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A transfer-matrix approach is developed for studies of the collective electromagnetic modes in a
semi-infinite layered conductor subjected to a quantizing external magnetic field perpendicular to the
layers. The dispersion relations for the surface and bulk modes are derived. It is shown that the surface
mode has a gap in the long-wavelength limit and exists only if the absolute value of the in-plane wave
vector g exceeds the threshold value q”=-1/(z In|a). Depending on the sign of the parameter
A= (e -¢y)/(g, +¢€), the frequency of the surface mode w(q, &) goes either above (for A > 0) or below
(for A < 0) the bulk-mode frequency w(g, k) = w(g, k + 21/a) for any value of k. At nonzero magnetic
field H the bulk mode has a singular point g,(H) at which the bulk band twists in such a way that its
top and bottom bounds swap. Small variations of g near this point change dramatically the shape of the
dispersion function (g, &) in the variable k. The surface mode has no dispersion across the layers, since
its amplitude decays exponentially into the bulk of the sample. Both bulk and surface modes have in the
region ga >>1 a similar asymptotic behavior w0 g2, but w(g, ) lies above or below g, &),
respectively, for A>0 and A< 0 (e is the interlayer separation; &, and € stand for the dielectric

0
constants of the media outside the sample and between the layers; g and % are the components of the

wave vector in the plane and perpendicular to the layers, respectively).

PACS: 73.20.Dx, 73.20.Mf

1. Introduction

The discovery of the quantum Hall effect in
1980 [1] has triggered intensive studies of a two-di-
mensional electron gas (2DEG) in an external
quantizing magnetic field. These studies have since
been extended to different types of artificially fab-
ricated semiconducting and metallic superlattices
(SL), organic conductors, and high-T', layered su-
perconductors. Numerous studies, in particular,
have been devoted to the problem of collective
plasma and electromagnetic waves in 2DEG and
layered conductors as well as in SL in a high
magnetic field. Generally, a three different physical
cases should be distinguished in this problem: the
case of classical SI,, the case of quantum SL, and
the case of layered conductors. In the first case
constituent slabs of the SL are assumed to be so
thick that one can neglect the electron energy
quantization. The electromagnetic wave propaga-
tion in such SL is determined completely by Max-
well’s equations and the appropriate boundary con-
ditions. Quantum SL have small separation between
conducting layers, and the electron dispersion
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across the layers in this case is due to the tunneling
between neighboring layers. By layered conductors
we shall understand a stack of 2D conducting
planes separated by dielectric layers which prevent
electrons from hopping between the neighboring
planes. Layered conductors are realized in nature in
the form of layered crystals such as dichalcogenides
of transient metals, organic superconductors, and
high-T cuprates. The high anisotropy of TI- and
Bi-based high-T, cuprates [2], organic salts of
(TMTSF),X [3], and ET families [4] makes them,
like dichalcogenides of transition metals [5], good
layered conductors in the sense formulated above. It
is evident, that layered conductors can also be
fabricated artificially in the form of highly aniso-
tropic SL. All these materials are well described by
the model of conducting planes embedded in a
dielectric matrix. This model has proved to be
useful in studies of different types of plasma [6—10]
and electromagnetic [11-20] waves in layered con-
ductors, superconductors and superlattices. A quasi
two-dimensional nature of the conductivity in la-
yered conductors brings some specific features into
calculations of the collective electromagnetic modes
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in them, especially in the presence of external
magnetic field. Some new types of collective elec-
tromagnetic excitations have been predicted theo-
retically in a purely 2DEG in high magnetic fields
under the conditions of the quantum and conven-
tional Hall effects. Among them are surface polari-
tons [21,22], magnetoplasma oscillations [23], and
quantum waves [24,25]. The variety of waves be-
came richer in layered conductors. It is known that
a quantizing magnetic field applied perpendicular to
layers makes possible the propagation of the heli-
cons across the layers in both the conventional [11-
14] and quantum [14,26—28] Hall-effect regimes.

Real layered crystals and superlattices contain
different types of defects within the layers as well
as imperfections in their stacking which may give
rise to new collective electromagnetic modes such
as, for example, the magnetoimpurity waves [13] or
various local modes [9,10,16]. The infinite crystal
is yet another idealization of the theoretical treat-
ment of the problem, since any sample in experi-
ments has a surface which is known to be a «struc-
tural defect» that generates surface modes
decreasing into the bulk of the sample. Surface
plasma modes have been studied extensively in the
model of a semi-infinite layered electron gas [7,8].
Surface electromagnetic waves have also been des-
cribed in layered superconductors [15].

The purpose of this paper is to study the surface
electromagnetic waves in layered conductors in a
perpendicular quantizing magnetic field. The basic
equations describing the electric field components
on the layers, E_(z,) = E (n), were derived in our
previous publication [14] and can be written as
follows (see Appendix for details):

4ATEW
E) == 5" 3 G (o mlo,, E ) + 0, E ()],
"

dmiig” (1)

X

Ey(n) =-

X z sz(n, n')[oyy Ey(n’) tao,, Ex(n')]£_1(n)

(z, is a discrete coordinate of a conducting plane
along the z axis).

The Green’s functions Ggm(n, n') = Ggm(zn , 2,) in

Eq. (1) satisfy the following equations:
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where
2
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Here €(2) is the dielectric constant of the matter
between the layers, Ogp = 00([3((1’ w, H) is the two-
dimensional high-frequency conductivity tensor in
an external magnetic field H; q stands for the wave
vector, and g, (2) is defined by the equation

2
q(2)=q" - % &(2) . (5)

2. The model and the basic equations

Consider a regular semi-infinite layered crystal
in which conducting planes occupy positions at a
discrete periodic set of points z, = na (n =0, 1,2...)
along the z axis of the halfspace z > 0. We assume
that the dielectric constants are different in the
halfspaces: €, at 2 < 0 and & between the layers.
The function €(2) can be written analytically with
the help of the Heaviside step function

€(2) = €0(2) + ¢ B(-2) . (6)

It follows then from Eq. (5) that quantity ¢2(2)
takes two different values in half spaces:

2
2 %w’2>0’
2) = (7
92 E](i),z<0,

where g, = q* — ew?/c* and Kz) =g - 800)2/02.
The Green’s function G* (z, z') can be found
with the help of the known géneral expression

G* (2, 2) = b
9o WX, ¢)

x {6(z - 2) X(2) () + 6(z' - 2) X(2) $(2)} , (8)

where X(2) and ¢(2) are two independent solutions
of the differential operator in the left-hand side of
Eq. (2), and W(x, ¢) = ¢X' — x¢' is the Wronskian
determinant.

Choosing X(2) = exp (-q,, 2), ¢(2) = cosh (g, 2) +
+ (K, /q,) sinh (g, 2) for 2 > 0, we have
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where
0, = (g, k) (G, tK) . (10)

The Green’s function Gg (z,2) = é(z, 2') in our

model satisfies the following equation:

%f q@kﬁ&2)+A ) G@z)-&zAn
(1)

The quantity A | is defined by the relation

2e-¢
a =252 (12)
¢ wd & *TE

where the following notations are adopted:
Gy = g% — (W/cAe, and €= (g, +€). The solu-
tion of Eq. (11) is trivially expressed in terms of
the Green's function G(z, 2') that satisfies the very
same equation but with A = 0:

Gz, #) = G(z, 2') - Gz, 0)G'(0, 2'),
(13)

notation

+ A G'(O 0)
where we have used the
G'(0, 2') = lim 0G(x, 2')/0x.

x-0

Taking into account that G(z, 2') = G’C; (z, 2') for
(9) and (13) an

exact formula for the Green’s function GZ (z, 2') in

z, 2 > 0, we obtain from Egs.

the positive half space:

No_ Lo -q |2+2]0
Ggm(ziz)_ 2qw% +A e 0’
2,2 >0. (14)
We have introduced the notation
N A(1-8)
A =0 +——— . 15
W o w 2+5 A (15)
W w

Substituting Egs. (9) and (14) into Eq. (1), we
have

aln—n'| -q aln+n'|

Em=Y 8GB(e‘qm

B,n'=0

+0% e ) Ey(n) ,
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(16)
where
~ 21w v
0(1[3 ) OGB(q’ 0w, H) ap ? (17)
and V_ qp 1S @ matrix with the components V,, =
=V,=1, Vy = V22 =- C2q(20/(1)28. The quantity

A“ takes two values: Ax d, and AY = A

3. The transfer-matrix approach

To solve Egs. (16) it is convenient to introduce
new quantities

_ A 0 qmﬂ(ﬂ—ﬂ') '
Ad(n) - Z OG 0 z EB(n) +
B ¢ sn
A —q_a(n+n’) .
+A2)Z e o EB(n)g (18)
n'=0 0

and

B_(n) = Z oaB( 5 e’ )EB(n)) (19)

n'>n

The sum of Aa(n) and B (n) is exactly the electric
field at the nth layer:

E_(n) = A(n) + B (1) . (20)
Using Eqs. (18)-(20), one can easily obtain the

recurrence relations

Agn + 1) =e 1A () +

3 8GB [Ag(n+ 1) + Byn + D1, (21)
B
By(n+ 1) = "B () -

-3 3(15 [Ag(n+ 1)+ B + 1)1 . (22)
B

These equations may be recast in the matrix form:

O (n + 1)D_ . Oty
% (n+ 1)D o %B( o 9

where the transfer matrlx T has been introduced
by the definition
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The transfer matrix satisfies the relation
T 22 12421 _
det TaB = TaBTaB TO(BTOIB = 60([3 ) (25)

As compared to the case of a one-component plasma
oscillations in layered structures,which were dis-
cussed in papers [8,9] in terms of the transfer ma-
trix of dimension 2 x 2, the matrix Ta given by
Eq. (24) has a higher dimensionality F4 x 4) be-
cause of the two-component nature of the electro-
magnetic waves in the system under study.

Putting #n = 0 in Eqgs. (18) and (19), we arrive at
the surface condition

A40) = A2B(0) + 5 0,51 + ADIAL0) + By(0)] .

P (26)

Before turning to the surface-mode calculations it is
instructive to address first the simpler case of an
infinite layered conductor. In this case one can find
the solution of the matrix equation (23) in the form

A(m)y=C_e*™ B (n)=D_e*" . (27)
After substitution of these relations into Eq. (23),

we have

Det (3, I- %GB elke) = () | (28)

The symbol Det here stands for the determinant of
the (4 x 4) matrix, while I is the (2 x2) unit
matrix.

Taking into account the condition given by Eq.
(25), one can rewrite Eq. (28) in the form

det (60[[3 cos ka - % Tr %GB) =0 (29)

which, after the substitution of the transfer-matrix
components, yields the dispersion relation

et [3,+ Gy (3, b, W1 =0, (30)

where the structural form factor is given by

sinh (g,4) (31)
cosh (g, @) = cos (ka) '

S(g, k, w) =

Different types of electromagnetic waves in infi-
nite layered conductors have been studied on the
basis of Eq. (30) under the the conditions of the
conventional and quantum Hall effects, in particu-
lar, the magnetoimpurity waves [13] and the heli-
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cons and helicons—plasmons [14]. The surface
breaks the translational invariance of Eq. (16) due

to the term containing AS . Because of that, the
surface mode has no dispersion across the layers,
and its field components damp into the bulk of the
layered conductor. We assume this damping to be

exponential with a decrement y and will find it
below,

Ejn+1)=eVEyn) =... =" "E0) . (32)

This equation means that

A(n) = A_(0) €Y | B_(n) = B_(0) ¥ . (33)

The above relations have the very same exponen-
tial form as those in Eq. (27), so that we can find
the dispersion relation for the surface mode immedi-
ately from Eq. (30) by the substitution k& - iy.
This yields

det (3‘1% - 8GB) =0, (34)

where the form factor S(g,y, w) = S(q, iy, w) is
given by

sinh (g,a) (35)

5. v, ) cosh (g a) - cosh (ya) '

To obtain an equation for the function
Y=¥(q,, , W) we proceed as follows. First, writing
the condition E (n + 1) = eV“E (n) with the help of
the transfer matrix and then putting n =10, we
arrive at the equation

> [Ty + TopAg(0) + (Tog + Téé)BB(O)] =
B

= (4,(0) + B,(0) e™ . (36)

New using then Eq. (24) for the transfer-matrix
components, we obtain from Eq. (36) a relation for
the ratio A, /B, at the surface:

A,(0) el 2 — oV
o POV e

a e —€ w
Combining this equation with the surface condition
given by Eq. (26), we arrive at a pair of linear
equations for the quantities B, (0) and By(O), which
have a nonzero solution if

(37)

~

det [P Oyl =0, (38)

0(60([3_

where
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w

P (g, @ y) =

Equations (34) and (38) form a closed system of
equations for the surface mode. This system can,
however, be recast into a simpler pair of equations.
Indeed, comparing Egs. (38) and (34), we see that
P, = S7!. This condition gives an equation for

Y=¥q, ®:

1+ Ag)) e = Ag) el + e 97 . (40)

Using this equation, we can exclude y from the form
factor S[q, y=¥(g,, , w), w] = S(g, ) in Eq. (35),
which yields the dispersion relation for the surface
mode W, = w(q)

det (3,5 = O,g(d, @) S(g, @) =0, (41)

where

A [JAO G a -4 a
+Angwem +e o (42)
~ u . .
02A% O sinh(q,a)
o ®0
The amplitudes of this surface mode decrease expo-
nentially into the bulk of the layered conductor
E (n) = eY*"E(0) with a decrement y = y(q, w/(q))

given by

[

Slg, w) =

a 7.2 + e—qmaD
¥i(9) = é In ?%—AE, (43)
O t+A7 O
O w 0
where @ = w(q).

Being a collective excitation of the finite layered
conductor, the surface mode also decreases exponen-
tially into the left half space z < 0 with a decre-
ment Kz) > (0. This means that the condition
q* - (0)2/62)80 > 0 should hold, as well as the in-
equality ¢* - (w”/c?)e > 0, which has been tacitly
assumed in the course of all the above discussion.
Therefore, these two constraints together with
Eqs. (41)—(43) comprise a complete set of equa-
tions describing the surface electromagnetic mode in
a layered conductor in an external magnetic field
within the our approach. It is worthy of note that
these dispersion relations are still rather general,
since the 2D conductivity tensor that appears in
them is as yet an arbitrary quantity. In the next
section we will consider a Drude-like model for the
conductivity of the 2DEG, leaving more complex
models of the conductivity for further studies.
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4. The surface mode

For further calculations a specific form for the
in-plane conductivity tensor is required. Here we
consider the simplest case of a two-dimensional
electron gas in a perpendicular magnetic field. The
conductivity tensor in this case has been calculated
elsewhere (see [29] for the review) and has the
following components:

- — 2\—1
9, =0, =ox(1+x)",

(44)
Oxy = _ny = _00 + Xoxx ’
where
Ne? vV — i
O,= ", X= , (45)
mQ Q

Q =eH/mc stands for the cyclotron frequency;
v =1 is the Landau level broadening due to the

finite lifetime T; and N is the two-dimensional
electron density. Substituting the conductivity ten-
sor of Eqs. (44) and (45) into the dispersion rela-
tions (41) and (34), we arrive at explicit equations
for the dispersion relations of the surface, w(g), and
the bulk, uXqg), modes, which are nonetheless still
intractable analytically without further approxima-
tions. The problem of the bulk electromagnetic
modes within the approach taken here has been
discussed in detail in Ref. 14 both numerically and
analytically. In particular, the analytic solution was
found for the dispersion relation of the bulk heli-

con-plasmon mode in the case ga >> Vew{w/ wp).

The dimensionless quantity = W, a/c is ex-

tremely small over a wide range of values of the
constituent parameters typical for semiconducting
superlattices, organic conductors, intercalated di-
chalcogenides of transition metals, and high-T, su-

perconductors. For example, for @ =1077-107 cm
and W, =1013 571, Wy is of the order of 10741072
(oop is the plasma frequency of the 2D conduc-

ting layer determined by 0)729 = 4TNe?/ma and c
is the speed of light). In this approximation
9,4 = K, = qa, so that, according to Eq. (10),
3, =0, and Egs. (12) and (15) yield Aa =9,=0,
Ayw =4, /2= A, where

€ - 80

8+€0
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Under these conditions both form factors given
by Egs. (35) and (42) (for the bulk and surface
mode, respectively) become frequency independent,
and the inequalities ¢2 - (0)2/(;2)80 >0 and
g% - (w2 /c?e > 0 hold automatically. Now setting
the Landau level broadening v =0, we find (see
Ref. 14 for more details)

W, = 2qa J 2 +
)~ : 2 o
%qa + R(s)wD € g

where the factor R takes two different forms for the
bulk and surface modes:

(47)

_ sinh (ga) (48)
cosh (ga) - cos (ka)
in case of a bulk mode, and
qa -qa
R o0 +000 4o (49

$ E2A H sinh (ga)
in case of a surface mode. Note that the factor R in
the formula for the bulk mode depends on the two
projections of the wave vector, i.e., R = R(q, k),
where ¢ is the in-plane wave vector, whereas k
describes the dispersion of the bulk mode across the
layers. The surface mode has no dispersion across
the layers, and that is why R = R (g, A) depends
only on g and the parameter A determined by

Eq. (46), so that w, = w(g, 4)). In case of the bulk
mode, Eq. (47) describes a wave which is a combi-
nation of the helicon (first term) and plasmon
(second term). The amplitude of the surface mode
W, = W(q, B) given by Egs. (47) and (49) decreases
into the bulk of a layered conductor according to
the law

n
O 1+A O
Ey(an) = Ey(O) o —0O-
eI + 1
We see from this equation that the field decays
into the bulk of the sample in such a way that
E y(an) becomes exponentially small for ga >> 1:

(50)

n

a + A
E@=E@0)G—\Qe
In this limit the factor R, becomes a constant.
R, =1+A, and the dispersion relation of the sur-

face wave becomes very simple:

—qgan

(51D

1/2
S, pO+AD 4
w(q, &) = [+ G —0qa] (52)
O 02 0 O

Such a square-root dispersion relation is typical for
films, as is clear, since the electromagnetic field of
the surface wave is nonzero only at the interface
layer in the limit ga>> 1. The dispersion of the
surface mode w(q, &) for arbitrary ga is given by

= a
0.012 gA)/_(DpO: Bulk mode Q/op=0001 d|| 01 — g
S 0.10 A
S 05 1.0 15 20
0.008 000gl 08 10,157 20 0.09 @'
0.004 0.008 0.08 = 0.99
Surface mode 0.007 0.07
0 2 3 4 5 0.006 | oos
D @ D R
g Q/0p=001 pukmode bl & | 50108}
S 0.020p 27709 S o018} = 0.108]
‘ 0.104f
0.016}
Slurfalce m?de I 0.102
2 3 4 5 0.014}
ga
0.110
0.110 Q/0p=0.1 surfacemode ¢
TPPA= 03 0.105
0.105 .
0.100 Bulk mode 01005 71
' 0.095 ga .
0.095 0.090 Q/op=0.1 A'B | 1.2
0.090

Fig. 1 The dispersion relation of the surface mode given by Egs. (47), (49) and taken at w, = w, a/c =0.001, Ve =10 for different
values of the parameters A and Q/w_ (a—c) (the darkened area denotes the bulk mode band determined by Eqs. (47) and (48), and
g, marks the singular point of the bulk mode). The same at A = 0.99 for three different values of the parameter Q/w (d—f) and at
Q/(.op = 0.1 for three different values of the parameter A (g—i). W, is the plasma frequency; Q stands for the cyclotron frequency; A

is determined by Eq. (46).
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Egs. (47) and (49) and is shown in Fig. 1 (a—i)
for different values of the parameters A and Q.
The gray area in Fig. 1 (a—c¢) marks the bulk
wave band, which lies between its upper (w,(q) =
= w(g, ka=0)) and lower (w_(g) = g, ka =)
boundaries. The surface mode does exist only for
g > g where the threshold value gis given by the
relation g%z = - In |A|. This relation follows imme-
diately from Eq. (43) for g, = g, which implies that
the inequality |Ae?? +e79% > 1 + A should hold.
When A > 0 the surface mode goes above the bulk
wave band, whereas for negative A the function
wy(q, ) continues below the bulk wave band.
Therefore, we see that two conditions are re-
quired for the surface mode propagation: (i) the
dielectric constant outside the layered conductor,
€, , should differ from the corresponding quantity
€ between the layers; (ii) the wave vector ¢ should
exceed the threshold value ¢ Figs. 1 (d—f) display
the deformations of the surface wave dispersion
with increasing external magnetic field. The de-
pendence of wW(q, &) on the parameter A is shown in
Figs. 1 (g—i). As one can see in Figs. 1 (a—c), the

width of the bulk mode band decreases with in-
creasing ga, so that the upper, w,(g), and the lower,
_(g), bounds merge in the limit ga - 0. For finite
but large ga > 1 the dispersion across the layers is
negligible, since R =1, and in this case w(g, k)
takes, according to Eqs. (47) and (48), the simple
form

1,2
g, )=+ BBy (53)
o ’®0 o

Comparing this result with the Eq. (52), we arrive
at the conclusion that in the region ga >> 1 the
surface mode frequency exceeds the appropriate
value of the bulk wave w(q, d) > w(g, k) for
A >0 and goes below (g, k) for negative A. The
dependence of w(g, k) on k for different values of
ga is shown in Figs. 2 (a—f). In the case of zero
magnetic field Q = 0 the collective excitation of the
system in question is a bulk plasmon whose upper,
w,(¢9), and lower, w(g), boundaries (given by
Eq. (47) with R =R, = coth (gqa,/2) and R=R_=
= tanh (ga,/2), respectively) approach each other

ga=5 a

Q/op=0

0.0126

0.0125}

0.0124

1 1 ka

0.005
0.004
0.003

(0/0p)?

0.002
0.001 -

ka

0 2 4 6 8 10 12
Q/op=0.1 ga= 0.4
0.099 r
0.098
0.097 -
0.096 r
0.095

qa=0.61 d
0.09996 |
0.09994 |

0.09992
0.09990 \f——— \7\/8 5 \7
0.09988

qa=0.62 e
0.10001

0.10000 . . l
4

2
0.09999
0.09998
0.09997 -

0.09996

ka

—_

8 10

(0/0p)?

qa=0.63 f
0.10020

0.10015
0.10010 -

0.10005

ka

Fig. 2 The dispersion relation of the bulk mode given by Eqs. (47) and (48) and taken at w,=w a/c = 0.001, V& = 10 and A= 0.3
in zero magnetic field for different values of the parameters ga and Q/w_(«¢—c) and at Q/(.op = 0.1 for three different values of the
parameter ga near the singular point g, of the bulk mode (d—f). Notation as in Fig. 1.
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but never cross, as one can see in Figs. 1 (a—c). The
evolution of the quantity w(g, k)* in this case is
shown in Figs. 2 (a—¢). In the case Q =0, ga=5
(see Fig. 2,a) the bulk mode is narrow, and
w(g, k)? displays a sinelike behavior as a function of
k. The band width becomes one order of magnitude
wider at ga = 0.4 and the shape of the dispersion in
Fig. 2,b becomes strongly non-sinusoidal. At
nonzero magnetic field the function wXg, k)?, shown
in Fig. 2,c, differs in shape from that in Fig. 2,6
taken at Q = 0. The physical reason for this differ-
ence is illustrated by Figs. 1, and 1,c, from which
we see that at Q # 0 the decrease in ga results in a
change of the bulk transverse dispersion below some
singular point, marked as g, in Fig. 1,c. At this
point w,(q,) = w_(g,), and below g, = ¢q,(H) the
upper and the lower boundaries swap:
w,(9) < w(q). The equation for q,(H) in explicit
form is

2 pr DZ 2 4
QJZDQ = %E[qu a)” +4q, awZD coth (g, a) + w].

(54)

Analysis of this equation shows that it has a
solution ¢, under the condition Q > @ ,/2Ve. The
function @Xq, k)> experiences the most dramatic
changes with respect to the variable % in the narrow
vicinity of the singular point g = g (H). These
changes are illustrated by Figs. 2,d—f.

3. Summary and conclusions

We have given a transfer-matrix theory for the
collective electromagnetic modes of a semi-infinite
layered conductor subjected to a quantizing exter-
nal magnetic field. We started from Eqs. (1)—(3),
describing the electromagnetic field in a stack of
conducting layers embedded in a dielectric matrix
within a model which ignores the interlayer elec-
tron hopping and assumes neither periodicity of the
layer stacking nor uniformity of the dielectric con-
stant across the layers. To apply these equations to
the case of a uniform layered conductor placed in
the halfspace Z > 0 we first calculated Green’s
functions in this halfspace which, in a model where
the dielectric constant €(z) = €8(2) + g, 6(-2), are
given by Egs. (9) and (14). Putting then these
Green’s functions into Eqs. (1), we reformulated
the eigenvalue problem in the matrix form of
Eq. (23) and introduced the transfer matrix by
Eq. (24). This transfer matrix has a higher dimen-
sionality (4 x 4) than the analogous transfer matrix
(2 x 2) used before in Refs. 8,9 for studies of the
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plasma collective modes in layered electron gas.
Within the transfer-matrix approach we then found
dispersion relations for the bulk (Eq. (30)) and
surface (Egs. (34) and (35)) modes, valid for an
arbitrary form of the 2D conductivity tensor of a
layer placed in an external magnetic field. Since
Egs. (1) are written in terms of the field compo-
nents at the layers it may create the wrong impres-
sion that our approach does not take into account
the field dynamics between the conducting planes.
To rule out this suspicion we gave an alternative
derivation of the transfer matrix in the Appendix B
which is based on Maxwell’s equations between the
layers and boundary conditions at the conducting
planes.

The bulk modes have dispersion both within and
across the layers and have been discussed earlier in
Refs. 13,14. The surface mode exponentially damps
into the bulk of the layered conductor and has no
dispersion across the layers. Its dispersion relation
along the layers is determined by two equations
(41) and (42), while the damping decrement is
given by Eq. (43). Generally, these equations are
rather complicated to be solved analytically, but for
a Drude-like conductivity tensor of the form given
by Egs. (44) and (45) for v =0 and under the
condition ga >> Vew(w,/w)) the surface mode fre-
quency W, = w(q, A) is given analytically by Egs.
(47) and (49). The quantity W is extremely small
for real layered conductors (of the order of
1074-1072), so that the above inequality does not
place severe restrictions on the magnitude of the
wave vector ga. The corresponding calculations for
the bulk, w(g, k), and surface, w(g, &), modes are
plotted in Figs. 1, 2 for different values of the
parameter A (see Eq. (46)) and cyclotron frequency
Q. At zero magnetic field the bulk mode wXg, k)
given by Eqs. (47) and (48) becomes a well-known
plasmon of a layered conductor, the bandwidth of
which in respect to k grows narrower with increas-
ing qga, as Fig. 1,a illustrates. The surface plasmon
mode shown in Figs. 1,a—i lies below or above the
bulk plasmon band, depending on the sign of the A,
and starts at the threshold value wave vector
g"=-(1/a) In ||, as was first found in Ref. 7. In
case of nonzero magnetic field a bulk collective
mode in a layered conductor became a mixture of
the helicon and plasmon, with a dispersion relation
given by Egs. (47) and (48). The corresponding
surface mode W(q, A) is determined by Eqs. (47)
and (49). It has the very same threshold ¢"in g and
continues below the bulk mode band for A < 0 and
above it for A > 0 (see Figs. 1,a—c). The depend-
ence of the shape of the surface mode dispersion
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w,(q, &) on the magnetic field Q and parameter A is
shown in Figs. 1(d-i). It is seen in these figures, as
well as in Figs. 1,a—c, that w(g, k)> becomes a li-
near function of ¢ at large values of the quantity
ga. The appropriate asymptotic expressions for the
surface and bulk waves in the limit ga >> 1 are
given by Eqgs. (52) and (53). From these equations
it is clear seen that w(g, k) > w(q, &) for A< 0
and w(g, k) < w(g, d) for A>0. According to
Eq. (46), ¢" - 0 if & — g, , i.e., in the case when
the optical densities of the left and right halfspaces
are close in magnitude. For example, ¢g"tz = 0.10005
for A=0.99, and g™z = 0.1053 for A=10.9. In the
limit @, << ga <<1 (which holds if A close to
unity) we have from Egs. (47) and (49) the simple
formula

@ 0
(g, 0= 9+ SO+ + ga@ - 1)
O O (55)

Thus the surface mode has a gap at ga << 1 even
if the cyclotron frequency (the external magnetic
field) goes to zero. This is also seen in Fig. 1,d
where the ratio Q/u)p is taken as small as 0.001.
The numerical analysis shows a negligible deforma-
tion of the curve in Fig. 1,d for smaller values of
the parameter Q/w_, down to zero.

The bulk mode w(g, k) with respect to the vari-
able & is a periodic function with period 21/ which
has a different shape depending on the value of ga
as shown in Figs. 2,a—f. The width of the bulk
mode grows wider with decreasing ga. In an ex-
ternal magnetic field under the condition
Q> w_,/2Ve the bulk mode twists at some wave
vector g, = q,(H), so that its upper bound
w,(9) = w(q, ka = 0) becomes greater than the lower
bound ®_(g) = w(g, ka =1 for q < q,(H). This
transmutation of the bulk mode band in an external
magnetic field is seen especially clearly in Fig. 1,c.
The shape of the bulk dispersion across the layers
(g, k) experiences dramatic changes in the vicinity
of the point g = g,(H), as is displayed in Figs. 2,d~
f. The dependence of the bulk and surface modes
frequencies on the distance between the layers a is
given in fact (for fixed values of ¢ and k) by Figs. 1
and 2, since these plots show the dependences of the
above modes on ga and ka. The surface mode
frequency in the limit @ — o is given by Eq. (52),
where one should take into account the plasma
frequency dependence on a: oo; = 4TiNe?/ma (N is
the electron density per unit area of a 2D conduct-
ing sheet and m stands for the effective mass of the
electron). The decrease of the plasma frequency in
this limit also favors the appearance of the twisting
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point g, (H), since the inequality Q > W, /2Ve is
satisfied at lower H. In the opposite limit ¢ - 0,
the surface mode disappears because its wave vector
threshold value g° 0 1,/a - oo.
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Appendix A

In this Section we derive the wave equations (1)
within the framework of a model of conducting
planes embedded in a dielectric background. To this
end we direct the z axis perpendicular to the layers
and assume that a constant external magnetic field
H is also directed along this axis. We suppose that
the permeability of the substance between the lay-
ers is equal to unity, g =1, and assume its dielectric
constant, € = g(2), to be a function of z.

Under these assumptions, Maxwell’s equations,
written in terms of the electric field E,

2

E 4

0 (ivE)-aE=-£ 00 _Amd
c” ot c” ot

after the substitution of the wave in the form

(A1)

E,=E(q z, wexp [i(gp-wi)], [=xy, 2

(A2)
take the form
00 0,0, 9*°0, _ 47w
N@E) +iq - Eotm, - S0Ep=- 5 I
% 0o o 92g c
(A3)
1 90 ,.
E, =-—_(qEy), (A4)
q, 92
5 ) W
q.(2) =q" - = &) . (A5)
C

Here p, q and w are the in-plane coordinate, the
wave vector, and the frequency of the collective
mode; E; and J are the in-plane field and current,
respectively.

Choosing q to be parallel to the y axis, we arrive
at the following set of equations:

00> 0. _ 4Tiw
@_quEx_ C2 ']x’

(A6)
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o

.2
192 ) Amuq,,
UE U@ ,2) L F =- ,
%z q‘*’D (@ )62 y we(z) Y
(A7)
. F
F=-4""y (A8)
z 2 ’
q, 0z
%E  (a9)

0z

Thus we see that all three components of the elec-
tric field are determined by the two equations (A7)
and (A6), which can be rewritten in the form of
Egs. (1) with the help of the constitutive equation
relating the in-plane current with the field compo-
nents:

U(c/,wz)-57 )D )

Jo = z Top@ @, H) 8z = z ) EB(q, w, 2) . (A10)
B,n

The & functions in Eq. (A10) take into account

that currents flow only within the conducting

planes z =2, , and o, (q, w, H) stands for the con-

ductivity tensor of a 2D layer in a perpendicular

magnetic field. In this connection, note that only

derivatives of the background dielectric constant
enter Eq. (A9).

Appendix B

In this Appendix an alternative derivation for
the transfer matrix and the dispersion relation (30)
for the bulk mode is given. The method is based
directly on the calculation of the electromagnetic
field between the conducting layers and matching
them with the appropriate boundary conditions at
the layers. Equations (A6)—(A9) in the bulk of the
layered conductor may be rewritten in the form

002 O, ~
07 GoEq =Y 8z =2,)0,5Ey . (B1)
Z O
B,n
where
~ _ 4mw
Sp=" "2 Tagl@ @ Vg (B

Va[3 is a matrix with the components V,, =
=V, =1, Vo, =V, =-c%? /. Writing the
solution of Eq.(B1) between the nth and the neigh-
boring layer in the form

zn)

"5 4D () T
‘ (B3)

E(m)= C,n)e
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and using the boundary conditions at the layer

E e, +0)=E_(z, - 0) (B4)

and

d d -
5 Fay* 0) - . Eyz, = 0)= Y Oy Eylz,)
B

(B5)
we have
[ (n+ 1)D 7 (n YO
) B6
SD (n+ 1)D op SDB( DR
- > yeld g e%,a D
T = @é’ﬁ qi (;B ) D (B7)
H aBe ® g GB e
Note that the transfer matrix Ta in Eq. (B7)

differs from T 5 of Eq. (24) (because of the differ-
ence in definition of the coefficients A _(n), B (n) in

(18) and (19) from C_(n) and D (n) in
Eq (BS)) Nonetheless, Tr T = Tr T, and the
dispersion relation (29) remains the same in both
approaches.
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