
Low Temperature Physics/Fizika Nizkikh Temperatur, 2017, v. 43, No. 1, pp. 160–171 

Giant tunable magnetoresistance of electrically gated 
graphene ribbon with lateral interface under magnetic field 

A.M. Kadigrobov 
Theoretische Physik III, Ruhr-Universität Bochum, D-44801 Bochum, Germany 

E-mail: kadig@tp3.rub.de 

Received July 29, 2016, published online November 25, 2016 

Quantum dynamics and kinetics of electrically gated graphene ribbons with lateral n–p and n–p–n junctions 
under magnetic field are investigated. It is shown that the snake-like states [C.W.J. Beenakker, Rev. Mod. Phys. 80, 
1337 (2008)] of quasiparticles skipping along the n–p interface do not manifest themselves in the main semi-
classical part of the ribbon conductance. Giant oscillations of the conductance of a ribbon with an n–p–n junction 
are predicted and analytically calculated. Depending on the number of junctions inside the ribbon its magneto-
resistance may be controllably changed by 50–90% by an extremely small change of the magnetic field or 
the gate voltage. 
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1. Introduction 

During the last decades, great attention has been payed 
to transport properties of various mesoscopic systems [1,2] 
such as quantum dots, quantum nanowires, tunneling junc-
tions and 2D electron gas based nanostructures. Fascinating 
quantum mechanical phenomena arise in confined quantum 
Hall systems under dc or ac currents. In particular, nonlinear 
current-voltage characteristics and magnetoresistance os-
cillations arise due to hopping between Landau orbits in 
the presence of a random potential [3–8]. 

Dynamics and kinetics of electrons qualitatively changes 
if the quantum interference of the electron wave functions 
with semiclassically large phases takes place. The most 
prominent and seminal phenomenon of this type is the 
magnetic breakdown phenomenon [9–11] in which large 
semiclassical orbits of electrons under magnetic field are 
coupled by quantum tunnelling through very small areas in 
the momentum space. Other systems with analogous quan-
tum interference are those with multichannel reflection of 
electrons from sample boundaries [12,13], samples with 
grain [14] or twin boundaries [15]. Common to all these 
systems are analogous dispersion equations of electrons 
which are sums of 2π periodic trigonometric functions of 
semiclassically large phases of the interfering wave func-
tions (see papers [16,17], Sec. 2.3, p. 202 in paper [10], 
and the rest of the above citations). All these dispersion 

equations determine peculiar quasi-chaotic spectra of the 
magnetic breakdown type which are gapless in the three 
dimensional case. 

Energy gaps in semiconductors and isolators play a cru-
cial role in their transport and optical properties. In modern 
applied physics and device technology tunable energy gaps 
may be of great importance as they allow an effective con-
trol of operation of such devices: transistors, photodiodes, 
lasers and so on. 

Artificial preparation of lateral potential barriers in a 
two dimensional (2D) electron gas opens wide opportuni-
ties for obtaining spectra with tunable energy gaps, e.g., 
the spectrum of the quasiparticles skipping along an artifi-
cial barrier under magnetic field is a series of alternating 
narrow energy bands and gaps the width of which Hω  
where = /H eH mcω  is the cyclotron frequency, m is the 
electron effective mass [18,19]. These features of the elec-
tron spectrum result in an extremely high sensitivity of 
thermodynamic and transport properties of the 2D electron 
gas to external field: giant oscillations of the ballistic con-
ductance (observations of which are reported in Ref. 18), 
nonlinear current-voltage characteristics, coherent Bloch 
oscillations under a weak electric fields arise in such a sys-
tem [19]. 

Experimental discovery of two-dimensional graphene [20] 
(see also Review Papers [21,22]) has opened up fresh op-
portunities for manipulation of quasiparticle dynamics and 
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kinetics due to peculiarities of its electronic spectrum. In 
neutral one layer graphene, the Fermi energy crosses exact-
ly the cone points of the Fermi surface, the electron and 
hole dispersion laws being 

 2 2
, ( , ) =e h x y x yp p p pε ± +v . (1) 

Here ,x yp p  are projections of the quasiparticle momen-
tum and 810v  cm/s is the energy independent velocity. 
This feature allows one to vary the carrier density in a wide 
range and create various potential barriers by applying an 
external gate voltage gV . In paper [23], a widely tunable 
electronic band gap was demonstrated in electrically gated 
bilayer graphene. 

The object of this paper is to demonstrate that despite 
the weak sensitivity of the quasiparticles to external elec-
trostatic potentials (see, e.g., Ref. 21), tunable bandgaps 
are possible in electrically gated graphene if one creates 
lateral barriers under magnetic field (see Fig. 1). Here dy-
namics and kinetics of electrons skipping along electro-
hole-electron (n–p–n) and electron–hole (p–n) junctions 
(see Fig. 1) are analytically and numerically investigated. 
Giant oscillations of the conductance of a graphene ribbon 
with a lateral n–p–n junction are shown to arise in both the 
clean and dirty cases; one of the peculiar features of the 
quasiparticle kinetics is giant magnetoresistance which 
takes place every time as the Fermi energy passes an ener-
gy gap in the electron spectrum under a change of the 
magnetic field or the gate voltage. 

2. Dynamics of quasiparticles skipping along lateral 
junctions under magnetic field 

Let us consider semiclassical motion of a quasiparticle 
moving along p–n and n–p–n junctions under magnetic 
field as is shown in Fig. 1 where panels (a) and (b) sche-
matically present lateral electron–hole and electron–hole-

electron junctions placed along the x-direction; panels (c) 
and (d) schematically show semiclassical orbits of elec-
trons skipping along the lateral junctions, the arrow show-
ing directions of the quasiparticle motion. 

Quantum dynamics of quasiparticle (electrons and 
holes) in graphene with a lateral junction is described by 
the 2-component wave function 1,2 ( , )x yΨ  satisfying the 
Schrödinger equation: 

 
( )

( )

1 2

1 2

( ) = 0,

( ) = 0,

x

x

eH dV y P y
c dy

eH dP y V y
c dy

 
− ε Ψ + + − Ψ 

 
 

+ + Ψ + − ε Ψ 
 

v

v
 (2) 

where the vector potential = ( ,0,0)HyA  is used while 
( )V y  is the lateral barrier potential (of the n–p or n–p–n 

type, see Fig. 1 ) extended along the x-direction. Here, the 
axis x  is parallel to the sample and the barrier junction 
while the y-axis is perpendicular to those as is shown in 
Fig. 1; xP  is the conserving projection of generalized mo-
mentum on the lateral junction direction. 

Taking semiclassical solutions of Eq. (2) above ( > 0y ) 
and below ( < 0y ) the lateral junction and matching them 
at the turning points and at the junction with the use of the 
2 2×  scattering matrix one finds the proper wave functions 
and the quasiparticle spectrum. 

1. The quasiparticle skipping along the p–n junction 
(see Fig. 1(a),(c)) is in a quantum superposition of the elec-
tron and hole edge states above ( > 0y ) and below ( < 0y ) 
the n–p junction: 

 ( )/1
, , ,

2
ˆ ˆ( , ) = = e ( ) ( )ixPxn P e e n Px x

x y C y y
Ψ 

Ψ Ψ Θ − + Ψ 

   

 , ,
ˆ ( ) ( )h h n Px

C y y+ Ψ Θ  (3) 

where n is the Landau number, xP  is the conserving mo-
mentum projection to the lateral junction and ( )yΘ  is the 
unit step function. 

,
ˆ ( , )n Px

x yΨ  are the proper wave functions of the Schrö-
dinger equation (2), ˆ ( )e yΨ  and ˆ ( )h yΨ  are the semiclassical 
solutions of Eq. (2) at < 0y  and > 0y , respectively, the 
both of them being normalized to the unity flux while 

2 2| | | | = 1h eC C+ . 
According to Eq. (3), factors 2| |hC  and 2| |eC  are the 

probabilities to find the quasiparticle above the junction 
(that is in the hole state) and below it (that is in the electron 
state), respectively. As one easily sees from Eq. (A.1) and 
Eq. (A.9) these factors are fast oscillating functions of xP  
(on the / HR  scale, HR  being the Larmour radius of the 
quasiparticle cyclotron radius). Therefore, even a rather 
small change /x HP Rδ   of the momenta xP  greatly 
changes these probabilities and hence such a change suffi-
ciently re-distributes the probabilities to find the quasipart-
icle above or below the junction. 

Fig. 1. (Color online) Schematic presentation of n–p and n–p–n 
junctions. Panels (a) and (b) show the potentials and the fillings 
the graphene bands while panels (c) and (d) show the classical 
orbits and the direction of motion of electrons and holes skipping 
along the lateral junction. 
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After performing the above mentioned matching one 
finds the dispersion equation (which determines the 
quasiparticle spectrum ( )n xPε ) as follows: 

 ( )( ) ( ) ( ) ( )cos , | | cos ( , ) = 0eh eh eh eh
x xD P r P− +≡ Φ ε − Φ ε , (4) 

where ( ) = ( ) / 2eh
e hS S+Φ +  , ( ) ( )= ( ) / 2eh eh

e hS S−Φ − +µ  

while 
0

= 2h hyh
S p dy∫  and 

0
= 2e eye

S p dy∫  are the areas of 

the hole and electron semiclassical orbits above and below 
the lateral barrier (see Fig. 2 in which tS  and bS  schemati-
cally shows the hole and electron orbits, respectively), 

( ) ( ) ( )=| | exp ( )eh eh ehr r iµ  is the reflection probability am-
plitude at the junction; the turning points ,h ey  and the inte-
grand momenta are 

 0= ,h x
Vcy P

eH
− ε − 

 v
  

 
2 2

0( ) =h x
V eHp y P y

c
− ε   − +     v

, 
(5)

 

 =e x
cy P

eH
ε − + 

 v
,  

 
2 2

( ) =e x
eHp y P y
c

ε   − +   
   v

.  

At Fε ε  these phases are 

 1/ 1,±Φ η       
2

= = 1F

H F

e H
R c

 λ
η  ε 

 v
 . (6) 

where η is the semiclassical parameter, = /F Fλ εv  and 
= ( / )( / )HR c eH ε v  are the de Broglie wave length and the 

Larmour radius. The numerically calculated spectrum of 
quasiparticles ( ) ( )eh

n xPε  skipping along the n–p interface is 
present in Fig. 3, n is the Landau number, xP  is the con-
serving momentum projection. 

The reflection probability at the n–p interface may be 
written as follows Ref. 21: 

 
2

( ) 2
02

1 1 ( / )
| ( , ) | = ,

1 1 ( / )

xeh
x F

x

P
r P V

P

− − ε
ε ε

+ − ε

v

v
  (7) 

where 0V  is the height of the potential barrier (see Fig. 1) 
2. The electron skipping along the n–p–n junction (see 

Fig. 1(b),(d)), is also in a quantum superposition of the 
electron edge states above ( > 0y ) and below ( < 0y ) the 
junction analogous to Eq. (3). However, in contrast to the 
n–p junction the group velocity of the electron in the 
semiclassical states above and below the n–p–n junctions 
are of the opposite signs. As a results, the electron spec-
trum becomes gapped that determines peculiar properties 
of dynamics and kinetics of such electrons. 

In the same way as it was done for quasiparticles skip-
ping along the n–p junctions, matching the electronic 
semiclassical wave functions (see Appendix A) gives the 
following dispersion equation that determines the electron 
spectrum ( ) ( )e

n xPε : 

( ) ( )( ) ( ) ( ) ( )cos ( , ) cos , = 0ee ee ee ee
x xD r P P+ −≡ Φ ε − ε Φ ε , (8) 

here = / 2cS e H± ±Φ   while 1 2=S S S± ±  and 1S  and 2S  
are the areas of the semiclassical orbits above and below 
the lateral junction, respectively (see Fig. 1). The sum and 
difference of the orbit areas 1 2=S S S± ±  are: 

Fig. 3. The spectrum of quasiparticles skipping along the n–p 
interface (a) and those skipping along the n–p–n interface (b). 
Numerical calculations are performed for the semiclassical pa-
rameter 2= 10−η  and the n–p–n reflection probability parameter 

= 0.2λ . The spectrum of the electrons skipping along the n–p–n 
junction is an alternating series of energy gaps and bands. 

Fig. 2. Areas of the semiclassical orbits in the momentum space 
at fixed conserving momentum projection xP  for quasiparticles 
above and below the junction. 
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2
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Factor ( ) 2| |eer  is the probability of reflection at the n–p–n 
junction, ( )eeµ  is the phase of its probability amplitude. For 
the sake of simplicity, one may use the reflection probabil-
ity in the following form Ref. 21: 

 ( ) ( )
( )

22
2

22

/
= ,

1 (1 ) /
x

x
x

P
r P

P

λ ε

− −λ ε

v

v
   0=

V L
λ

v
 (10) 

which is valid at 1λ . Here 0V  and L  are the height and 
the width of the potential ( )V y  (see Fig. 1). The numerical-
ly calculated spectrum of electrons ( ) ( )ee

n xPε  skipping 
along the n–p–n interface is presented in Fig. 3, n is the Lan-
dau number, xP  is the conserving momentum projection. 

Despite dispersion equations (4) and (8) look much alike 
they determine qualitatively different spectra: the former 
spectrum is gapless (see Fig. 3(a)) while the latter one is 
gapped (see Fig. 3(b)). As one readily sees from Eq. (8) the 
energy gaps are determined by the condition 

 ( )| cos ( ) | | |eer+Φ ε ≥  .  

On the other hand, one may get the necessary condition 
of solvability of Eq. (8) ( )| cos ( , ) |<| |eh

xP r−Φ ε  at any 
energy by varying xP  that provides the gapless spectrum. 

In order to explicitly calculate the density of states 
(DOS) it is convenient to use the approach developed by 
Slutskin for analogous spectra of electrons under magnetic 
breakdown conditions [10]. Below, calculations of DOS 
for the gapped spectrum Eq. (8) are presented. 

Using Eq. (8) and the identity 

 
( )

( )( ) = ( )
ee

ee
n

n

D D∂
δ ε − ε δ

∂ε∑  (11) 
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into the form 

 
/ ( )
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/
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2 2

ee
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x
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v

v
. (13) 

As one sees from Eq. (8) the integrand here is a 2π-pe-
riodic function of −Φ  and hence it can be expanded into 
the Fourier series as follows: 

 ( )
/

( , )

= /

1( ) = , e
2 2

ik P xxk x
H k

dP
B P

R

ε∞
Φ ε−

−∞ −ε

ν ε ε
π∑ ∫


v

v
, (14) 

where ( ),k xB Pε  are amplitudes of the Fourier harmonics. 
As at Fε ε  one has 1−Φ   (see Eq. (6)) the expo-

nents in Eq. (14) are fast oscillating functions while the 
Fourier coefficients are smooth functions of xP  (on the 
scale / H FR p  ). Therefore, the term with = 0k  gives 
the main contribution to DOS: 

 
/

0
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2 2

x
x
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dP
B P
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ν ε ε
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v

v
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where the Fourier factor kB  at = 0k  is 

 0 = sin sinB
π

+ −
+

−π

∂Φ ∂Φ
Φ − ω ×

∂ε ∂ε∫   

 ( )[cos ( ) | ( ) | cos ]
2

ee
x

dr P+
ω

× δ Φ ε − ω
π

 . (16) 

While writing 0B  the explicit form of ( )eeD  (which is giv-
en by Eq. (8)) was used. 

Carrying out integration in Eq. (16) and inserting the 
result in Eq. (15) one obtains DOS as follows: 

 ( ) | sin ( ) |
= +Φ ε

ν ε ×
v

  

 
/ ( ) 2 2

( ) 2 2/

[| | ( ) ( )]cos
2| | ( ) ( )cos

ee
x x

ee
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r P dP

r P

ε
+

−ε +

Θ − Φ ε
×

π− Φ ε
∫



v

v

. (17) 

Here [...]Θ  is the unit step function. 
The result of numerical calculations of DOS with the 

use of Eqs. (17) and(10) for the semiclassical parameter 
2= 10−η  and = 0.2λ  is presented in Fig. 4. As one sees in 

Fig. 3 and Fig. 4 the quantum interference of the edge 
states above and below the n–p–n junction (see Fig. 1) re-
sults in arising of alternating series of energy gaps and 
energy bands which produce narrow peaks in the density of 
states. Figure 4(b) shows the density of states caused by the 
Zeeman splitting where g  is the gyromagnetic coefficient. 

Such a dramatic transformation of the quasiparticle 
spectrum has to show itself in various prominent effects in 
optic and kinetic properties. In the next section transport 
properties of both the clean and dirty graphene samples are 
analyzed. 

3. Current along p–n junction under magnetic field 

In this section the total current flowing inside the stripe 
( ) ( )2 2e h
H HR y R− ≤ ≤  around the p–n junction is calculated 

where ( ) = ( / )( / )e
FHR c eH ε v  and ( ) = ( / )h

HR c eH ×

0(( ) / )FV× − ε v  are the Larmour radii of electrons (e) and 
holes (h); 

It is easy to see that there are two types of quasiparticle 
states inside this stripe: they are states of quasiparticles 
which interact with the lateral junction that delocalized 
them in the junction direction, and those in which quasi-
particles do not touch the junction (the Landau states — 
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the quasiparticles move along closed semiclassical orbits). 
As only parts of the closed orbits are inside the stripe these 
quasiparticles create finite currents in the stripe below and 
above the junction. This situation is schematically shown 
in Fig. 5. 

In other words, the edge states partly replace the Landau 
states which would be inside the stripe in the absence of 
the junction that creates an imbalance between the Landau 
states. As a result, compensating currents of quasiparticles 
on closed orbits arise which flow in the opposite direction 
to the edge state current. 

Let us firstly calculate the current bJ  carried by 
quasiparticles in the edge states which flows from the right 
reservoir under bias voltage V  to the left one under voltage 

= 0V . This current may be written as 

( )
( ) /

( ) ( ) ( )
0

( ) /

= , ( ) ( ( ) )
2

eh
n

eh eh eh x
x x n x n xb

n eh
n

dP
J e P P f P eV

ε

−ε

ε ε +
π∑ ∫


v

v

v

  (18) 

which may be re-written as 

 ( )( )
0=eh

bJ e d f eVε ε + ×∫   

 ( )
/ ( )

( )

/

, [ ( , )]
2

eh
ehx

x x x
dP DP D P

ε

−ε

∂
ε δ ε

π ∂ε∫


v

v

v  (19) 

where ( )ehD  is defined in Eq. (4). 
Using the same approach as in Subsection 4.1 one finds 

the current carried by quasiparticles delocalized along the 
p–n junction as follows: 

 ( )
0= ( )eh

b
cJ d f eV
H

− ε ε + ×
π ∫


  

 
( )// 0

( ) ( )

/ ( / )0

.
2 2

V
e hx x

y y
V

dP dP
p p

−εε

−ε − −ε

 
 × + 

π π  
∫ ∫

 

vv

v v
 (20) 

Here ( , )e h
yp  are the y-projections of the electron and hole 

momenta inside the electron and hole parts of the electri-
cally gated graphene in the absence of magnetic field: 

 ( ) 2 2= ( / )e
y xp Pε −v ,  ( ) 2 2

0= [( ) / ]h
y xp V P− ε −v . (21) 

As it follows from Eq. (20) the current of quasiparticles 
interacting with the junction does not depend on its trans-
parency and is a sum of the electron and hole edge state 
currents flowing in the same direction. These edge state 
currents flow inside two stripes: ( )2 < < 0e

HR y−  and one 
( )0 < < 2 h
Hy R . 

As it was said above there are two other additional cur-
rents inside the same stripe around the junction flowing in 
the opposite direction to the current carried by the edge 
states Eq. (20). 

Fig. 4. (Color online) Density of states for electrons skipping 
along the n–p–n interface (a) normalized to the one in the absence 
of magnetic field 2

0 = 4 / (2 )mν π π . The Zeeman split of DOS (b). 
Numerical calculations are performed for the semiclassical pa-
rameter 2= 10−η  and the n–p–n reflection probability parameter 

= 0.2λ  

Fig. 5. (Color online) Schematic presentation of currents flowing 
in the vicinity of the n–p interface. Quasiparticles which are in 
the quantum electron–hole superposition are delocalized along 
the interface and carry current bJ  inside stripes of the widths 

( )2 h
HR  above the junction and ( )2 e

HR  below the interface. Elec-
trons and holes in the Landau states create currents ( )e

LJ  and ( )h
LJ  

in the same stripes because only parts of their closed orbits are 
inside them. The later currents flow in the opposite direction to 
current bJ  exactly compensating it in the absence of the bias 
voltage. 
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Below, the current carried by electrons in the Landаu 
states inside the stripe ( )2 < < 0e

HR y−  is calculated. 
The current density is written as follows: 

 { }( )
0 0 0 0 0 0 0

ˆ ˆˆ ˆ( ) = Tr ( ) ( ) ( ) ( )e
x xLj r e r r f f r rδ − + δ −v v    

  (22) 
where the velocity operator ˆxv  is 

 0̂ˆ ˆ= ,x
i x 
 


v   (23) 

and 0̂  is the Hamiltonian corresponding to the Schrö-
dinger equation (2) in the absence of the junction, ( ) 0.V y ≡  

Using Eq. (22) one finds the current inside the stripe in 
the semiclassical approximation as follows: 

 


( )

3 / 1
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/ 2

=
2 2 e

H

y
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L
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dPdP
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ε

ε −

×
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v

v
  

0 0 0
ˆ , , .x y x x y

eH eHf P y P P y P
c c

      × + +            
v   (24) 

Here the argument of the Fermi distribution function 0f  is 
the classical Hamiltonian of the graphene under magnetic 

field while 2 2
0̂ ( ) = x yP P+p v  is the classical Hamiltonian 

of graphene at = 0H  and ,x yP P  are the projections of the 

electron generalized momentum; ( )
1 = / e

x Hy cP eH R− +  is 

the turning point nearest to the junction, ( ) = ( / )e
HR c eH ×

( / )× ε v  is the Larmour radius at fixed electron energy ε; 
the limits of integration with respect to xP  are determined 
by the condition that the turning point 1y  is inside the 

stripe, 

( )
12 0e

HR y− ≤ ≤ . 

It is convenient to insert new variables , ,x yP P → ε τ 
where τ is the time of motion along the classical electron 
orbit. In this variables the equation of electron motion un-
der magnetic field is the standard Hamilton equation: 

 = [ ]d e
d c

×
τ
p v H  (25) 

where = ( ( / ) , )x yP eH c y P+p . 
Inserting the new variables in Eq. (24) and using 

Eq. (25) one finds the current of the Landau electrons in-
side the stripe as follows: 

3 /
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2
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=
(2 )

e
xL

e cJ dP
eH

ε

επ ∫


v

v
( )0 in fin( ) ( ) ( )y yd f p pε ε τ − τ∫  

  (26) 

where ( ) = ( / ) ( )yp eH c xτ − τ  according to Eq. (25) and 
in,fin( )x τ  are the initial and final x-coordinates of motion 

of the electron along its orbit (see Fig. 6). It is easy to see 
that 

 
2 2

fin in( ) = ( ) = 2y y xp p Pε ε   τ − τ − −   
   v v

. 

Inserting this equation in Eq. (26) one finally finds the cur-
rent of electrons in the Landau state inside the stripe 

( )2 0e
HR y− ≤ ≤  as follows: 
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Performing analogous calculations for the current h
LJ  

carried by holes in Landau states inside the stripe 
( )0 2 h
Hy R≤ ≤  one gets 

 ( )( )
0=h

L
cJ d f eV
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ε ε + ×
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V
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v
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Comparing Eqs. (27) and (28) with Eq. (20) one sees 
that the currents of quasiparticles in the Landau states 

( , )e h
LJ  and the ones carried by electrons in the edge states 
( )eh
bJ  flow in the opposite directions being modulo equal in 

the absence of the bias voltage = 0V . 
Summing the currents given by Eqs. (20), (27), (28) and 

expanding the Fermi function with respect to / 1eV kT   
one finds the total current ( ) ( ) ( ) ( )

total =eh eh e h
L LbJ J J J+ +  flow-

ing inside the stripe ( ) ( )2 2e h
H HR y R− ≤ ≤  biased by the volt-

age drop V  as follows: 
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2
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P V

−ε

− −ε


− ε  + −  π   

∫


v

v
v

. (29) 

Fig. 6. A semiclassical closed orbit of an electron in the Landau 
state. The electron moving along the part of the orbit inside the 
stripe of the width ( )2 e

HR  at the junction (shown by solid line) 
contributes to the current flowing inside the stripe. in( )x τ  and 

fin( )x τ  are the initial and final x-coordinates of this motion. 
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Therefore, one sees that the current flowing along the 
p–n junction ( )

total
ehJ  is a sum of the standard edge state of 

currents of separated electrons and holes at the separated 
sample borders. As it follows from Eq. (29) the value of 
the current ( )

total
ehJ  does not depend on the sign of the applied 

voltage drop V . 
In conclusion of the section, the current flowing along 

the p–n junction is inevitably the sum of two qualitatively 
different types of the currents: 

1) the current carried by quasiparticles which are a quan-
tum superposition of electron and hole states; these states 
are delocalized along the lateral junction and quasiparticles 
in those states create current ( )eh

bJ  (see Eqs. (4), (20)). 
2) Currents of electrons and holes in the Landau states 

which do not interact with the p–n junction. Such quasi-
particles move along closed semiclassical orbits, only parts 
of those orbits being inside the above-mentioned stripe. 
They create electron and hole currents ( )e

LJ  and ( )h
LJ . 

As one easy sees these currents flow in the opposite di-
rection to the current ( )eh

bJ  compensating the latter if = 0V  
(see Eqs. (20), (27), (28)). This statement is correct in the 
lowest semiclassical approximation in which all the three 
currents have been obtained. In quantum oscillating correc-
tions to the smooth part of the currents considered here, as 
well as in the quantum Hall regime (in which dynamics 
and kinetics of quasiparticles are of the fundamentally 
quantum character) the above-mentioned compensation is 
absent because of the different quantum behavior of elec-
trons in the Landau states and those delocalized along the 
junction. As the quasiparticles in such a situation are in the 
essentially quantum states it seems doubtful whether aris-
ing of the oscillations is a manifestation of the semiclass-
ical snake-like trajectories (snake states) [24,25]. Note that 
peculiar conductance oscillations were observed in sam-
ples of high quality [26,27], the latter condition being one 
of the necessary conditions for observation of quantum 
effects. 

4. Giant oscillations of the conductance of graphene 
ribbon with n–p–n lateral junction under magnetic 

field 

4.1. Ballistic transport 

In this section the ballistic transport through a graphene 
ribbon with an n–p–n junction under magnetic field is con-
sidered. 

The sample is schematically shown in Fig. 7. As one 
sees there are two qualitatively different types of currents 
flowing along the sample: current ( )

edge
eeJ  carried by elec-

trons edge states at the external sample boundaries and 
current bJ  carried by electrons localized along the n–p–n 
junction the dispersion equation of which is given by 
Eq. (8) (their spectrum is presented in Fig. 3(b)). 

According to the Landauer–Büttiker approach, based on 
the relationship between the conductance and the transmis-

sion probability in propagating channels, [2] the linear 
conductance may be written as follows: 

 
/2

( ) ( )

/

2= ( ),
2

ee eex
x n x x

n

dPeG P P
kT

ε

−ε

 ε × π∑ ∫


v

v

v   

 
( )

2 ( )
cosh

2

ee
n x FP

kT
− ε − ε

×  (30) 

where the quasiparticle velocity is ( ) ( )= /ee ee
x n xd dPεv . 

In the analogous way as deriving DOS, Eq. (12), one 
gets the conductance along the n–p–n lateral junction as 
follows (details of calculations are presented in Appendix B): 

 
1

2

edge 1

( ) 4= 1b

n

G H
dq q

G
−

− ×
π∑∫   

 
( ) ( )

tanh tanh
2 2

t b
n F n F

kT kT

 ε − ε ε − ε
× −  
 

 (31) 

where edge 0= (2 / )H FG G R λ  is the conductance of the 
edge states in the graphene ribbon in the absence of the 
lateral junction, 2

0 = /G e h  is the conductance quant and 
2 /H FR λ is the number of the propagating channels of the 
edge states; = /F Fpλ   while ( , ) ( )b t

n Hε  are the bottom 
and the top of the nth electron energy band which are 
found from the condition cos ( ) =| ( ) |xr P+Φ ε  (see Eq. (8)): 

2
( , ) 2( ) = 2 1 1 arccos | ( ) | .

2
b t

n x
F

e H e HH n r P
c c

 ε + ± − ε π 

 vv

  (32) 

The dependence of the conductance along the n–p–n 
junction on magnetic field is shown in Fig. 8. 

Giant oscillation of the conductance at a fixed magnetic 
field H  may be observed if the chemical potential is varied 
together with the gate potential gV . In this case the con-
ductance is determined by Eq. (31) in which Fε  is changed 
to F geVε + . This dependence of the conductance on the 
gate potential is presented in Fig. 9. 

Fig. 7. Schematic presentation of the graphene ribbon with a 
lateral n–p–n junction biased by voltage V under magnetic field. 
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The total current flowing along a graphene ribbon with 
an n–p–n lateral junction (see Fig. 7) is total bar edge= 2J J J+  
where barJ  is the current carried by electrons skipping 
along the junction and edge2J  are the edge state currents. 
This current may be written as total total= /J V R  where 

totalR  is the total resistance of the ribbon. For a ribbon with 
N  parallel lateral junctions its total resistance is 

 total
edge

1=
b

R
G NG+

. (33) 

This equation is written under assumption that the dis-
tance between the junctions ( )> 2 ee

b HL R  and the width of 
the ribbon ( )> 2 ee

HW R N . Numerical calculations of the 
total resistance totalR  for = 1N  with the use of Eq. (31) is 
presented in Fig. 10. 

As one sees from Eqs. (8), (33) and Fig. 10 a variation 
of the magnetic field 1/ 10 / 1H FH H −δ ≈ ω ε   produc-
es a 50% jump of the total resistance of the ribbon with 
one lateral junction. As one readily sees the resistance 
jump for the ribbon with N  lateral junctions is 

 
(max) (min)
total total

(max)
total

=
1

R R N
NR

−

+
 (34) 

that allows to have the giant magnetoresistance controlled 
by small variation of either the magnetic field or the gate 
voltage (here max,min

totalR  are the maximal and minimal val-
ues of the total resistance). For = 3N , e.g., the jump is 
75% of the total resistance. This property of such electri-
cally gated graphene ribbons may be useful in modelling of 
devices based on the giant magnetoresistance effects of 
other types. 

In the next subsection the current flowing along a 
graphene ribbon with a lateral n–p–n junction under mag-
netic field and in the presence of impurities is considered. 

4.2. Dissipative transport 

As in the case of the magnetic breakdown phenomenon, 
dynamic and kinetic properties of quasiparticles skipping 
along the junction under magnetic field are of the funda-
mentally quantum mechanical nature due to the quantum 
interference of their wave functions with semiclassically 
large phases. Thus, in order to analyze the transport prop-
erties of the quasiparticles in the presence of impurities it 
is convenient to start with the the equation for the density 
matrix ρ̂ in the τ approximation: 

 0
0

0

ˆ ( )ˆˆ ˆ ˆ[ , ] [ , ] = 0
fi i e x
t

ρ−
ρ − ρ +

 


 . (35) 

Fig. 8. Conductance oscillations with variations of the magnetic 
field; 2

edge = ( / )(2 / )h FG e h R λ  is the conductance of edge 
states in the graphene ribbon in the absence of the lateral junc-
tion. Numerical calculations are performed for the semiclassical 
parameter 2= 10−η  and the n–p–n reflection probability parame-
ter = 0.2λ . 

Fig. 9. Conductance oscillations with variations of the gate volt-
age gV ; 2

edge = ( / )(2 / )h FG e h R λ  is the conductance of edge 
states in the graphene ribbon in the absence of the lateral junc-
tion. Numerical calculations are performed for the semiclassical 
parameter 2= 10−η  and the n–p–n reflection probability parame-
ter = 0.2λ . 

Fig. 10. Total resistance of a graphene ribbon with one n–p–n 
interface under magnetic field. edgeR  is the resistance of the gra-
phene ribbon in the absence of the lateral junction. An extremely 
small change of the magnetic field (or the voltage gate) may con-
trollably cause the 50% change of the total ribbon resistance. 
Numerical calculations are performed for the semiclassical pa-
rameter 2= 10−η  and the n–p–n reflection probability parameter 

= 0.2λ . 
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Here, ̂  is the Hamiltonian corresponding to the Schrö-
dinger equation Eq. (2), 0f  is the Fermi distribution func-
tion,   is the electric field along the junction, 0t  is the elec-
tron scattering time. 

Writing the density matrix in the form (1)
0

ˆˆ ˆ= ( )fρ +ρ  
and linearizing Eq. (35) with respect to the electric field 
one gets 

 
(1)

(1)
0 0

0

ˆˆ ˆˆ ˆ[ , ] = ( );x
i e f

t
ρ ′ρ + −



v    (36) 

where ˆxv  is the quantum mechanical operator of the qua-
siparticle velocity projection on the electric field direction, 

0 ( ) = ( ) /f df d′ ε ε ε . 
In terms of the density matrix the current carried by the 

electrons skipping along the junction is written as follows: 

 { }ˆ ˆ= 2 Tr xJ e ρv . (37) 

Taking the matrix elements of Eq. (36) with respect to 
proper functions of Schrödinger equation (2) written in the 
Dirac notations 

 0̂ = ;κκ ε κ  (38) 

(here = { , }xn Pκ ) one finds the density matrix. Inserting 
the found solution in Eq. (37) one obtains the current J  as 
follows: 

 
2

,2 0
=

0,

| |
= |

( )
f

J e
i

κ κ
ε εκ

κ κκ κ

∂
−

∂ε ε − ε + ν∑




v
 (39) 

where = / 2xn dP
κ

π∑ ∑ ∫   while , ˆ= | |xκ κ 〈κ κ〉v v  and 

0 0= 1/ tν  is the electron-impurity relaxation frequency. 

As follows from Eq. (8) (see also Fig. 3(b)) the distance 
between energy levels | | Hκ κε − ε ω  and hence for the 
case considered below 0Hω ν  the main contribution to 
the sum is of the diagonal elements because the diagonal 
element , 0κ κ ≠v  for delocalized quasiparticles. From here 
it follows that the current along the junction may be writ-
ten as 

/
2 ( ) 2 0

0 ( )= ( )/

= | ( ) |
2

F
eex

n x ee Pn n xF

dP f
J e t P

ε

ε ε−ε

∂
−

π ∂ε∑ ∫


v

v

v  (40) 

where ( ) ( )
,( ) = ( ) /ee ee

n x n x xP d P dPκ κ≡ εv v . 
Using the same approach as in Subsection 4.1 one finds 

the conductance along the n–p–n junction in the presence 
of impurities as follows: 

 dirty 0

Drude

( )
= 8 | sin ( ) |gG f eV

d
G +

∂ ε −
− ε Φ ε ×

∂ε∫   

 
1 2 2 2 ( ) 2 2

2 2 ( ) 2 2 2
1

(1 ) ( ) cos ( ) [| | ( ) cos ( )]
,

sin ( ) (| | ( ) cos ( ))(2arcsin )

ee

ee
r r

d
r

+ +

+ +−

− ξ ξ − Φ ε θ ξ − Φ ε
× ξ

π Φ ε − ξ − Φ ε ξ∫   

  (41) 

where Drude 0= HG Rσ . Here 2 2
0 0= /F e tσ ε   is the Drude 

conductivity of graphene in the absence of magnetic field, 
= 0H . 
Dependence of the conductance on the gate voltage gV  

in the presence of impurities is presented in Fig. 11. As one 
sees the conductivity dirty / HG R  reaches the Drude con-
ductivity when the energy F geVε +  is in the middle of a 
band and is equal to zero when it is inside a gap of the en-
ergy spectrum (see Fig. 3(b)). 

The above giant oscillations of the conductance are 
based on the quantum interference of the edge states on the 
both sides of the lateral n–p–n junctions that transforms the 
gapless spectra of the separated edge states into a series of 
alternating energy gaps and bands. In the same way as it 
takes place for magnetic breakdown this pure quantum 
mechanical picture holds if the path traversed by the “new” 
quasiparticle between collisions is greater than the individ-
ual classical trajectory [29]. It means that in the case under 
consideration the bands give the main contribution to the 
conductance if the following inequality holds: 

 ( )
gr 0> e

Ht R〈 〉v   (42) 

where 
0

... = (...) /
pF

x FdP p〈 〉 ∫ , the group velocity 
( ) ( )

gr =| ( ) | /ee ee
x n xr P d dPεv  and 0t  is the free path time, 

| ( ) |xr P  is the probability amplitude of the reflection at the 
n–p–n junction. This inequality may be re-written as 

 ( )

0
| ( ) |ee H

x
Rr P
l

〈 〉  (43) 

where 0 0=l tv  is the free path length. 

5. Discussion and conclusion 

Quantum dynamics and kinetics of quasiparticles in a 
graphene ribbons with either n–p or n–p–n lateral interface 
under magnetic field is considered in the semiclassical 

Fig. 11. Giant oscillations of the conductance of a dirty graphene 
ribbon with an n–p–n interface under variations of the gate volt-
age gV  normalized to ( )

Drude = e
HG Rσ . Numerical calculations 

are performed for the semiclassical parameter 2= 10−η  and the 
n–p–n reflection probability parameter = 0.2λ . 
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approximation. Calculations of the current flowing along 
the n–p junction in the voltage biased ribbon show that 
there are three different currents inside the regions 

( )2 < 0e
HR y− ≤  and ( )0 < 2 h

Hy R≤  around the lateral junc-
tion at = 0y  (see Fig. 5). One of them is the current of the 
quasiparticles skipping along the interface, ( )eh

bJ , (see 
Eq. (20)). The other two are currents ( )e

LJ  and ( )h
LJ  which 

are created by quasiparticles in the localized Landau states 
the closed orbits of which are partially inside the above-
mentioned regions around the n–p lateral junction (see 
Eqs. (27), (28)). The latter currents flow in the opposite 
direction to the current of the skipping quasiparticles ( )eh

bJ  
exactly compensating it in the absence of the bias voltage. 
As a result, the measurable current (which is the sum of 
those three currents) flowing along the biased n–p junction 
is the sum of two standard edge state currents of electrons 
and holes independently flowing along the junction (see 
Eq. (29)). Therefore, the snake-like states suggested in 
Ref. 24 do not manifest themselves in the main smooth 
part of the conductance of a graphene ribbon with an n–p 
interface. In principle, the snake-like states could implicitly 
affect the quantum oscillating corrections or the conduct-
ance in the regime of the quantum Hall effect but the es-
sentially quantum character of the latter contradicts the 
classical nature of the former. 

It is also shown that giant conductance oscillations may 
arise in a biased graphene ribbon with an n–p–n lateral 
interface under magnetic field. In such a state of the rib-
bon, depending on the number of n–p–n interfaces inside 
the ribbon, its total magnetoresistance may be controllably 
changed by 50–90% by an extremely small variation of 
the gate voltage or the magnetic field (see Fig. 10 and 
Eq. (34)). 
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Appendix A. Dispersion equation for quasiparticles 
skipping along an n–p junction under magnetic field 

The semiclassical solutions of Eq. (2) above and below 
the junction (0 < < hy y  and < < 0ey y , respectively) are 

  =
( )(1/ 4)

hh
t

C
y y

Ψ ×
−

  

 
1

exp ( ) ) h.c. ,
4e
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i p y dy− ϕ
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where 
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 (A.2) 

are the turning points while xP  is the conserving general-
ized momentum. 

The constants hC  and eC  are determined by the match-
ing of the above wave functions at the lateral junction and 
by the normalization condition. 

In order to match the wave functions at the junction, 
= 0y , it is convenient to write the integrals in Eq. (A.1) as 

, , 0

0
(...) (...) ... )

y y y yt b t b
y y

dy dy dy′ ′ ′≈ +∫ ∫ ∫ . After expanding 

the latter integrals in | | / 1Hy R   one gets 
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where 
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are the areas of the semiclassical orbits in the momentum 

space shown in Fig. 2 in which ( )22= ( / ) .y x xp P pε − +v  

As one easily sees from Eq. (A.1) and Eq. (A.3), in the 
vicinity of the junction | | Hy R  the wave functions in 
Eq. (A.1) are plane waves: 

 

1=
(0)

h
hp

Ψ ×   

 { } { }
1

exp (0) / exp (0) / ,
e

h h h hi h
A ip y B ip y− ϕ
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  (A.5) 
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Here the constants at the plane waves are 
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= exp
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h h
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. (A.6) 

The incoming quasiparticle undergoes the two-channel 
scattering at the n–p junction and hence the constant fac-
tors at the scattered plain waves are matched with a 2 2×  
scattering unitary matrix which is written in the general 
case as 

 
( ) ( )

( )
( ) ( )

ˆ = ,
eh eh

eh
eh eh

t r

r t∗ ∗

 
 τ
 − 

 (A.7) 

where ( )eht  and ( )ehr  are the probability amplitudes for the 
incoming quasiparticle to pass through and to be scattered 
back at the n–p junction, respectively, ( ) 2 ( ) 2| | | | = 1eh eht r+ . 

Using Eqs. (48) and Eq. (A.7) one matches the factor at 
the plain waves as follows: 
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Replacing ,e hA  and ,e hB  by ,e hC  with the usage of 
Eq. (A.6) one finds a 2 2×  set of homogeneous linear alge-
braic equations for the required constant factors ,e hC  at 
the semiclassical wave functions Eq. (A.1): 
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where 

 
0 01 1= , =e e h h
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. (A.10) 

Equating the determinant of equation Eq. (A.9) to zero 
one finds the dispersion equation Eq. (4) of the main text. 

Appendix B: Derivation of the conductance of pure 
graphene with n–p–n interface. 

It is convenient to re-write Eq. (30) as follows: 
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Using Slutskin’s approach (see the derivation of Eq. (17) 
and the equation 
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one gets 
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Inserting the explicit expression for ( )eeD  (see Eq. (8)) 
in the integrand one finds 
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Expanding the integrand into the Fourier series in −Φ  and 
taking the zero harmonics of it (which gives the main con-
tribution in the integral with respect to xP  because other 
Fourier harmonics are fast oscillating functions of xP , see 
the derivation of Eq. (17)) one gets 
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where ( )xΘ  is the unit step function and 
( )( ) 2= / 2( / ) ( / )ee c e H+Φ π ε v , see Eq. (8). Taking the in-

tegral with respect to ε one gets Eq. (31) of the main text. 
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