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We develop a numerical model for a defect-containing square lattice of microcavities with embedded 
ultracold atomic clusters (quantum dots). It is assumed that certain fractions of quantum dots and cavities are ab-
sent, which leads to transformation of polariton spectrum of the overall structure. The dispersion relations for 
polaritonic modes are derived as functions of defect concentrations and on this basis the band gap, the effective 
masses of lower and upper dispersion branch polaritons as well as their densities of states are evaluated. 

PACS: 42.60.Da Resonators, cavities, amplifiers, arrays, and rings; 
42.70.Qs Photonic bandgap materials; 
42.79.Gn Optical waveguides and couplers; 
78.67.Hc Quantum dots. 
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1. Introduction

Designing and utilization of novel materials for manu-
facturing of the sources of coherent irradiation is currently 
a vast interdisciplinary area, which spans various theoreti-
cal and fundamental aspects of laser physics, condensed 
matter physics, nanotechnology, chemistry as well infor-
mation science [1,2]. Physical realization of corresponding 
devices requires the ability to manipulate the group veloci-
ty of propagation of electromagnetic pulses, which is ac-
complished by the use of the so-called polaritonic crystals 
[3,4]. The latter represent a particular type of photonic 
crystals [5] featured by a strong coupling between quantum 
excitations in the medium (excitons) and optical fields. 

An example of polaritonic structure can be given by a 
spatially periodic system of coupled microcavities [6]. An 
interest for optical modes in microcavity arrays has been 
growing lately due to the enhancement of optoelectronic 
devices [7,8]. In this connection the defect-based resona-
tors in photonic crystals deserve special attention [9]. 
In [10] it was shown that such resonators can form a strong 
coupling with quantum dots. Refs. 3,4 gave a theoretical 
analysis of the formation of quantum solitons coupled to 
lower dispersion branch (LDB) polaritons in a chain of 
microcavities. The authors suggest that such systems can 
be particularly appealing for the purposes of quantum in-
formation processing. Microcavity systems can also be 

employed for the construction of highly accurate optical 
clockworks [11–13]. 

It is worth stressing that the conventional polaritonic 
model [3,4] of the atomic-optical interaction is only appli-
cable to the case of ultracold atoms with frozen-out de-
grees of freedom. The corresponding approximation is 
valid when the number of atoms contained in individual 
cavities is relatively small 4( 10 )N ≤  [14]. Parameter g  
of the strong atomic-optical interaction must satisfy the 
condition 

coh2 /g π τ , 

i.e., in each cavity g  should much exceed the inverse co-
herence time cohτ  of the atomic-optical system [15]. Phys-
ically, cohτ  is the time of thermodynamic equilibration of 
the atomic system, which interacts with a quantized field in 
a polaritonic crystal. The said inequality holds at tempera-
tures of the order of several mK, when the spectral line 
broadening is negligible and so there are pure (thermody-
namically equilibrium) quantum states of the atomic-field 
system. 

The currently rapidly evolving field of endeavor is the 
photonics of imperfect structures. Some of our recent 
works are devoted to optical activity of imperfect photonic 
crystals [16] as well as to dispersion of exciton-like elec-
tromagnetic excitations in nonideal (defect-containing) 
arrays of coupled microcavities [17,18]. Introduction of 
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defects provides an additional powerful tool for controlling 
the propagation of electromagnetic excitations through 
photonic structures. 

In what follows we use the previously developed con-
cepts of photonic structures [17,18] to investigate a nonideal 
polaritonic crystal constituted by a topologically ordered 
assembly of coupled microcavities with embedded quantum 
dots. It is assumed that certain portions of quantum dots and 
cavities are missing, which is viewed as the presence of de-
fects. The polariton spectrum of the structure and the related 
quantities of interest (the band gap, the effective masses of 
polaritons as well as their densities of states) are investigated 
as functions of defect concentrations. 

2. Numerical model of a microcavity array 

A frequently used method of fabrication of polaritonic 
crystals is the trapping of two-level atoms in an ideal cou-
pled-resonator optical waveguide (CROW) [3] or in a 
nonideal array of microcavities [18]. To keep our discus-
sion sufficiently general let us first consider a two-dimen-
sional lattice of microcavities with an arbitrary number σ  
of sublattices and then tackle the important particular case 
of 1.σ =  Assume that the αth sublattice is composed of 

( )s α  types of randomly distributed resonators, each of 
whom contains a quantum dot (a one-level atomic cluster) 
pertaining to one of ( )r α  types. Quantum dots interact 
with resonator-localized quantized electromagnetic fields 
and each of tunnel-coupled resonators possesses a single 
optical mode. In the coordinate representation the Hamil-
tonian of the described superstructure writes: 

 at ph int
ˆ ˆ ˆ ˆH H H H= + + . (1) 

In (1) Hamiltonians of the atomic (quantum dot) subsystem 

at
ˆ ,H  photonic (microcavity) subsystem phĤ  and their in-

teraction intĤ  equal correspondingly to at at,
ˆ ˆ n

n
H H= +∑

,

1 ˆ ,
2 nm

n m
V+ ∑  ph ph,

,

1 ˆˆ ˆ
2n nm

n n m
H H A= −∑ ∑ , int

ˆˆ ,n
n

H G= ∑  

where at,
ˆ nH  is the Hamiltonian of a stationary (ultracold) 

quantum dot embedded at the nth cavity, n̂mV  is the operator 
of Coulomb interaction between quantum dots at the nth and 
mth cavities, ph,

ˆ nH  defines the state of electromagnetic ex-

citation localized at the nth cavity, ˆ
nmA  describes an overlap 

of optical fields of the nth and mth cavities (and hence the 
transfer probability of the corresponding electromagnetic 
excitation). Writing interaction operator intĤ  as a sum of 

unitary operators ˆ
nG  is justified under the assumption that 

each of cavity-localized electromagnetic excitations interacts 
only with the quantum dot embedded at the same cavity. 
Complex indices n and m are defined by expressions 

( , ),n ≡ αn  ( , )m ≡ βm , where two-dimensional vectors n 
and m define positions of elementary cells in the superlattice, 
whereas α and β  numerate sublattices and assume values 
1, 2, 3, ... .σ  

Let us calculate in accordance with [19,20] the energy 
spectrum of the studied system by writing down its Hamil-
tonian Ĥ  as a sum of the following second quantization 
operators: 

____________________________________________________ 

 

at at at at at
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, , ,

phph ph ph ph
ph
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1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,
2

ˆ ˆˆ

nf nf nf nf mg nf mg nm mh nl mh nl
n f n m f g h l

n n n n m n m nm n m nm
n n m

ng n ng n n n
n f g

H b b b b V b b

H A

H b G

+ + +

≠

+ + +
µ µ µ µ ν µ ν ρ λ ρλ

µ ≠ µ ν λ ρ

+ +
µ µ

µ ν

= ε + ϕ ϕ ϕ ϕ

= ε φ φ − φ φ ϕ ϕ ϕ ϕ φ φ

= φ ϕ ϕ ϕ

∑ ∑ ∑ ∑

∑ ∑ ∑∑

∑ ∑ at ph ˆ ˆ .f n nf nbν νϕ φ

 (2) 

_______________________________________________ 

Here at ,nfε  ph
nµε  are the eigenvalues of operators atĤ  and 

ph
ˆ ,H  respectivety. Wave functions at ,nfϕ  ph

nλϕ  character-
ize the states of quantum dot and electromagnetic field at 
the nth resonator, while the Hermitian conjugate (non-
Hermitian) creation and annihilation operators ˆ ,nfb+  ˆ ,nfb  
ˆ ,n

+
µφ  ˆ nµφ  describe, correspondingly, the states f  of 

quantum dot and the states µ  of electromagnetic field at 
the nth cavity. ˆ ,nfb+  n̂fb  and ˆ ,n

+
µφ  ˆ nµφ  are Pauli operators 

which satisfy the following commutation relations 

 ˆ ˆ ˆ ˆ 1,nf mg mg nfb b b b+ ++ =      ˆ ˆ ˆ ˆ 0nf mg nf mgb b b b+ += =   

for nf mg=  and 

 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 0nf mg mg nf nf mg mg nfb b b b b b b b+ +− = − =   

for nf mg≠  (analogous commutation relations hold for 
ˆ n

+
µφ  and ˆ ).nµφ  
Let us make a reasonable assumption that the densities 

of excited states of elements in both constituent subsys-
tems (atomic and resonator) is a small quantity. This al-
lows to simplify the energy operator (1)–(2) by approxi-
mating Pauli operators with Bose operators 

 0
ˆ ˆ ˆ ,nf n nfb b B+ +≈       0

ˆ ˆ ˆ ,n nf nfb b B+ ≈
  

 0
ˆˆ ˆ ,n n nn

+ +
µ µφ φ ≈ Ψ       0

ˆˆ ˆ .n n nn
+

µ µµφ φ ≈ Ψ   
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Next, since we are constructing a one-level model, indi-
ces f, g, h, l  in (2) should assume the values 0 and a, while 
indices ,µ  ,ν  ,λ  ρ  assume values 0 and 1. Therefore 
within the Heitler–London approximation the quadratic (in 

ˆnfB  and ˆ )nnµµΨ  part of Hamiltonian (2) is given by the 
following expressions: 

 

____________________________________________________ 
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 

+ ϕ ϕ ϕ ϕ ≡ ω +

∑ ∑

∑ ∑ ∑

 (3) 

 
( )ph ph ph ph ph ph ph ph
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ph ph ph ph ph
1 1 1 1 1 10 1 0 1 1

, ,

ˆ ˆ ˆ ˆˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,

H L
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− +

+ + +
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= − ϕ ϕ ϕ ϕ − ϕ ϕ ϕ ϕ Ψ Ψ − 

 

− ϕ ϕ ϕ ϕ Ψ Ψ ≡ ω Ψ Ψ − Ψ Ψ

∑ ∑

∑ ∑ ∑

 (4) 

 ( )ph ph ph phat at at at
int 1 0 1 0 1 11 0 0 1

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ .H L
n na n n na n na na n n n n na n nan n n n

n n
H B G B G g B B− + + + += Ψ ϕ ϕ ϕ ϕ + Ψ ϕ ϕ ϕ ϕ ≡ Ψ + Ψ∑ ∑  (5) 

_______________________________________________ 
 
In (3) and (4) appear the frequency characteristics ph

1 ,nω
at

αωn  of resonator and atomic subsystems as well as the 
matrix of resonant coupling: 

 at at at at ( )
0 0

ˆ a
n ma nm m na nmV Vϕ ϕ ϕ ϕ ≡ ,  

 ph ph ph ph
0 1 0 1

ˆ
nm nmn m m nA Aϕ ϕ ϕ ϕ ≡ . (6) 

In (5) it is taken into account that the wave functions of 
quantum dots and electromagnetic fields are real-valued 
and hence 

 ph ph ph phat at at at
0 01 0 0 1

ˆ ˆ
n n na na n n nn n n nG G gϕ ϕ ϕ ϕ = ϕ ϕ ϕ ϕ ≡ .  

The deviation from ideality of the considered system 
consists in disordering of its resonant and atomic subsys-
tems. Mathematically this is reflected in the fact that the 
quantities ph

1 ,nω  at ,naω  ( ) ,a
nmV  nmA  and ng  are configura-

tionally dependent and therefore Hamiltonian (1) is not 
translation invariant. One of the methods of obtaining the 
spectra of quasiparticle excitations in disordered systems 
with randomly distributed elements consists in finding the 
poles of configurationally averaged resolvent of the appro-

priate Hamiltonian [21]. The said resolvent is translation 
invariant and so the corresponding elementary excitation 
spectrum can be described by a wave vector k. To carry 
out the necessary calculation one should inevitably adopt a 
certain approximation, whose choice is dictated by the spe-
cifics of the studied system. A widespread tool for evalua-
tion of quasiparticle states in disordered media is the virtu-
al crystal approximation (VCA) [21,22]. It is particularly 
suitable for tracing the effect of defect concentrations on 
the specifics of the spectrum and the related quantities. 
Within the VCA the averaged resolvent equals to the 
resolvent of the averaged Hamiltonian, and it is the latter, 
which needs to be diagonalized in order to calculate the 
spectrum. In what follows we use this approximation to 
analyze electromagnetic excitations and optical character-
istics of the studied microcavity superstructure. 

Let us, by analogy with [17,18] express the configura-
tionally dependent quantities at at ,na αω ≡ ωn  ph ph

1 ,n αω ≡ ωn  
( )a
nmV , nmA  and ng  through the random quantities ( )

at,
ν α

αη n  
( )

ph,( ) :ν α
αη n  
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a
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α αα αα β αβ β
ν α = ν α µ β =

α α β
ν α ν α ν α µ β ν α µ β

α α βα α ααβ β
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ω = ω η − η η
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=
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∑ ∑

∑ ∑

n n nn m m

n n mn n m

n m

n m

 (7) 

_______________________________________________ 
Configurational dependence of both constituent subsys-

tems is reflected in the quantity ng   ( ) ( )
( )

( )

( )

( ) ( ) ( )
at, ph,

1 1

r s

ng g
α α

ν α µ αν α µ α
α α α

ν α = µ α =
= η η∑ ∑ n n , (8) 
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where ( )
at, 1ν α

αη =n  ( )
ph,( 1)ν α

αη =n  if the nα-th site is occupied 
by a quantum dot (resonator) of the ν(α)-th type and 

( )
at, 0ν α

αη =n  ( )
ph,( 0)ν α

αη =n  in all other cases. On the assump-
tion that the ordering states of the two subsystems are in-

dependent of each other we arrive at the following expres-
sions for the configurationally averaged quantities 
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_______________________________________________ 
 

where angular brackets denote the averaging procedure. 
( )

at,Cν α
α  ( )

ph,( )Cν α
α  and ( )

at,Cµ β
β  ph,( )Cµβ

β  denote concentrations 

of the ν(α)-th and µ(β)-th type of elements of the atomic or 
resonator subsystems. There hold the obvious relations 

( )
( )

at,
( ) 1

1,
r

C
α

ν α
α

ν α =
=∑  

( )
( )

ph,
( ) 1

1.
s

C
α

ν α
α

ν α =
=∑  

Configurational averaging allows to “restore” the transla-
tion invariance of a nonideal superstructure (which is essen-
tially the central idea of the VCA) and to characterize the 
eigenvalues and eigenfunctions of Hamiltonian H〈 〉  of the 
resulting virtual crystal by a wave vector ( , ,0).x yk k=k  In 
k-representation Hamiltonian H〈 〉  writes as 

 at ph int
ˆ ˆ ˆ ˆ ,H H H H= + +

k k k k
 (10) 

where 

  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( )at
at

,

ph
ph 1 1

,

int 1 1

ˆ ˆ ˆ ,

ˆ ˆˆ ,

ˆ ˆˆ ˆ ˆ .

a
a a

a a

H V B B

H A

H g B B

+
α αβ α βαβ

α β

+
α αβ αβ α β

α β

+ +
α α α α α

α

 = ω δ + 

 = ω δ − Ψ Ψ 

 = Ψ + Ψ 

∑

∑

∑
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k k k

k k k

k k k k




  

  (11) 

Here ( ) ( ),aVαβ k  ( ),Aαβ k  ˆ ( ),aBα k  1
ˆ ( )αΨ k  are the Fourier 

components of ( ) ,aV α β〈 〉n m ,A α β〈 〉n m  ˆnaB and 1
ˆ ,nΨ  respec-

tively (cf. [17,18]). 
Diagonalization of Hamiltonian H〈 〉k  by the use of 

Bogolyubov–Tyablikov transformation [19] yields the ex-
pressions for the energies of polariton excitations in the con-
sidered microcavity crystal with embedded quantum dots. 

3. Numerical results and discussion  

To make our further discussion more specific let us 
concentrate on polariton excitations in a defect-containing 
one-sublattice square Bravais lattice with period d (Fig. 1). 

The role of defects is played by vacancies contained in 
both atomic and cavity subsystems. In such a case 

(1)
1at,1
VC C≡  and (1)

2ph,1 .VC C≡  Simplicity of the structure 
permits to reduce the somewhat cumbersome notations of 
the previous section to a more comprehensible form. 
Namely, we shall operate with the quantities 11 ,V V≡  

11 ,A A≡  11
1 ,g g≡  1

ph,1 ph ,ω ≡ ω  1
at,1 at .ω ≡ ω  The above 

Fig. 1. Schematic of a model square one-sublattice array of 
microcavities. Solid circles denote defect-free cavities with embed-
ded quantum dots. Vat-type of defect is a cavity with a missing 
quantum dot. Vph-type of defect is an empty site with no cavity 
(and hence with no quantum dot, since atomic clusters can only 
reside at the existent cavities). Defect concentration in the atomic 
subsystem (i.e. concentration of sites with missing quantum dots) 

1
VC  equals to the sum of concentrations of the Vat- and Vph-types 

of defects. Defect concentration in the photonic subsystem (concen-
tration of sites with missing cavities) 2

VC  equals to the Vph-type 
defect concentration. There holds an obvious inequality 1 2 .V VC C≥  
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mentioned diagonalization procedure of Hamiltonian 
H〈 〉k  leads to a system of linear homogeneous equations, 

whose solvability condition is formulated as the equality of 
the following determinant to zero: 

 
( ) ( )

( ) ( )

at

ph
0

g

g

ω − Ω
=

ω − Ω
n

n

k k

k k

 

 

. (12) 

Here the energies of exciton exitations of the atomic (quan-
tum dot) subsystem and of exciton-like electromagnetic 
exitations [16,17] of the resonator (cavity) subsystem with-
in the nearest-neighbor approximation equal correspond-
ingly to: 

( ) ( )( ) ( )
( ) ( )( ) ( )

2at at
1

2ph ph
2

2 1 cos cos ,

2 1 cos cos .

V
x y

V
x y

V d C k d k d

A d C k d k d

ω = ω + − +

ω = ω − − +

n

n

k

k

 

 

  

  (13) 

Equality (12) defines a quadratic equation for the unknown 
dispersion dependence ( ).Ω k  According to (9) polariton 
frequencies ( )Ω k  along with parameters at ,〈ω 〉n  ph ,〈ω 〉n  

( ),V k  ( )A k  and g〈 〉n  are the functions of structural ele-
ments in the two subsystems (quantum dots and resonators). 
In the considered case in view of (9) we obtain 

 at
1 at(1 ) ,VC〈ω 〉 = − ωn  ph

2 ph(1 ) ,VC〈ω 〉 = − ωn   

 1 2(1 ) (1 ).V Vg g C C〈 〉 = − −n   

1
VC  and 2

VC denote concentrations of defects (vacancies) in 
the atomic and resonator subsystems respectively. The trans-
fer probability of electromagnetic excitation between the 
nearest neighbor sites is defined by an overlap characteristic 
of optical fields ( ).A d  ( )V d  describes the Coulomb interac-
tion between quantum dots in neighboring cavities. 

Substitution of expressions (13) for at ( )ω k  and 
ph ( )ω k  into (12) yields the dispersion law 1 2( , , )V VC C±Ω k  

of electromagnetic excitations in the microcavity array 
(where plus and minus signs stand for the upper and lower 
dispersion bands, respectively). We have performed the nu-
merical evaluation of 1 2( , , )V VC C±Ω k  for several permissi-
ble concentration values falling within the domain 1 2

V VC C≥  
(defined by inequality, which accounts for the fact that quan-
tum dots can only reside in the existent cavities). Parameters, 
which describe an interaction between the atomic and pho-
tonic subsystems as well as an overlap of optical fields and 
an interaction between quantum dots in neighboring cavities 
were set equal to 13/ 7 10 Hz,g = ⋅  14( )/2 3.5 10 Hz,A d = ⋅  

13( )/2 9 10 Hz,V d = ⋅  respectively; the lattice period was 
taken to be 73 10 m.d −= ⋅  In Fig. 2(a) the dispersion bands 

1 2( , , , )V V
x yk k C C±Ω  are plotted for an ideal structure 

Fig. 2. (Color online) Dispersion bands of an ideal (a, b) microcavity array 1 2( 0)V VC C= =  and a defect-containing (c) array 

1( 0.43VC = , 2 0.2).VC =  (b) illustrates the narrowed “bottle neck” resulting from the decrease of parameter g (responsible for interaction 
between the atomic and photonic subsystems) by a factor of 10. 

Fig. 3. (Color online) Band gap width plotted as a function of 
defect concentrations in the domain of definition 1 2 .V VC C≥  
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1 2( 0),V VC C= =  Fig. 2(b) illustrates their transformation 
under the decrease of parameter g (responsible for interaction 
between the atomic and photonic subsystems) by a factor of 
10. Figures 2(c) gives an example of dispersion bands of a 
nonideal structure ( 1 2( 0.43, 0.2).V VC C= =  

In Fig. 3 is shown the concentration dependence of the 
band gap width 

( ) ( ) ( )1 2 1 2 1 2, min , , max , ,V V V V V VC C C C C C+ −∆Ω ≡ Ω − Ω
k k

k k . 

It is often important to know how peculiarities of a 
spectrum are manifested in the corresponding quasiparticle 
densities of states 1 2( , , ).V VC C±ρ Ω  In our case the func-
tions 1 2( , , )V VC C±ρ Ω  are computed from the formula [23]: 

 ( ) ( )( )

2

1 2, ,
2

V V d dlC C
±

±
±Ω =Ω

 ρ Ω =   π ∇ Ω∫
kk k

. (14) 

Integration in (14) is carried out along various 
equifrequency contours falling within the first Brillouin zone 
( ( / , / ).x yd k k d−π ≤ ≤ π  Figs 4(a),(c) show the densities of 
states of the upper ( )+ρ Ω  and lower ( )−ρ Ω  dispersion 
branch polaritons of an ideal structure (whose dispersion 

bands are plotted in Fig. 2(a)). In Figures 4(b),(d) functions 
( )+ρ Ω  and ( )−ρ Ω  are constructed for a nonideal structure 

1 2( 0.43, 0.2),V VC C= =  whose dispersion bands are shown 
in Fig. 2(c). There is a mutual correspondence between indi-
vidual curve pieces in Figs 4(a)–(d) and the identically col-
ored surface patches in Figs. 2(a),(c). There are several criti-
cal frequencies iΩ , which separate differently colored 
patches in Figs 2(a),(c); in Figs 4(a)–(d) they are marked off 
by dotted lines. iΩ ’s, at which functions ( )+ρ Ω  become 
infinite are characterized by zero gradient values 

( ) 0±∇ Ω =k k  at all or some points of the corresponding 
integration contours. For those of iΩ ’s where functions 

( )+ρ Ω  have jump discontinuities, certain pieces of the cor-
responding multiply connected integration contours collapse 
to points under the simultaneously tending to zero gradient 

( ) 0.±∇ Ω →k k  
An important property of band gap photonic materials 

is their ability to produce the so-called “slow” light, which 
appears to be highly promising for the purposes of con-
struction and utilization of quantum information pro-
cessing devices [24]. An efficient reduction of qua-
siparticle group velocity was demonstrated, e.g., in 
coupled-resonator optical waveguides [25,26] as well as in 

Fig. 4. (Color online) Densities of states of the upper (a) and lower (c) dispersion branch polaritons of an ideal structure (whose disper-
sion bands are plotted in Fig. 2(a)) and a nonideal structure (b), (d) (whose dispersion bands are shown in Fig. 2(c)). There is a mutual 
correspondence between individual curve pieces in Figs. 4(a)–(d) and the identically colored surface patches in Figs. 2(a),(c). 
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solid-state multilayer semiconductor structures [27]. The 
key role in the reduction of the said group velocity is 
played by the character of the effective masses ( )

effm ±  of the 
so-called “dark” and “bright” polaritons, which arise in the 
specified materials as linear superpositions of the photonic 
states of resonator subsystems and the coherent excitations 
of one-level atomic subsystems. Concentration dependen-
cies of the effective masses of upper and lower dispersion 
branch polaritons are given by the formula 

 ( ) ( )
1

2
1 2( )

1 2eff 2
0
0

, ,
,

x
y

V V
V V

x k
k

C C
m C C

k

−

±±

=
=

 
 ∂ Ω
 ≡
 ∂
  

k
 .  

We have performed their numerical calculation; the results 
are shown in Figs. 5(a),(b). Examination of Figs. 5(a),(b) 
permits to conclude that an appropriate choice of defect 
concentrations 1 2,V VC C  may yield in principle the desira-
ble characteristics of the “slow” light. 

4. Conclusion 

The paper is devoted to elucidation of the effect of point-
like defects on polariton dispersion in a two-dimensional 
microcavity array with embedded one-level quantum dots. It 
is shown that the presence of vacancies in the resonator and 
atomic subsystems results in a substantial renormalization of 
polariton spectrum and thus in a considerable alteration of 
optical properties of the structure. Introduction of defects 
leads to an increase in the effective masses of polaritons and 

hence to a decrease of their group velocity. Our model is 
primarily based on the virtual crystal approximation, which 
is often employed to examine quasiparticle excitations in 
sufficiently simple disordered superstructures. More com-
plex systems usually require the use of more sophisticated 
methods such as the (one- or multinode) coherent potential 
approximation [22], the averaged T-matrix method and their 
various modifications. The obtained numerical results con-
tribute to our understanding of composite polaritonic struc-
tures and the prospects of their utilization for construction of 
solid-state devices with controllable propagation of electro-
magnetic waves. 
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