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We study the band-center anomaly in the one-dimensional Anderson model with the disorder characterized 
by short-range positive correlations. Using the Hamiltonian map approach, we obtain analytical expressions for 
the localization length and the invariant measure of the phase variable. The analytical expressions are comple-
mented by numerical data. 

PACS: 71.23.An Theories and models; localized states; 
72.15.Rn Localization effects (Anderson or weak localization); 
05.40.–a Fluctuation phenomena, random processes, noise, and Brownian motion; 
42.25.Dd Wave propagation in random media. 

Keywords: Anderson localization, band-center anomaly. 

1. Introduction

More than half a century has passed since the celebrated 
Anderson model (A-model) was introduced to prove the 
absence of diffusion of electrons in infinite lattices with 
disordered potentials [1]. To date, this model has been ex-
tensively studied due to its various non-trivial physical 
properties. First, it was proved that all electronic eigen-
states in the 1D (one-dimensional) model are exponentially 
localized in infinite samples [2]. The characteristic length 
scale of such a spatial localization is called the localization 
length locL . Second, it was shown [3] that the knowledge 
of this length allows one to predict all transport properties 
for finite samples of size N , for any value of the key pa-
rameter which is the ratio loc /L N  (see, also, Ref. 4 and 
references therein). This result is known as the single-
parameter scaling (SPS) and for a long time it was be-
lieved to be true for any eigenstate energy E  within the 
allowed band | | < 2E , with the exception of energies close 
to the band edges, = 2E ±  (for the normalized energy). 

The first analytical expression for locL  as a function of 
the energy E  was given by Thouless [5] under the condi-
tions of weak and uncorrelated disorder. However, shortly 
afterwards it was numerically found [6] that the Thouless 
expression for the discrete A-model is not correct for ener-
gies close to the band center, 0E  . Although the discrep-

ancy was quite small, a theoretical explanation was not 
found until the analytical studies published in [7,8]. It was 
established that the standard perturbation theory fails at the 
band center because it is based on the assumption of a non-
degenerate spectrum of the Perron–Frobenius operator. An 
approximate expression for the localization length was then 
derived in Ref. 7 with the use of the degenerate perturbation 
theory. Later, with the use of a different approach, the band 
center anomaly was analytically resolved in Ref. 8. 

It was understood that the mechanism of the band cen-
ter anomaly can be ascribed to the resonance that emerges 
for = 0E  in the absence of disorder. The physical origin of 
this effect is that the shift µ of the phase of the wave func-
tion turns out to be /2π  for every lattice step. Therefore, 
even for weak disorder, the phases remain strongly corre-
lated. Later on, the anomalous behavior of the localization 
length in a neighborhood of the band center was studied in 
[9]. Finally, a complete solution for the localization length 
in a whole vicinity of the band center was obtained in 
Ref. 10. This solution was derived with the Hamiltonian 
map approach, which is based on the mathematical corre-
spondence between the 1D Anderson model and a classical 
parametric oscillator [11,12]. Further theoretical contribu-
tions are given in Ref. 8, were it was shown that similar 
resonances occur for = 1E ± , as well as for all other reso-
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nant values of the energy, = 2cos( )E rπ , with r  a rational 
number. However, only the resonances for = 1/2;1; 2r  affect 
directly the localization length. As for other anomalies, one 
can expect that they influence the higher-order terms in the 
expansion of the localization length with respect to disor-
der. Expressions for the localization length at the band 
edges ( = 1,2r ) can be found in Refs. 9 (see also [4]). 

A second phase of research on the band-center anomaly 
began when the anomalies in the 1D Anderson model were 
related to the question of the validity of the single parame-
ter scaling. The SPS theory, originally proposed in Ref. 13, 
provides a fundamental theoretical tool for the understand-
ing of Anderson localization. For this reason an intense 
(and still ongoing) debate was sparked when it was shown 
that the SPS theory fails close to the band edges [14] and 
to the band center [15]. Since then, the nature of the anom-
alies in the 1D Anderson model has been analyzed with an 
eye to the foundations of the SPS theory [16]. 

More recently, the analysis of the band center anomaly 
has been extended to the case of the 1D Anderson model 
with correlated disorder [17,18]. In particular, in Ref. 18 it 
was shown how correlations of the disorder can either en-
hance or suppress the anomaly at the band center. 

In this paper we apply the general results of Ref. 18 to 
the study of an interesting case which was numerically 
investigated in Ref. 19. The authors considered the 1D 
Anderson model with a specific kind of short-range corre-
lated disorder; their numerical analysis revealed that the 
localization length at the band center could behave in un-
expected ways for increasing values of the correlation 
length of the disorder. In particular, for weak disorder it 
was found that the localization length increases with the 
third power of the correlation length. Although the authors 
of Ref. 19 could not compute the localization length for 
very large values of the correlation length in the weak dis-
order regime, they did it for a relatively strong disorder and 
found that increasing the correlation length leads to more 
and more extended states at the band center. 

Our analysis makes possible to understand the numerical 
results reported in Ref. 19. In fact, we were able to derive an 
analytic expression for the localization length at the band cen-
ter in the case of weak disorder. The obtained expression re-
produces the observed dependence of the localization length 
on the correlation length. In particular our results show that, as 
the correlation length is increased, the eigenstates do tend to 
be more delocalized at the band center. 

We also found that longer correlation lengths tend to 
suppress the band center anomaly. Note that, in the context 
of the 1D Anderson model with correlated disorder, any 
anomaly must be defined as the discrepancy between the 
effective localization length and the value predicted by the 
IK-formula originally derived in Ref. 20 (see also [4] and 
references therein). Incidentally, this suppression of the 
band-center anomaly was the reason that stimulated some 
of us to conduct the research work published in [18]. 

The paper is organized as follows. In Sec. 2 we define 
the model under study. In Sec. 3 we summarize the main 
theoretical results that describe the band center anomaly 
when disorder is spatially correlated. In Sec. 4 these gen-
eral results are applied to the model analyzed in Ref. 19. 
We draw our conclusions in Sec. 5. 

2. Definition of the model 

The tight-binding Anderson model has the form of the 
discrete stationary Schrödinger equation,  

 1 1 = .n n n n nE+ −ϑψ +ϑψ + ε ψ ψ  (1) 

Here nε  are random site energies and ϑ is the parameter 
standing for the coupling between nearest sites. In this 
equation the eigenstates nψ  and their energies E  are fully 
determined by the properties of disorder nε ; for this reason 
in what follows we put = 1ϑ . 

In order to define the site energies nε , we first generate 
a sequence { }nη  of identically distributed independent ran-
dom variables with the distribution,  

 
[ 1/2, 1/2]1 if

( ) =
[ 1/2, 1/2]0 if

n
n

n
p

η ∈ −
η  η ∉ −

.  

The colored noise { }nβ , introduced in Ref. 19, is then ob-
tained by filtering the white noise { }nη  with an exponential 
weight function,  

 | |/ c

=
= e .n m l

n n
m

∞
− −

−∞
β η∑  (2) 

Finally, the site energies { }nε  are specified by the rescaling 
of the { }nβ  variables,  

 
2

= .n
n

n

β
ε σ

〈β 〉
 (3) 

Here and in the rest of the paper we use the symbol 〈 〉  to 
denote the average over disorder realizations. The parame-
ter σ  in Eq. (3) defines the intensity of the disorder and in 
this paper we consider the case of weak disorder,  

 2 1.σ <<  (4) 

It is easy to see that, because = 0n〈η 〉 , one also has  

 = 0.n〈ε 〉   

Taking into account that the { }nη  variables are independ-
ent, one can derive the binary correlator of the site energies 
from Eqs. (2) and (3). One obtains that  

 [ ] | |2 cc= 1 | | tanh ( ) e k l
n n l l k −

+〈ε ε 〉 σ +   

with  

 c
c

1= .k
l

  

The corresponding normalized correlator is  
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 [ ] | |cc2( ) = = 1 | | tanh ( ) e .k ln n l

n
l l k −+〈ε ε 〉

+
〈ε 〉

  (5) 

The exponential factor in the binary correlator (5) 
shows that the parameter cl , introduced in Eq. (2), is essen-
tially the correlation length for the site energies. The 
prefactor preceding the exponential term in Eq. (5), on the 
other hand, shows that the random site energies (3), strictly 
speaking, are not exponentially correlated. This would be 
the case only if the binary correlator (5) were of the form,  

 | |ce ( ) = e .k ll −  (6) 

This may seem a pedantic remark; however, as we shall 
see, the linear prefactor in the binary correlator (5) plays an 
important role in accelerating the suppression of the band 
center anomaly for increasing values of cl . It should be 
noted that in Ref. 19 the authors did not specify the analyt-
ic form of the binary correlator (5), relying instead on nu-
merical evidence to show that it exhibits a roughly expo-
nential decay for c| |l l>>  (see Ref. 19). 

3. The Hamiltonian map approach 

The Hamiltonian map approach, introduced in [11,12], 
represents a useful tool to analyze the electronic states of 
the Anderson model. The method relies on the correspond-
ence between the Anderson model (1) and a classical sto-
chastic oscillator,  

 [ ]
2

2 21= 1 ( ) .
2 2
pH x t+ µ + ξ  (7) 

In Eq. (7) the symbol ( )tξ  represents a succession of delta 
kicks of random strengths  

 ( )
=

( ) = .n
n

t t n
∞

−∞
ξ ξ δ −∑   

After integrating the dynamical equations of the parametric 
oscillator (7) over the period = 1T  between two kicks, one 
obtains the Hamiltonian map  

 
[ ]

[ ]

1

1

1cos sin sin ,

sin cos cos .

n n n n

n n n n

x x p

p x p

+

+

= µ −µξ µ + µ
µ

= −µ µ +µξ µ + µ
 (8) 

The correspondence between the models (1) and (7) 
emerges clearly if one eliminates the momenta from the 
map (8). In this way one obtains the equation  

 1 1 sin = 2cos .n n n n nx x x x+ −+ +µξ µ µ  (9) 

Equations (1) and (9) have the same structure; their com-
parison reveals that the parameters of the two models must 
obey the identities  

 = 2cos and = sin .n nE µ ε µξ µ   

The dynamics of the oscillator (7) is best studied with 
the use of action-angle variables ( , )n nJ θ , which are relat-
ed to the Cartesian coordinates by the relations  

 
2

sin ,

2 cos .

n
n n

n n n

J
x

p J

= θ
µ

= µ θ

  

In terms of these new variables the map (8) becomes  

( )
22 3

1
2

( ) cossin sin

(mod 2 ),

n n n n n n n

o
+θ = θ +µ +µξ θ + µξ θ θ +

+ σ π
 (10) 

( )2 2
1 = 1 2 sin cos ( ) .sinn n n n n n nJ J+ − µξ θ θ + µξ θ   

Note that the map (10) for the angular variable is an ap-
proximation, valid in the weak-disorder case (4). The Lan-
dau symbol in Eq. (10) represents neglected terms of order 
higher than the second in the perturbative parameter σ . For 
the sake of simplicity, in the rest of this paper we omit the 
symbol 2( )o σ ; all identities must be interpreted as correct 
within the limits of the second-order approximation in the 
disorder strength. 

The inverse localization length (or Lyapunov exponent) 
loc= 1/Lλ  is  

 
1=1

1= ln .lim
N

n

N nnN→∞ −

ψ
λ

ψ∑  (11) 

For weak disorder, and away from the band edges, the 
Lyapunov exponent (11) can be written in terms of the 
action-angle variables as  

 
( ) ( )

( )

2
2= 1 2 cos 2 cos 4

8

sin 2 .
2

n n n

n n

µ
 λ 〈ξ 〉 − 〈 θ 〉 + 〈 θ 〉 − 

µ
− 〈ξ θ 〉

 (12) 

The noise-angle correlator sin (2 )n n〈ξ θ 〉 in Eq. (12) can 
be evaluated following the method introduced in Ref. 20. 
We first define the family of noise-angle correlators  

 2= e .i n ll nq θ −〈ξ 〉  (13) 

After dropping the second-order terms in the θ-map (10), 
one can write  

 2
1 = .sinn n n n+θ θ +µ +µξ θ  (14) 

With the use of the map (14) one can show that the 
correlators (13) obey the recursive relation  

 22 2 2
1 = e 2 e ( ) .sin

ii nl l n nq q i lθµ
−

 + µ〈ξ 〉〈 θ 〉  
   

After multiplying both sides of this equation by 2 ( 1)ei lµ −  
and summing over the index l , one obtains  

 22 2 2
0

=1
= 2 e sin ( )e .i i lnn n

l
q i l

∞
θ µµ〈ξ 〉〈 θ 〉∑   
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The imaginary part of this identity gives  

( )

( ) ( ) ( )

( ) ( ) ( )

2

=1

=1

sin 2
2

1 2 cos 2 cos 4 ( )cos 2

2 sin 2 sin 4 ( )sin 2 .

n n n

n n
l

n n
l

l l

l l

∞

∞

µ
〈ξ θ 〉 = − 〈ξ 〉 ×

 × − 〈 θ 〉 + 〈 θ 〉 µ + 


 + 〈 θ 〉 − 〈 θ 〉 µ  


∑

∑





 (15) 

If the noise-angle correlator (15) is inserted in Eq. (12), the 
expression for the Lyapunov exponents becomes  

( ) ( ){
( ) ( ) }

2

2 1 2 cos 2 cos 4 ( )
8sin

2 sin 2 sin 4 ( ) .

n n

n n

K

Y

σ
 λ = − 〈 θ 〉 + 〈 θ 〉 µ + µ

 + 〈 θ 〉 − 〈 θ 〉 µ 

 (16) 

In Eq. (16) the term,  

 ( )
=1

( ) = 1 2 ( )cos 2
l

K l l
∞

µ + µ∑  (17) 

is the power spectrum of the disorder while  

 ( )
=1

( ) = 2 ( )sin 2
l

Y l l
∞

µ µ∑  (18) 

is the sine transform of the binary correlator (5). 
It is important to stress that Eq. (16) contains averages 

which can be evaluated only if one knows the invariant 
distribution ( )ρ θ  for the angle variable. For most values of 
the energy in the Anderson model, the map (10) ensures 
that the angle variable has a uniform distribution  

 1( ) = .
2

ρ θ
π

  

Making use of this distribution in Eq. (16), one obtains the 
IK-formula originally derived in Ref. 20,  

 
2

2= ( ).
8sin ( )

IK Kσ
λ µ

µ
 (19) 

Equation (19) gives the inverse localization length for the 
1D Anderson model with weak correlated disorder. It rep-
resents a generalization of the Thouless formula, to which 
it reduces for uncorrelated disorder. 

For the case of interest here, however, Eq. (19) cannot 
be applied, because the invariant measure is modulated, 
not uniform. This is due to the fact that 0E   corresponds 
to /2µ π  and for this value of the µ parameter the angle 
map (10) has almost periodic orbits of period 4, which ul-
timately lead to the modulation of ( )ρ θ . 

The invariant distribution ( )ρ θ  close to the band center 
can be obtained with the method introduced in [12] for the 
case of uncorrelated disorder and extended in [18] to the 
case of correlated disorder. In this approach one first con-

siders the fourth iterate of the map (10) with / 2µ π ; the 
continuum limit is then taken and the map is replaced with 
a stochastic differential equation for ( )tθ . The invariant 
measure for θ is eventually obtained by solving the sta-
tionary Fokker–Planck equation associated to the stochas-
tic differential equation previously derived. The interested 
reader can find a detailed explanation of the derivation in 
Ref. 18. 

After lengthy calculations, one obtains that the invariant 
measure at the exact band center is  

 
( ) [ ]2

1 1( ) =
2 4 2 1 cos(4 )

ρ θ
α − α − θK

 (20) 

with  

 ( /2)= .
(0) ( /2)

K
K K

π
α

+ π
 (21) 

The corresponding inverse localization length is  

 
( )
( )

2
= (0) (0) .

4 2
K K K

 ασ  π   λ + −    α    

E
K

 (22) 

In Eqs. (20) and (22) the symbols ( )kK  and ( )kE  represent 
the complete elliptic integrals of the first and second kinds. 
Equations (20) and (22) are the main theoretical results that 
will be used below to analyze the Anderson model with the 
short-range correlated disorder introduced in Ref. 19. 

4. The band center anomaly in the Sales-de Moura 
model 

When the binary correlator of the site energies in the 
Anderson model (1) has the form (5), the power spectrum 
of the disorder takes the form  

 
[ ]

3
c

2
c c

( )sinh( ) = .
cosh( ) cosh( ) cos(2 )

k
K

k k
µ

− µ
 (23) 

From Eqs. (22) and (23), one easily obtains that the inverse 
localization length is equal to  

 [ ]
2

22 1
c c

c 1

( )
= 2 1 cosh ( ) 1 cosh( ) ,

2sinh(2 ) ( )
k k

k
 ασ  λ + − +   α 

E
K

 

  (24) 

where the parameter (21) assumes the specific value  

 
[ ]

2
c

1
2

c c

( )sinh= .
1 cosh( ) 2 1 cosh ( )

k

k k
α

 + + 

 (25) 

Equation (24) gives the inverse localization length at the 
exact band center for the Anderson model (1) with the 
Sales-de Moura correlated disorder (3). 

One can gain physical insight into the behavior of the 
inverse localization length (24) by considering the limit 
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cases of a very short and very long correlation length cl . In the 
limit c 0l → , i.e., for ck →∞ , the Lyapunov exponent (24) 
reduces as expected to the Derrida–Gardner form [8,12],  

 
2 (1/ 2)= 2 1 .

4 (1/ 2)

 σ
λ − 

 

E
K

 (26) 

In the opposite limit, cl →∞  (which corresponds to 
c 0k → ), the inverse localization length decays as  

 
2

3
c

.
32l
σ

λ   (27) 

Equation (27) shows that, for increasing values of the cor-
relation length cl , the localization length increases with the 
third power of the correlation length, as numerically ob-
served in Ref. 19. 

It is interesting to compare the inverse localization 
length (24) with the expression given by the Eq. (19). 
When one considers the Anderson model with site energies 
(3), for = 0E  the IK-formula gives  

 
[ ]

2 3
c

2
c c

( )sinh= .
8 cosh( ) 1 cosh( )

IK
k

k k

σ
λ

+
 (28) 

For c 0l → , Eq. (28) reduces to  

 
2

= ,
8IK
σ

λ   

which coincides with the prediction of the Thouless formu-
la and differs from the Derrida–Gardner result (26). On the 
other hand, in the limit c 1l >>  Eq. (19) reproduces the cor-
rect result (27). This implies that the band-center anomaly 
is gradually suppressed as the correlation length increases. 

This effect is confirmed by the numerical data, as 
shown by Fig. 1. The data obtained for c = 0l  (uncorrelated 
disorder) shows that, at the band center, the Lyapunov ex-
ponent exhibits a pronounced dip (the anomaly) which, 
however, is essentially suppressed already for c = 1l . 

To understand the physical reason behind the suppres-
sion of the band-center anomaly, it is useful to consider 
how the invariant measure ( )ρ θ  changes as cl  increases. In 
the present case, at the band center the invariant measure 
for the phase variable is given by Eq. (20) with the pa-
rameter α taking the value (25). For c = 0l  the invariant 
distribution takes the limit form  

 1( ) =
12 3 cos(4 )
2

ρ θ
  + θ 
 

K
 (29) 

which coincides with the result derived in [12] for the case 
of uncorrelated disorder. For c 1l >> , on the other hand, one 
obtains  

 4
c

1 1( ) = 1 cos (4 ) .
2 64l

 
ρ θ − θ + 

π   
  (30) 

Equation (30) shows that the invariant distribution becomes 
quickly uniform for increasing values of the correlation 
length cl . This explains why the anomaly is suppressed and 
the standard formula (19), derived under the assumption of a 
flat distribution for the angle variable, becomes valid. 

The band-center anomaly is not suppressed only if the 
site energies have correlations of the form (5). As shown in 
[18], a similar effect occurs for disorder with exponentially 
decaying, positive correlations. One should also add that 
exponentially decaying correlations with alternating sign 
can have the opposite effect and enhance the band-center 
anomaly [18]. 

We conclude our analysis of the Anderson model (1)–(3) 
with a remark on the difference between a truly exponen-
tially correlated disorder with the correlator of the form 
(6), and the Sales-de Moura disorder with the correlator 
(5). The power spectrum corresponding to the exponential 
correlator (6) is  

 c
e

c

sinh( )
( ) = ,

cosh( ) cos(2 )
k

K
k

µ
− µ

 (31) 

Fig. 3. (Color online) The inverse localization length 1
loc= L−λ  versus the energy E  for two different values of correlation length: (a) 

c = 0l  and (b) c = 1l . Red circles represent numerical data, while blue continuous curves correspond to Eq. (19). The intensity of the 
disorder in numerical simulations was set to 2 = 0.01σ . 
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that leads to the inverse localization length,  

 
2

c2
c

2 c

sinh( )( )
= 2coth( )

4 ( ) cosh( ) 1
k

k
k

 ασ
λ − α − 

E
K

 (32) 

with  

 2
c

1 1= 1 .
2 cosh( )k
 

α − 
 

 (33) 

In the limit c 0l → , Eq. (32) tends to the anomalous form 
(26). For c 1l >> , however, Eq. (32) becomes  

 
2

c
.

16l
σ

λ   (34) 

Comparing the limit forms (27) and (34), it is easy to see 
that the localization length increases linearly with the cor-
relation length cl  when the disorder is exponentially corre-
lated in the strict sense, whereas it increases with the 3

cl  
when the disorder has correlations of the form (5). 

This behavior of the localization length is matched by 
the corresponding behavior of the invariant measure in the 
limit of large correlation length. When the power spectrum 
of the disorder has the form (31), the invariant distribution 
is given by Eq. (20) with the parameter α assuming the 
value (33). For c = 0l , one recovers the distribution (29). 
When c 1l >> , however, the invariant distribution assumes 
the form  

 ( )2
1 1( ) = 1 cos 4 .

2 16 cl

 
ρ θ − θ + 

π   
  (35) 

Comparing the asymptotic forms (30) and (35), one can 
see that when the correlator has the form (5) the invariant 
distribution becomes uniform much faster for increasing cl  
than in the case for disorder with the exponential correla-
tions (6). 

5. Summary 

In this paper we demostrated how the approach, devel-
oped in [18] for the band-center in the Anderson model, 
can be applied to the quite specific case of correlated dis-
order studied in Ref. 19. Our analytical results, obtained 
for a weak disorder, allow one to explain the anomalous 
relation 3

loc cL l∝  between the localization length and the 
correlation length which was numerically observed in [19]. 
Our analysis shows that this dependence is not completely 
due to the exponential decay of the correlations, as was 
claimed, but has to be partly ascribed to the polynomial 
prefactor in the binary correlator (5). 

We showed that the band-center anomaly is suppressed 
for increasing values of the correlation length cl  when the 
binary correlator has either the form (5) or (6). The locali-
zation length at the band center increases with cl  in both 
cases; however, the polynomial prefactor in the binary 

correlator (5) results in a quantitative difference between 
the two types of disorder. Specifically, it gives rise to a 
faster suppression of the anomaly for increasing cl  and 
generates an unusual dependence 3

loc cL l∝ . 
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