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Dynamical chaos, states stability in long Josephson junctions are investigated from the point of view

of the flux quantization. It is shown that the stationary Meissner and fluxon states having integer

number of fluxons are stable. Stationary antifluxon states also having integer number of the flux quanta

and all other states with half-integer number of flux quanta are unstable. The transitions between all

states — Meissner, the states having the integer and half-integer number of the flux quanta — take place

in the nonstationary case, and all these states are dynamically equivalent, but the number of the flux

quanta is a nonregular time-dependent function for the chaotic states and regular for the regular ones.

PACS: 05.45.+b, 74.50.+r

Introduction

Long Josephson junctions (LJJ) are of big inter-
est first of all from the point of view of making
SQUIDs on the basis of them. However a L]] is of
interest also as a simple and at the same time deep
physical and mathematical model of nonlinear phe-
nomena. Dynamical chaos in a LJJ is a subject of
intensive researches [1—19], it may be a source of
the dynamical noise.

It is well known that the number of solutions of
the nonlinear stationary Ferrell-Prange equation
for the conventional Josephson phase variable (it is
just a phase difference of the wave functions of a
superconducting condensate on the junction) des-
cribing stationary states in a LJJ at the given
boundary conditions depends on the value of an
external magnetic field H, , a bias current  and a
total length of the junction L. It is clear, that only
one solution may realize in the concrete junction at
given values H,, B and L. Evidently, this state
must be one of the solutions of the Ferrell-Prange
equation. Stationary states of a LJJ being the solu-
tions of the Ferrell-Prange equation have been
investigated, for example, in Ref. 20. The question
is, how does a selection of this solution happen?
What is the selection of this solution affected by?
The problem of the selection of the solutions of the
Ferrell-Prange equation are usually treated in the
framework of thermodynamical approach [20].
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Within such approach one assumes that just the
solution corresponding to the global minimum of
the thermodynamic Gibbs potential realizes at the
concrete physical conditions. In our previous work
[21], we have proposed another approach based on
the fact that the Ferrell-Prange equation is the
stationary limit of the time-dependent sine-Gordon
equation describing the dynamics of a 1JJ. Thus,
we applied the sine-Gordon equation with the dissi-
pation to find the dynamical criterion of the states
stability. Using this criterion we have shown that
not all solutions of the boundary Ferrell-Prange
problem are stable, a part of them are metastable.
In the work [22], we have also shown that in a
LJJ with dissipation the selection of the specific
asymptotic solution (including a nonstationary one)
can be affected by the form of the initial rapidly
damped perturbation independently of the initial
state is chaotic or not. In other words, the small
rapidly damped perturbation influences essentially
the asymptotic states of a LJJ even if the initial
state is chaotic. This characteristic of the LJJ we
have called a memory effect. Due to this effect the
dynamical chaos strangly differs from the statistical
one (in the case of the statistical chaos a loss of
information happens during the relaxation time).
In the presence of both an external magnetic
field and dc bias current, three clusters of states can
exist: stationary, regular, and chaotic. With chan-
ging the parameters of the initial perturbation, the
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system realizes transitions between these three clus-
ters of the asymptotic states [22]. In the work [23],
we have shown that the parametric B—H, plane of a
LJJ is separated by the bifurcation lines on the
series of regions with the different number of solu-
tions of the Ferrell-Prange equation, and along the
bifurcation line that separates the region with two
stationary states from the region without ones a
chaos strip arises. The number of the stationary
states decreases in the presence of the bias current
but also at B =0 a part of the solutions are stable,
others are unstable. In this work we will try to
investigate these stable and unstable states in de-
tail. We will analyze the problem from the point of
view of the flux quantization. We will show that
the stationary states have only zero, integer and
half-integer number of flux quanta, and the states
with half-integer number of flux quanta are always
unstable. The states with the integer number of flux
quanta are the fluxon and antifluxon states, and the
fluxon states are stable, the antifluxon ones are
unstable. Among the states with the zero number of
flux quanta only the Meissner states are stable,
other are unstable. We will formulate the criterion,
which makes possible to define the stability of the
states from the point of view of the flux quantiza-
tion. We will show also that the number of flux
quanta is a nonregular time-dependent function for
the chaos states and that allowed states with the
integer and half-integer number of flux quanta are
equivalent in a certain sense in nonstationary —
regular and chaotic — regimes.

1. Flux quantization for stationary states

In contradistinction to our previous work [23],
we have studied the stationary states of a LJJ in
detail and have mainly given attention to the flux
quantization in these states. We have solved nu-
merically the boundary Ferrell-Prange problem:

¢,.(x) =sin 6(x) - B, (1)

0, ()|, = 0,0, =H,. 2)

Here ¢(x) is the Josephson phase variable; B is the
dc bias current density normalized to the critical
current density of the junction j, ; x is the distance
along the junction normalized to the Josephson
penetration length A 73 Hyis the external constant
magnetic field perpendicular to the junction and
normalized to H = @,/ (2T d); @ is the flux quan-
tum; d =2\; +b, A, is the London penetration
length, b is the thickness of a dielectric barrier, L is
the total length of the junction normalized to A, .

1068

Equation (1) with boundary condition (2) has
been solved numerically at different values of
H, , B and L. The distribution of the magnetic field
H(x) = ¢ (x) and the current density j(x) = ¢ (x) in
the junction have been calculated.

We have also calculated the thermodynamic
Gibbs potential for an each state using the follo-
wing equation:

L
G = [ 5 029+ 1 = cos 00 - Bo(e) = Heb (0
O
0

e

(3)

where G is the thermodynamic Gibbs potential per
unit length of the junction normalized to the value
G= ¢(2)/(16Tr3)\Jd). It should be noted that all solu-
tions of the Ferrell-Prange equation are extremals
of the functional Eq. (3). Furthermore, it is easy to
show (see, for example, Ref. 24) that these extre-
mal values correspond to the minima of the thermo-
dynamic potential G.

As an illustration, the results of the calculations
for Hy=1.9, L =10 and B = 0.06, B= 0.08 are

listed in Tables 1 and 2.
Table 1

Stability, transitions, number of flux quanta, sort of state.
H0 =19, L =10,p3=0.06

Transi- | Number
Number Sort of sta-
Stability G tions | of flux
of state ble states
k - [ | quanta
1 unstable |—-12.849| 1 - 7 2 2-antifluxon

2 unstable |[-12.912] 2 - 9 1.5

3 unstable | -7.592 | 3 - 5 1 1-antifluxon
4 unstable | -7.594| 4 - 5 0.5

5 stable -7829 |5 -5 0 Meissner
6 unstable | -7.828 | 6 - 5 0.5

7 stable |-13.652| 7 - 7 1 1-fluxon
8 unstable |—13.368| 8 - 7 1.5

9 stable |-17.556| 9 - 9 2 2-fluxon

10 unstable |—17.272( 10 - 9 2.5

Fizika Nizkikh Temperatur, 2000, v. 26, No 11



o v o~ ' v

Table 2

Stability, transitions, number of flux quanta, sort of state.
HO: 1.9, L =10, 3=0.08

Transi- | Number
Stability G tions

k - [ | quanta

Sort of

stable states

Number
of flux
of state

1 unstable | —14.747 | 1 - 3 2 2-antifluxon
2 unstable | -14.771| 2 - 3 1.5

3 stable -20.328 | 3 -3 2 2-fluxon
4 unstable | —20.177 | 4 - 3 2.5

Now we calculate the flux in a LJJ. In the case
of the infinitely long junction the following condition
takes place for the stationary states: ¢(x), __, =0,
O(x)), _ 1o = 2Tt and the total flux is [25,26]

+00

i
® _ﬁj-d)x(x)dx =n (n=1,2,3,..). (4)

Here the flux ® is normalized to the flux quantum
®, . In the case of the junction of the finite length
the situation drastically changes, because the
boundary effects must be taken into account. In this
case the shielding current always flows at the edge
of a junction and the total flux must be calculated
in the other way excluding boundary effects. Be-
cause the shielding current can’t be associated with
the flux quantization in a junction, we have to
exclude boundary effects from the flux calculation.
Then we can write down the required flux as
follows:

X
2

1 1
b= %J-Q)x(x)dx = % [¢(x2) - ¢(x1)] s (5)

1
where x, and x., are the nearest points to the left and
right edges, respectively, in which j(x) = ¢ (x) = 0.
In these points j. >0 for the fluxon states and
Jj, <0 for the antifluxon ones. The formula (4) is a
special case of (5) because j(x, = —») = j(x, = +w) = 0.
Using the definition of the points x, and x,, , we
find that the following three sorts of states take

place, in which

No=0,
2)d=n, n=1,2,3, .., (6)
3)®=n/2ztarcsinB/m, n=1, 2,3, ...
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We will call these states by allowed ones. The
value ® =0 corresponds to the Meissner and quasi-
Meissner states, ® =n (n =1, 2, 3, ...) to the fluxon
and antifluxon states and ® = n,/2 * arcsin B/t (n =
=1, 2, 3, ...) to the all other states.

The comparison of the case, when a bias current
is equal to 0, with the case, when B # 0, makes us
possible to say that the dc bias current takes off the
degeneration of the states with half-integer number
of flux quanta. The splitting value in the flux is
equal to 2 arcsin B/m and at B = 0.06 and 0.08
(Table 1 and 2), it is equal to 0.038 and 0.050,
respectively.

We define a stability of the stationary states as
following: firstly, we solve numerically the equa-
tion for time-dependent perturbations of the sta-
tionary state (this equation can be easily found
from the sine-Gordon equation as a result of lineari-
zation [21]). Then, we determine stability or insta-
bility of the stationary state with respect to small
perturbations calculating the Lyapunov exponent
[22]. As we can see from Tables 1 and 2, the
antifluxon states and states with half-integer num-
ber of flux quanta are unstable. These states are
disintegrated to some stable states (Meissner or
state with integer number of flux quanta).

To find the finite stable state I, in which the
metastable state k passes (the transition & — 1), we
used the solution of the Ferrell-Prange equation
corresponding to the state k as an initial state for
the nonstationary sine-Gordon equation.

As it is seen from the results of calculations
listed in the Tables, the transition & — [ is accom-
panied always by inequality G, > G, (k # I), where
G, and G; are the thermodynamic Gibbs potentials
of k& and [ states, respectively. If the state & is
stable, k=1 (G, =G)). One of the unexpected re-
sults is that the metastable, i.e., unstable, state has
the thermodynamic Gibbs potential that is not ne-
cessarily more than this one for some stable states.
In Fig. 1, the schemes of the transitions between
states are shown at H,=1.9, L =10, and B = 0.06
(Fig. 1,a) and 0.08 (Fig. 1,b). The horizontal lines
correspond to the certain values of the thermody-
namic Gibbs potential of states at the given parame-
ters Hy, L and PB. As it is seen from Fig. 1,
Gy < Gs and G <Gy, the states 5 and 7 are
stable.

Our calculations show that the number of stable

states decreases with the increasing of . For exam-
ple, four stable states exist at H,=1.9, L =10 and

B = 0: the Meissner (M), one-fluxon (1f), two-
fluxon (2f) and three-fluxon (3f) states; we have 3
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Fig. 1. The schemes of transitions between states at H, = 1.9,
L =10, and B =0.06 (@) and B =0.08 (b).

stable states at B = 0.06: M, 1f and 2f; two states at
B=0.07: 1f and 2f, and one 2f state at B = 0.08.

There are no stationary states at B = 0.15. The
stable states with G; > G, , where G, corresponds
0 0

to the global minimum, fall into the state with G,
0

at increasing [.

The character of the stationary states changes
simultaneously with the changing of the number of
states when an external magnetic field H, is
changed at other fixed parameters. For example,
the number of the stable states equals to three: M,
1f and 2f at =0, L =10 and H, = 1.4; there are
two stable states: M and 1f at H, = 0.6; only one
stable stationary state exists: M at H = 0.05; there
are three stable states again: 1f, 2f and 3f at H =

1t
J

0.6}

1f 1af

0.2t

-0.2¢

-0.6¢

ML N

0 2 4 ., 6 8 10

Fig. 2. Distribution of the current in one-fluxon 1f and one-an-
tifluxon 1af states. Hj =19, B=0, L =10.
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= 2.0; and we have two stable states at H,=21: 2f
and 3f; 3f and 4f at H, = 2.2; 4f and 5f at H, =2.9.

In Fig. 2 one-fluxon (1f) and one-antifluxon
(1af) states are shown at H,=1.9, B=0 and L =
=10. In Tables 1 and 2 the numbers of flux quanta
for stationary states are listed. The calculations
allow to make the following conclusions: 1) station-
ary states at the given set of the parameters can
have a number of flux quanta being equal to zero,
half-integer and integer numbers; 2) all the fluxon
and antifluxon states have the positive integer num-
ber of the flux quanta according to the criterion (5)
formulated above. All fluxon states are stable and
all antifluxon states are unstable; 3) all states with
half-integer number of fluxon are always unstable;
4) in the Meissner states x, = x., always and n = 0.
This state is stable. Besides the stable Meissner
states, unstable states with n = 0 exist, one of them
is a quasi-Meissner state with x, = x, . In Fig. 3 the
Meissner and quasi-Meissner states are shown for
H,=12,B=0, and L = 10. All the quasi-Meissner
states in Fig. 4 fall into some stable states.

All states with half-integer number of the flux
quanta and antifluxon states are nonphysical be-
cause they disintegrate and therefore can not be
realized in real systems. As to the quasi-Meissner
states, all of them arise in the capacity of some
intermediate states and finally disintegrate.

The number of the fluxon and antifluxon states
decreases at B> 0. For example, there are four
fluxon and antifluxon states at H,=19,L=10 and
B = 0.06 (instead of five ones at B = 0), and their
number equals only two at B = 0.08 (one of them is
two-fluxon state, other is two-antifluxon one).

Thus, not all states having the integer number of
flux quanta are stable but only the fluxon states.
The criterion (5) formulated above may also serves

15
H

0.5}

ol M
quasiM
_1 L
‘20 2 4 6 8 10
X

Fig. 3. Meissner and quasi-Meissner states at H,= 1.2, B=0,
L =10.
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as a simple criterion of stability of the solution of
the Ferrell-Prange equation.

2. Flux quantization and chaos

As it is noted above, the number of the station-
ary states decreases when dc bias current increases
and, at the same time, the number of the nonsta-
tionary states increases. In general case, three clus-
ters of states — stationary, regular and chaotic —
take place in a LJJ [21]. In the present Section we
will consider the nonstationary regular and chaotic
states from the point of view of a flux quantization.

The nonstationary states can be found by the
numerical integration of the nonstationary sine-
Gordon equation

O, 1) + 20 (x, ) = &, (x, ) = = sin §(x, ) + B
(7)

with the following boundary conditions:

0.0 O,y =0.x 0, =H,,  (®

where ¢ is the time normalized to the inverse
of the Josephson plasma frequency w;,w; =
= (2Trcjc/(Cd>0))1/ 2. C is the junction capacitance
per unit area; y is the dissipative coefficient per unit
area, y= <1>0(Jof/4T[chC , R is the resistance of the
junction per unit area. Of course, the solutions of
the Ferrell-Prange Eqs. (1), (2) coincide with the
asymptotic solutions of the sine-Gordon Egs. (7),
(8). All solutions of the Ferrell-Prange equation,
i.e., the stationary solutions, appear from any in-
itial state during the evolution governing by the
sine-Gordon Eqs. (7), (8) but these solutions are
not equivalent: some of them are stable, others are
unstable (metastable).

As well as for the stationary states of the junc-
tions of finite length, in the nonstationary case the
shielding currents flowing at the junction edges
must be taken into account and we define the points
x and x, again. In this case i) the locations of these

points will depend on a time: x; = x,(¢) and x, =
= x,(t) and ii) we must find these points using the

conditions of vanishing of the total current —
superconducting and quasiparticle — in the junc-

tion, i.e., j(x,) =j(xy) =0, where j(x,) = [d,(x) +
+2yp,(x) = ¢, (¥)l,-, . The same we have for the
1

J(x,). This condition defines the allowed states in

which
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d=0,

Nd=nt), n=1,2,3,.., €)

3) ® =n(t)/2 £arcsinB,/m, n=1, 2,3, ...
Here n is a discrete function of time in the sense
that it performs jumps remaining constant between
these jumps. Of course, the flux ® behaves in the
same manner. In contrast to the stationary states
(see (6)), the flux ®(¢) takes the different values
for all the series 1)-3) in (9), spending in each of
them certain time. Besides, the points x; and x
move along the junction and a character of this
motion are different for regular and chaotic states.

In Figs. 4,a and 4,b the dependences of ®(t) for
the two regimes — regular at H,= 1.9, B= 0.1,
L =10 (Fig. 4,a) and chaotic at H;= 1.9, B=
=0.125, L =10 (Fig. 4,b) are shown. A character of
these regimes was determined by the calculation of
the Lyapunov exponent A (see Ref. 22): in regular
regimes A =0 and in chaotic ones A > 0. The de-
pendence of the flux in the regular regime, for
example, has a regular character, and a flux evolu-
tion consists of the regular transitions from one

3.2

a
&
28}
2.4l “‘"
2.0 20'4'ot'60' 80 100
¢ b

(

0 '2'0'4'ot'6'o'8'o'1oo

Fig. 4. Dependences of the flux ® on time in the regular re-
gime at H = 1.9, =0.1, y=0.26, L = 10 (a) and in the cha-
otic regime at H,=1.9, =0.125, y=0.1, L = 10 (b).
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allowed state to another. Of course, the depend-
ences of x,(¢) and x,(f) have the same character. In
contrast, in the chaotic regime x(f) and x,(¢) are
the nonregular time-dependent functions. The func-
tion ®(¢), as it is obviously seen in Fig. 4,b, reveals
the jumps between the allowed states as well as in
the regular states but the response time in a fixed
state changes irregularly now. We note also, that
there are not any explicit preference of the states
with the integer number of flux quanta in compari-
son with the states with the half-integer number of
the flux quanta both for the regular and chaotic
regimes.

So, while in the stationary regime the states with
the integer number of the flux quanta (fluxon
states) are prefered in the sense that they are stable,
in the nonstationary regimes — regular and chaotic
— the allowed states with the integer and half-inte-
ger number of flux quanta are in a certain sense
equivalent.

Conclusions

In the present work we consider the problem of
the states stability and the chaotic dynamics in the
LJJ from the point of view of the flux quantization.
We have shown that just the stationary states with
integer number and half-integer number of the flux
quanta take place and among them only the Meiss-
ner and fluxon states are stable, the quasi-Meissner
and antifluxon states are unstable, although they
have also the integer number of the flux quanta. All
the other states with the half-integer number of the
flux quanta are always unstable. Thus, the stable
states are the states in which the flux is always
quantized.

The states with the half-integer number of the
flux quanta are doubly degenerate. The dc bias
current removes this degeneracy. Among the sta-
tionary states just the fluxon states with the integer
of the flux quanta and the Meissner state has
preference, they are allowed ones.

All the allowed states with integer and half-inte-
ger number of flux quanta are equivalent in a
certain sense in the nonstationary case, and a system
passes from one allowed state to another, and the
response time in the states is chaotic in the chaotic
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states and regular in the regular ones. In other
words, the half-integer quantum numbers are added
to the integer quantum numbers in the nonstation-
ary — regular and chaotic — states.
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