. 4 “Quantum Electrodynamics”, 2nd ed., 
Butterworth-Heinemann, Oxford (1982), § 33. 

4. G. Dresselhaus, Phys. Rev. 100, 580 (1955). 
5. E.I. Rashba and V.I. Sheka, Fiz. Tverd. Tela: Collected 

Papers 2, 162 (1959); for an English translation see the 
supplementary material to Ref. 13. 

6. F.T. Vas’ko, Pis’ma Zh. Eksp. Teor. Fiz. 30 (9), 574 (1979) 
[JETP Lett. 30 (9), 541 (1984)]. 

7. Y.A. Bychkov and E.I. Rasbha, Pis’ma Zh. Eksp. Teor. Fiz. 
39, 66 (1984) [JETP Lett. 39, 78 (1984)]. 

8. See, e.g., M.A.U. Absor, H. Kotaka, F. Ishii, and M. Saito, 
Phys. Rev. B 94, 115131 (2016). 

9. L. Petersen and P. Hedegård, Surf. Sci. 459, 49 (2000). 
10. R.I. Shekhter, O. Entin-Wohlman, M. Jonson, and A. Aharony, 

Phys. Rev. Lett. 116, 217001 (2016). 
11. The Rashba Hamiltonian (3) is often written as 

( )ˆ=so Rα ⋅ ×σ k n . Clearly, 2*= /so Rk m α  . The sign con-
vention in Eq. (3) is the same as the one in Ref. 7 and the 
one used in Ref. 10; in contrast, Refs. 8 and 12 define the 
Rashba interaction with the opposite sign. Also, the sign in 
Eq. (3) is opposite to that in Eqs. (1) and (2). Inverting the 
sign of Rα  changes the direction of the “effective magnetic 
field” caused by the SO interaction by π . In the absence of 
an external magnetic field (or if the external field is per-
pendicular to the SO-induced effective field) this sign does 
not matter for the size of the SO-induced spin-splitting of the 
energy bands, but it does affect the spin projection in the 
upper and lower spin-split eigenstates. For convenience, we 
keep the convention of Eq. (3). 

12. A. Manchon, H.C. Koo, J. Nitta, S.M. Frolov, and R.A. 
Duine, Nature Mater. 14, 871 (2015). 

13. G. Bihlmayer, O. Rader, and R. Winkler, New J. Phys. 17, 
050202 (2015). 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2017, v. 43, No. 2 385 



R.I. Shekhter, O. Entin-Wohlman, M. Jonson, and A. Aharony 

14. R.I. Shekhter, O. Entin-Wohlman, and A. Aharony, Phys. 
Rev. Lett. 111, 176602 (2013); R.I. Shekhter, O. Entin-
Wohlman, and A. Aharony, Phys. Rev. B 90, 045401 (2014). 

15. Y. Aharonov and A. Casher, Phys. Rev. Lett. 53, 319 (1984). 
16. Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959). 
17. M.S. Rudner and E.I. Rashba, Phys. Rev. B 81, 125426 

(2010); K. Flensberg and C.M. Marcus, Phys. Rev. B 81, 
195418 (2010). 

18. O. Entin-Wohlman, A. Aharony, Y. Galperin, V. Kozub, and 
V. Vinokur, Phys. Rev. Lett. 95, 086603 (2005); A. Aharony, 
Y. Tokura, G.Z. Cohen, O. Entin-Wohlman, and S. Katsumoto, 
Phys. Rev. B 84, 035323 (2011). 

19. B.D. Josephson, Phys. Lett. 1, 251 (1962). 
20. S. Hong, M.S. Grinolds, P. Maletinsky, R.L. Walsworth, 

M.D. Lukin, and A. Yacoby, Nano Lett. 12, 3920 (2012). 
21. M. Blencowe, Phys. Rep. 395, 159 (2004); K.C. Schwab and 

M.L. Roukes, Phys. Today 58, 36 (2005); R.I. Shekhter, L.Y. 
Gorelik, M. Jonson, Y.M. Galperin, and V.M. Vinokur, 
J. Comput. Theor. Nanosci. 4, 860 (2007); R.I. Shekhter, 
F. Santandrea, G. Sonne, L.Y. Gorelik, and M. Jonson, Fiz. 
Nizk. Temp. 35, 841 (2009) [Low Temp. Phys. 35, 662 
(2009)]. 

22. A.D. O’Connell, M. Hofheinz, M. Ansmann, R.C. Bialczak, 
M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, 
M. Weides, J. Wenner, J.M. Martinis, and A.N. Cleland, 
Nature (London) 464, 697 (2010). 

23. This is similar in spirit to the device of Hong et al. [20], but 
differs from the ones of Refs. 24, 25, and 26. 

24. S.H. Jhang, M. Marganska, Y. Skourski, D. Preusche, 
B. Witkamp, M. Grifoni, H. van der Zant, J. Wosnitza, and 
C. Strunk, Phys. Rev. B 82, 041404(R) (2010). 

25. J.R. Petta, H. Lu, and A.C. Gossard, Science 327, 669 
(2010). 

26. M.D. Shulman, O.E. Dial, S.P. Harvey, H. Bluhm, V. Umansky, 
and A. Yacoby, Science 336, 202 (2012). 

27. S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990). 
28. F. Kuemmeth, S. Ilani, D.C. Ralph, and P.L. McEuen, 

Nature 452, 448 (2008). 
29. D. Huertas-Hernando, F. Guinea, and A. Brataas, Phys. Rev. 

B 74, 155426 (2006); D.V. Bulaev, B. Trauzettel, and D. Loss, 
Phys. Rev. B 77, 235301 (2008); W. Izumida, K. Sato, and 
R. Saito, Phys. Soc. Jpn. 78, 074707 (2009); J.-S. Jeong and 
H.-W. Lee, Phys. Rev. B 80, 075409 (2009). 

30. M.J. Biercuk, S. Ilani, C.M. Marcus, and P.L. McEuen, 
Carbon Nanotubes, A. Jorio, G. Dresselhaus, and M.S. 
Dresselhaus (eds.), Topics in Applied Physics, Vol. 111, 
Springer-Verlag, Berlin, Heidelberg (2008). 

31. R.I. Shekhter, L.Y. Gorelik, L.I. Glazman, and M. Jonson, 
Phys. Rev. Lett. 87, 156801 (2006). 

32. Y. Meir, Y. Gefen, and O. Entin-Wohlman, Phys. Rev. Lett. 
63, 798 (1989); Y. Oreg and O. Entin-Wohlman, Phys. Rev. 
B 46, 2393 (1992). 

33. Note the peculiar way of defining the transmission as given 
in Eqs. (9) and (21): it has dimensions of energy squared 
because it is not yet multiplied by the appropriate densities 
of states. 

34. Because of charge conservation one has 
spin spinspin = 2 = 2I I Iσσ ↑ ↓

−∑ . 

35. R.I. Shekhter and M. Jonson, Synth. Met. 216, 2 (2016). 
36. M. Gisselfält, Phys. Scr. 54, 397 (1996); see in particular 

Eqs. (18) and (39). 
37. In order to keep the estimates simple, it is assumed that both 

the Fermi velocities, Fv , and the superconducting gaps of 
the two leads are the same. 

38. Since electron tunneling is confined to a restricted interval 
x∆  at one or the other end of the wire, where the overlap 

between the wave functions in the lead and the wire is finite, 
there is an uncertainty 1 /k x∆ ∆  in the longitudinal 
momentum of the tunneling electrons. We view this 
uncertainty as a splitting of the incoming well-defined 
momentum state into several channels k  within a range k∆ . 
This enables co-tunneling processes, where the momentum 
of the electron entering the wire from the left electrode and 
the momentum of the electron leaving the wire for the right 
electrode are different. However, for the geometry portrayed 
in Fig. 6, the direction of tunneling is nearly orthogonal to 
that of the current. This is why x∆  can be chosen large 
enough to suppress quantum fluctuations of the longitudinal 
electron momentum (and therefore co-tunneling). A resonant 
tunneling effect exploiting this longitudinal momentum-
conservation was recently observed by L. Britnell, R.V. 
Gorbachev, A.K. Geim, L.A. Ponomarenko, A. Mishchenko, 
M.T. Greenaway, T.M. Fromhold, K.S. Novoselov, and 
L. Eaves, Nat. Commun. 4, 1794 (2013). 

39. V. Ambegaokar and A. Baratoff, Phys. Rev. Lett. 10, 486 
(1963); erratum, Phys. Rev. Lett. 11, 104 (1963). 

40. I.O. Kulik and I.K. Janson, Israel Program for Scientific 
Translations, Keter press, Jerusalem (1972). 

41. L.I. Glazman and K.A. Matveev, Pis’ma Zh. Eksp. Teor. Fiz. 
49, 570 (1989) [JETP Lett. 49, 660 (1989)]; B.I. Spivak and 
S.A. Kivelson, Phys. Rev. B 43, 3740 (1991). 

42. Spin-triplet pairing correlations in a conductor with SO 
interactions in the proximity of an s-wave superconductor 
were found in the absence of a magnetic field by C.P. Reeg 
and D.L. Maslov, Phys. Rev. B 92, 134512 (2015). 

43. J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Phys. 
Rev. Lett. 78, 1335 (1997). 

44. J.P. Heida, B.J. van Wees, J.J. Kuipers, T.M. Klapwijk, and 
G. Borghs, Phys. Rev. B 57, 11911 (1998). 

45. T.V. Shahbazyan and M.E. Raikh, Phys. Rev. Lett. 73, 1408 
(1994). 

46. In this case the electric field is the host crystal-field, see 
L. Chico, M.P. López-Sancho, and M.C. Muñoz, Phys. Rev. 
B 79, 235423 (2009). 

47. P.W. Anderson, in: Lectures on the Many-Body Problem, 
vol. 2, p. 113, E.R. Caianiello (ed.), Academic Press, New 
York (1964). 

48. J.C. Cuevas, A. Martín-Rodero, and A. Levy Yeyati, Phys. 
Rev. B 54, 7366 (1996). 

386 Low Temperature Physics/Fizika Nizkikh Temperatur, 2017, v. 43, No. 2 


	1. Introduction
	2. Suspended nanowires as mechanically-controlled spin splitters
	3. Spin-resolved transport
	4. Spin polarization of Cooper pairs in spin-orbit-active superconducting weak links
	5. Conclusions
	Acknoledgments
	Appendix A: Tunneling elements
	A1. Propagation along a straight segment
	A2. Weak links with a bend
	A3. Vibrational degrees of freedom

	Appendix B: Spin-resolved currents
	B1. Spin-resolved current through static weak links
	B2. Spin-resolved currents through vibrating nanowires


