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The quantum conductance of ballistic
microconstrictions in metals with an open Fermi
surface
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It is shown that the conductance G of a quantum microconstriction in a metal with an open Fermi

surface undergoes jumps e2/k of the opposite sign as a function of the contact diameter. The negative

jumps are a result of the limitation of the energy of the electron motion along the direction in which the

Fermi surface is open. The point contact spectrum dG/dV of such a constriction has additional peaks at

the bias eV where the maximum energy €
max

(g, is the Fermi energy).

PACS: 73.40.Jn, 72.15.Eb

The quantum size effect in conductors was pre-
dicted theoretically by 1. Lifshits and A. Kosevich
in 1955 [1] and was found experimentally in thin
films of metals and semiconductors (see, for exam-
ple, [2]). In these studies, quasiclassical oscilla-
tions of the thermodynamic and kinetic properties
were investigated, because of the limited range of
the sample thicknesses d which were then accessible
(as usual d >> A, where A is the Fermi wave-
length). Advances in the modern technology of
nanofabrication make it possible to realize the ul-
traquantum limit of the size effect in the conducting
properties by using small ballistic contacts of a size
comparable to the Fermi wavelength. The current
I through such a microconstriction is governed by
the currents of one-dimensional quantum subbands,
each of which contribute to the conductance
G =dI/dV a value G, = 2¢%/h (V is the voltage
applied to the contact). As a result, the conduc-
tance G displays a step-like structure versus contact
size. For «large» contacts (d >> A) this structure
turns in to quasiclassical oscillations. The conduc-
tance quantization effect was first observed in a
model system in the two-dimensional (2D) electron
gas formed at a GaAs-Al Ga,_  As heterojunc-
tion [3,4]. The development of methods of scanning
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of the quantum subband is equal to the energies €, + eV /2

tunneling microscopy and mechanically controllable
break junctions enables one to investigate the con-
ductivity of ultrasmall (down to atomic size) con-
tacts in real metals [5—8]. By using these methods
the quantum steps of the conductance were ob-
served in three-dimensional (3D) point contacts. In
the simple metals (Na, Cu, Au) the conductance
steps are rather similar to the conductance of 2D
contacts [8—10]. But for metals with a more compli-
cated electronic structure, such as Al and Pt, the
size dependence of the conductance has a more
irregular behavior, as compared to the simple met-
als [9]. In Al and Pt the first few conductance
plateaus have positive slope. It signifies that the
conductance decreases when the contact size in-
creases. In some cases weakly expressed negative
steps of the conductance have been observed [9].
One of the reasons for negative slope may be the
resonances due to the electron reflection at the ends
of the constriction [11].

The theory of electron transport in mesoscopic
microconstrictions (see, e.g., [12]) explains the
conductance quantization as being the result of the
existence of discrete transverse electron states
(modes). With increasing contact diameter new
modes open up, and the conductance increases in a



'

sequence of steps of height G, [13]. At finite volt-
ages, as a result of the splitting of the Fermi surface
in the constriction by the applied bias eV [14,15], a
steplike structure of the nonlinear conductance oc-
curs at integer multiples of G,/2, as function of the
constriction width [16]. The new period of the
quantum steps is caused by the difference of the
maximum energy of electrons with different direc-
tions of the electron velocity Y| along the contact
axis. With increasing contact width a new quantum
mode opens up nonsimultaneously for electrons
with the energy €, +eV /2 and the energy &, -
- eV /2. Each time, when a quantum mode opens
up for one of the two directions of the vector
Y| S 0, the conductance increases by G,/2. If the
bias eV is larger than the distances between the
energy levels of quantum modes, it is possible to
change the number of opened modes by changing
the voltage V. In this case the conductance jumps
in a sequence of steps of height G/2, as a function
of the voltage V. This effect can be used for a
spectroscopy of energy levels in quantum constric-
tions [17]. The conductance quantization in 3D
point contacts of a metal with a spherical Fermi
surface was considered in the theoretical papers
[18,19]. It was found that for sufficiently long the
constrictions conductance has the steplike depend-
ence on the contact diameter. For the symmetric
model of the contact, because the degeneracy of the
electron energy with respect to one of discrete
quantum numbers, the conductance has not only
steps G, , but also steps 2G,, [18,19].

In a majority of real metals the Fermi surface is
a complicated periodic surface, which continuously
passes through the whole inverse lattices (open
Fermi surface). The energy g of the electron mo-
tion in the direction in which the Fermi surface is
open is limited (0<¢g <¢g,), and its maximum
value £, may be considerably smaller than the Fermi
energy €, . That leads to phenomena such as, for
example, the linear magnetoresistance of polycrys-
tals [20] (Kapitsa effect [21]) or the oscillation of
the resistance of single crystals as a function of the
direction of the strong magnetic field [22], which
are absent in conductors with a closed Fermi sur-
face. The limitation of the electron velocity in some
direction is most important in the «organic layered
metals», the Fermi surface of which is a slightly
«warped» cylinder [23].

In this paper we analyze the conductance of 3D
quantum microconstriction in a metal with an open
Fermi surface. It is shown that the conductance G
may display not only steps G, but also negative

steps -G, , as a result of the limited width of

Fizika Nizkikh Temperatur, 2000, v. 26, No 7

quantum conducting subbands Ae=¢ . -€ . .
The point contact spectrum (dG,/d V) contains two
series of maxima. One of them corresponds to the
voltages eV = £ 2(ep—¢€ . ), as in 2D microcon-
strictions and 3D point contacts in metals with an
isotropic Fermi surface [17]. The second series of
maxima satisfies the condition eV =+ 2(e;, — € . ).

If the contact axis coincides with the axis of the
open Fermi surface, for the participation of the nth
quantum mode in the electrical current, not only
must the minimum energy of the transverse mode
(n) be smaller than e+ eV,/2, but also

€naxM) = €t eV /2, where n = (n, , n,) is the set

of two transverse discrete quantum numbers,
€nin(n) and € . (n) are the minimum and maximum
energies of the quantum subband, which is charac-
terized by the set n. As a result, with increasing
contact diameter d, starting from the energy
EnaxM, d) = €+ eV /2, the nth mode does not con-
tribute to the conductivity.

We consider a model of the microconstriction in
the form of a long ballistic channel of length I and
diameter d << L, which is smoothly (adiabatically
[24]) connected with bulk metallic reservoirs. In
the long (L >> d) ballistic channel the <«dupli-
cated» electron distribution function f(€) has the
form [14,15]

IIll[l

fe) =1, % -

where f(€) is the ethbrmm Fermi distribution.
The distribution function f(€) (1) is valid if the bias
is small eV’ << Ve8¢ (where &€ is the characteristic
distance between quantum levels of the transverse
motion). With this inequality, which we suppose is
fulfilled, the distribution (1) satisfies the condition
of the electroneutrality, and the electric field inside
the channel is negligibly small.

The total current flowing through the contact
can be described by a Landauer-type formula [25],
which at finite voltages is given by

mgnv%, (1)
0

€
max

2e eV eV
122y (0l BV R B Y o)
h%J’ 0’8 20 g ?m
The expression (2) has a clear physical meaning:
The bias eV applied to the contact splits the Fermi
surface of the injected electrons into the channel
into two parts (v|£> 0 and o < 0) with maximum

energies differing by eV The net current inside the
contact is determined by the contributions of these
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two electron streams moving in opposite directions,
with energies differing by the bias energy eV.

After the integration in Eq. (2) over the energy
€ we obtain the following equation for the ballistic
conductance:

(3)

At V - 0 formula (3) describes the G steps of the
conductance as a function of the contact size:

G =Gy S el ~ frlend - @

Let us consider a «<model metal> with the Fermi
surface

P40

s(p) = 80 (pD) + 81(pD) Cos B?Dy
0”0

g <¢,,(5
where «a is the separation between the atoms. The
«warped» cylinder g(p) is an infinite surface in the
direction p; and in this direction passes through all
cells of the reciprocal space. If the contact axis is
parallel to the p| axis, the transverse part €, of the
total energy is quantized €, =g (n). But in the
difference from the spherical Fermi surface, the
widths of quasi-one-dimensional subbands have the
limited value €,(n). So, if the energy € . (n) =
= gy(n) + €,(n) is smaller than the Fermi energy ¢ ,
the subband below the Fermi level is completely
filled and does not participate in the current. That
results in the negative steps -G, under the condi-
tion g . (n) =€, . The Fig. 1 illustrates the conduc-
tance of a channel of square cross section as a
function of the size d. For simplicity we used a
model of the Fermi surface in which g, = pzm/Zm
and g, = const.

By changing the voltage eV we can change the
number of open quantum modes for different direc-
tions of the electron velocity [17]. In a metal with
a closed Fermi surface, if the bias is larger than the
distances between energy levels, then as the voltage
is increased, the number of quantum modes below
the energy level &5 +eV/2 increases (and each
time the conductance increases by G,/2), while the
number of modes below the level €, - eV,/2 de-
creases, and that leads to jumps -G,/2 . The peaks
on the point-contact spectrum dG,/dV are deter-
mined by the minimum energies of the transverse
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Fig. 1. Quantum steps of the conductance in the limit V' - 0.
The solid line is for € =09¢,, the dashed line for
€ =0.55¢,;T=0.001¢,.

electron modes € . [17]. In the case of an open
Fermi surface, increasing the bias leads not only to
this but also to the opposite processes: at some
voltages the maximum energies € . of the sub-
bands go through the energy levels €. eV /2,
changing the conductance by values + G,/2 . As a
result, the point-contact spectrum has two series of
sharp peaks at energies €, +eV/2=¢_ . (n) and
eptteV/2=¢  (n). Measuring of the distances
between these peaks makes it possible to find not
only the (minimal) energy of quantum modes in the
constriction, but also the width of the quantum
subbands and its dependence on the number of the
mode. In Figs. 2, 3 the voltage dependence of the
quantized conductance and the point contact spec-
trum of the same constriction are shown.

In the quasiclassical case, we can use the Poisson
formula for the summation over discrete quantum
numbers in Eq. (3). Using the method developed by
Lifshits and Kosevich [1], we can write the conduc-
tance at zero temperature in the form

2
2
G=Gg+Gy— 3 5 () @«l“2 [Ce(a, )l
=1

k,i o

O on, [0
x[K, 0(|1/2 k a—l’GDD sin %leni - g%x
' O 0g M@ O ' g

on, ,
eV . (6)
oe

Here Gg,, is the Sharvin conductance [14]; the vec-
tor k is the aggregate of two positive integers k, and
k2 ; n, are the coordinates of the points on the
curve € (n) = €., and n, , are the coordinates of

x cos Tk
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Fig. 2. The dependence of the conductance on the applied volt-
age. The solid line is for &€ =0.9¢,, the dashed line for
€= 0.5 € T =0.001e,; d =195 )\F.

the points on the curve € . (n) =€, , at which the
normal to these curves is parallel to the vector k;
K is the curvature of the curve g(n) = ¢, at the
points n; .. The sign before the phase /4 is minus
if at the point n; , the convexity of the curve is
directed in the direction of vector k. In the opposite
case, the sign before 1,4 is plus. In Eq. (6) the
summation is over k # 0 and all points n; o in the
first quadrant. Hence, in the quasiclassical region
the conductance oscillate as a function of the con-
striction diameter and the applied bias, and also
depends on the maximum energy of electron motion
along the constriction.

Thus the conductance of three-dimensional point
contacts between metals with an open Fermi surface
may display positive and negative steps 2¢?/k as a
function of the contact diameter. The negative steps
can be observed in the experimental geometry in
which the contact axis is parallel to the direction in
which the Fermi surface is open. The decreasing of
the conductance is a result of the complete popula-
tion of quantum subbands below the Fermi level.
The negative steps of the quantum conductance in
Al and Pt, which have an open Fermi surface, could
be a result of this effect. Of course, the electronic
structure of Al and Pt is very complicated, and
electrical properties of these metals cannot be de-
scribed by the simple model (5). The effect of the
open part of the Fermi surface may be masked by
the influence on the conductivity of other parts, and
instead of negative jumps a negative slope of the
conductance plateaus was observed in experiments
[9]. Recently research on of the nonlinear quantum
conductance has begun [26,27]. The ultrasmall size
of a point contact makes it possible produce biases
up to 1 V [26], which opens up the possibility of
point-contact spectroscopy of quantum energy mo-
des in three-dimensional contacts. An experimental
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Fig. 3. The point contact spectrum of the microconstriction. The
solid line is for € =09¢;, the dashed line for € =05¢;;
T =0.005 LR d=1.95 )\F .

investigation of point-contact spectra for different
directions of the contact axis with respect to the
crystallographic orientation of the sample to be
studied could enable observation of the effects dis-
cussed theoretically in this paper, manifested in the
voltage dependence of the conductance of quantum
microconstrictions.
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