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The Aharonov—Bohm (AB) oscillations of the free energy, critical temperature T, magnetization M,
and magnetic susceptibility X as functions of the magnetic flux ® through the hollow in a stack of
mesoscopic superconducting cylinders are studied both analytically and numerically. The shape of these
oscillations at low temperature T and small level broadening v is generally nonsinusoidal and has
singularities that depend on the superconducting order parameter A and stacking sequence. The period
of the oscillations is equal to the normal flux quantum @ . The harmonic amplitudes of the AB
oscillations decrease exponentially if the diameter 2R of the cylinders becomes greater than the
coherence length. Further increase of R results in a complete depression of the AB oscillations and the
development of the parabolic Little—Parks (LP) oscillations of T (@), with half the period, ® =® /2.
Therefore a crossover from the AB to LP oscillations takes place as the diameter 2R is increased. It is
shown that the temperature behavior of the magnetic susceptibility below the superconducting transition
is X Oexp (-T/TY, where T = ﬁvO/ZthR. Such dependence of X(7) has been observed recently in Ag wires
coated with thin Nb layers in a weak external field [19] (vo is the Fermi velocity, and 7 is Planck’s

constant).

PACS: 74.62.—c, 73.20.Dx

1. Introduction

Recently considerable attention has been devoted
to studies of quantum oscillations in various artifi-
cially fabricated nanostructures subject to small
external magnetic fields. In particular, different
types of superconducting devices have been ex-
plored which exhibited oscillations of the critical
temperature 7, upon monotonic variation of the
external magnetic field H. Such oscillations have
been observed in a fractal networks [1,2], in
Josephson junction arrays [3], and various
mesoscopic loops [4—6]. All these experiments show
diverse and basically nonsinusoidal oscillation pat-
terns for the transition temperature T (H) with the
superconducting flux quantum ®_ = fic,/2e as a fun-
damental period. It was established that such oscil-
lations could be sufficiently well understood and
described within the Ginzburg-Landau (GL) ap-
proach. The GIL equation, when linearized in the
order parameter W, is formally identical to the
Schriodinger equation for a doubly charged (in units
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of the electron charge e) particle in a magnetic
field. Thus, the double charge of the Cooper pairs,
2e, is the physical reason standing behind the fact
that quantity ®_ determines the period of oscilla-
tions in the flux ® for different nonsimply con-
nected systems in the GL regime. The GL approach
also proved to be successful in explanation of diffe-
rent known types of flux quantization in supercon-
ductors: the Little—=Parks oscillations [7,8], oscilla-
tions in superconducting fractal networks [9—11],
and in Josephson junction arrays [12,13].

The Little—Parks (I.P) oscillations of the critical
temperature T (H) have a parabolic shape and take
place for samples whose sizes are of the order of the
GL coherence length or greater. Oscillations as a
function of flux in the GL regime, ignore the
quantum phase interference phenomena due to the
Aharonov—Bohm (AB) effect [14], which is nor-
mally present in the quasiparticle energy spectrum
of nonsimply connected mesoscopic superconduc-
tors. The AB effect has numerous applications in
different mesoscopic structures: conducting, insu-
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lating, magnetic, and strongly correlated, a review
of which can be found in Refs. 15, 16. A general
theoretical consideration of the AB effect in super-
conductors was given in the article [17], where a
number of theorems have been formulated concern-
ing hollow superconductors in a magnetic field.

The effect of flux quantization on the energy
spectrum of excitations in a thin hollow supercon-
ducting cylinder and on the critical temperature
T (®) was studied in [18]. It was shown in [18] that
T (®) is an oscillatory function of the flux through
the hollow ® = HTR? with the period ®, =20 (R
is the inner radius of the cylinder). The authors
proved the periodicity of the critical temperature,
T (®) =T,(P + D), and estimated the amplitude of
oscillations as

1/2
T,-T, D\BD/
= S=0-0 exp (-2yR/E) . (D
T, RO ’

The explicit shape of oscillations was not found in
[18]. The notation adopted in Eq. (1) is as follows:
&, = fivy/TO(0) is the coherence length; Ap is the
Bohr radius, and In y equals the Euler constant.
The purpose of present paper is to study (both
analytically and numerically) the Aharonov—Bohm
oscillations of the critical temperature T (®), mag-
netization M(®), and susceptibility X in supercon-
ductors in more detail and to show their formal
relation to the de Haas—van Alphen oscillations in
superconductors — a very active area of research at
the moment (see, for example, Refs. 25, 28, 29 and
numerous references therein). To do this, we con-
sider in what follows the AB oscillations of the free
energy in a stack of weakly connected uniaxial
hollow superconducting cylinders, which can be
considered, for instance, as a model system for
superconducting nanotubes [30]. We will show that
the T and the magnetic susceptibility X in the AB
regime are oscillating functions of the flux due to
the quantities cos 2mp®,/®;). For each integer p
the amplitudes of these oscillations depend on the
electron level broadening v =7%/1T, the order pa-
rameter A, and the so-called stacking factor I,
depending on p in the very same fashion as for the
de Haas—van Alphen (dHvA) oscillations in layered
superconductors [25]. We will show, in particular,
that x O exp (-T/TH, where TH= EUO/ZTIQR. This
result exactly coincides with the experimental ob-
servation of the temperature behavior of the suscep-
tibility in the Ag,/Nb wire bundle reported in Ref.
19. The stacking factor I is a quantity which
depends on the distribution of cylinders heights
along the stack as well as the types of electrical
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contacts between them. It nontrivially modifies the
amplitude of the pth oscillation harmonic and can
be determined by the relation [25]

o)

I =Ig(a) exp (-i2Tpe,/€ ) de , (2)
where g(€) is a one-dimensional density of states
related to the electron motion along the field (along
the stack, in our case) and ¢, is the typical energy
separation between the energy levels in the prob-
lem. We will show in what follows that in the
AB regime of a stack of mesoscopic cylinders
€ = ﬁ2k0/MR, where k, stands for the Fermi mo-
mentum and M is the electron mass. In case of the
de Haas—van Alphen oscillations in layered conduc-
tors [20,21] and superconductors [25] g, = hQ,
where Q is the cyclotron frequency.

2. The energy spectrum and the free energy

Consider a stack of uniaxial thin hollow cylin-
ders (or a tube) of inner radius R and thickness
d << R, which is subject to an external magnetic
field H along the axis of the stack. The cylinders
may be uniform in size, or their heights may vary
periodically along the tube or be randomly distrib-
uted quantities. We assume also that the tunneling
barriers for electron hopping between neighboring
cylinders are weak enough that one can neglect the
spatial variations of the superconducting order pa-
rameter along the stack (see Ref. 31 and the discus-
sion in Sec. 4 in this connection).

Before considering the superconducting proper-
ties of the system in question, let us first determine
its energy spectrum and the wave functions in the
normal state. Taking then the z axis of the cylindri-
cal coordinates (p, ¢, 2) to be parallel to the stack,
and separating variables in the Schrédinger equa-
tion HW, = €W _, we have

1 i
= W e fl(p)wam(z) ; (3

2
E 1) =€, /P,
D (4)

ﬁfszm(z) =, ¥,,0) (5)

Here p=R+r is the radial coordinate
(0sr<d<<R), and ®(p)=Hmp? is the flux
through a circle of radius p. The Schrédinger equa-
tion (5) describes the motion of an electron with
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energy {, =€ - ¢, along the magnetic field (i.e.,
along the z axis). Taking into account that in a thin
cylinder 7/R << 1, we find from Eq. (4) the ap-
proximate energy spectrum for electrons in the
cylinder:

. 72 51212 1o o DD )
1= 02 T2 mi
" oM nd R q)ODD
The appropriate radial wave functlon which sa-
tisfies the zero boundary conditions at the inner and

outer surfaces of the cylinder, f(R) = f(R +d) =0
is given by

Op - R)I0
[
o 4 0

The quantum numbers in Eqs. (6) and (7) take
the following values: =0, 1, 2, ..., [ =0, 1, 2,

. To calculate the quasiparticle energy of the
system under study in the superconducting state,

one has to address the Bogoliubov—de Gennes
(BdG) equations:

fp) =V2,/d sin (7)

(H = EpJu(e) + Ar)oe) = Eu () |
®)

~(H = Eyo(e) + A0)utr) = Ee(r) ,

where E; is the Fermi energy.

Since the thickness of cylinders is much less than
the BCS coherence length &, the order parameter A
does not depend on the coordinate r. Taking this
into consideration and expanding the u — v func-
tions in the basis of Eq. (3),

w)= Y w W@, o)=Y o W@, (O
3 €
we find the quasiparticle energy from the BdG

equations (8):

=V, - E) +1° . (10)
Proceeding then in a standard fashion, we arrive at
the spectral density for quasiparticles with a small

damping, Vv =7/T, as a sum of two Lorentzians
[22],

2 \%
n

1
V@ EE )

p,E, W)=

2 \Y

T @ EE ) an

The quantities u% and v% here stand for the cohe-
rence factors:

650

1l sGIH L. 1 H &&IDH
U U U U
(12)

We put for simplicity [ =1, so that the quasipar-
ticle energies in the normal and superconducting
states become, respectively,

£, &) =ER) - S+ E, K, (13)

0O
]
00 Do

and

E€,)=Ve ) +8", (14)
where 1 and €(R) are determined by the relations
2 2

—EF—W, 8(R)=W (15)

Once the spectral density is found, the free
energy of a superconductor can then be calculated
with the help of the formula [23]

2
F =J-dr |A(;)| -

Ow O
ZTHZm Idoo p,E, ®In % cosh %%’ (16)

where A is the BCS coupling constant. Using
the integral representation for the logarithm in
Eq. (16) [24]

ad O O 1 = cos wz
| h d
n @OS ?Eﬂ] J- %, sinh 10z z sinh 172 an
and the Poisson summation rule
z X(n) = J'x(n)dn +2Re ZIx(n) 2P dn | (18)
m —00 p=1 4

where n, =1 < a <n, , we find the oscillatory part
of the free energy in the form

F_ —ZQLIJ(TAV)cong;v g (19)
p=1 O U
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It is important to note that nonoscillatory part of
the free energy, determined by the first integral
term in Eq. (18), does not depend on the flux,
because €,(§, ) in Eq. (13) depends on n through the
combination n - ®/®, . Two factors W (T, A, V)
and Q, have been introduced in Eq. (19):

29

-vlz|

€
W (T, 8, v) —Idep(z) R
and
0, = Re [T, exp (2mpRk)] 1)

The function Gp(z) is determined by the integral

00

G (2) J-dn cos % \/_a n) A Dcos (2rmp) .
(22)

Thus the factor W (T, A, v), given by Eq. (20),
describes the damping of the AB oscillations of the
free energy due to the BCS gap A and energy level
broadening v. The factor Q_ in Eq. (20) modulates
the pth harmonic through the stacking factor I p

which has already been determined by Eq. (2). It
depends on the one-dimensional density of states
associated with the electron motion along the stack

g&) =Y BE-E,). (23)
m

The factor analogous to the I_ was introduced
earlier in the theory of de Haas—van Alphen oscilla-
tions in layered conductors [20,21] and supercon-

ductors [25].
The integral in Eq. (22) can be calculated exactly

to yield [24]

G(z)—a— %{2—2p)+6(2—2p)%]0g3727—_2; %é,

00
(24)
where 6(2) is the Heaviside step function; J(2)

stands for the Bessel function; and 2z, =2mp /¢, .
Now substituting Eq. (24) into Eq. (26) we have

LIJP(T, A, v) =

o)

= LIJ(zp , V) +J-d2 Y(z, v) g& V-2

P D’
(25)

z
P
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where

A

WY, v)y=——. (26)

z sinh (172)

The second term in (25) vanishes when A =0, so
that W(z,_ ,v) is the factor which determines the
amplitudes of the AB oscillations in the stack in the
normal state. The dependence of F__, on the oscil-
lating factors cos 2mp® /@) is a manifestation of
the AB effect [16,27] in mesoscopic systems. Ampli-
tudes Q, and W_ formally are much the same as
those appearing in the de Haas—van Alphen effect in
layered superconductors in the vortex state below
the upper critical magnetic field [25]. The latter is
because in both cases oscillation effects arise due to
the quantization of the energy spectrum in super-
conductors. The principal difference in the field
dependence of F_ (H) in the de Haas—van Alphen
and Aharonov—Bohm cases appears because of the
different nature of the quantization. In case of the
de Haas—van Alphen effect the strong external
magnetic field itself is a quantizing factor, which
yields a discrete Landau spectrum responsible for
the periodicity of the free energy F_ (H) in the
inverse magnetic field 1/H. In case of the AB
problem under study, the energy levels € (€, ) of
Eq. (13) appear due to the size quantization in the
mesoscopic sample, and the flux ® O H enters the
discrete spectrum g (§ ) as a parameter thereby
making the free energy FOSC(GJ) in Eq. (24) a peri-
odic function of the field itself. Physically, the
dependence on @ in the AB systems should vanish
together with the size quantization in the bulk
limit. In the next Sections we will see in detail how
the AB oscillations manifest themselves in the
mesoscopic tube under consideration, both in the
normal and superconducting states.

3. The critical temperature oscillations and
dimensional crossover

Near the critical temperature one can expand the
free energy in powers of A2 Using Eqs. (16), (18),
and (19), we have

0 -

D [
=n -2 S QN (T v) cos 21 q’%
O 7 ®,

0 p=t 0 oy

27
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where a(7) is the first coefficient of the standard
Ginzburg—Landau expansion. In the case of a super-
conductor of small dimensions it can be found

directly from the free energy determined by
Eq. (16) (see Ref. 26 for details):

o, ,O0, vo ,d

a)=NO) fh 2o+ ¥ 5 + -0~ Y B
0 g8 B oy R

(28)

Here T? = T?(R) is the critical temperature of a
small cylinder of radius R; W stands for the di-
gamma function; N(0) is the density of states. The
factor N (T, v) entering the free energy expansion
in Eq. (57) is determined by the integral

exp (-bz2)
sinhz

N (T, ) =J-dz (29)

P
where b =v/T" and a, = 2Rp /&(T). The co-
herence length depends on the Fermi velocity o,
and the temperature according to the relation
(1) = hoy /T

The critical temperature of the stack can be
determined from the Ginzburg—Landau expansion
by equating to zero the term in the square brackets
in Eq. (28). Taking into account a smallness of the
oscillatory correction to the critical temperature
TRR) of a cylinder due to the Aharonov—Bohm
effect, we have

T(®) = THR) -
2T%R) © o0
N, z QPNP[Tg(R), v] cos %T;D q’OD. (30)
p=1 g 0

Here TRR) = T?(R) -1v,/8 is the transition tem-
perature of the cylinder, taking into account a small
depression due to the size-quantization level broa-
dening. Thus the critical temperature 7 (®) oscil-
lates in the direct field with a period equal to the
normal flux quantum ®, . The amplitudes of har-
monics in Eq. (30) depend on two factors Q_ and
N b of which Q_ is proportional to the stacking
factor I_ . This fgctor depends on the way which
cylinders are stacked into a tube and on the type of
electrical contact between them. Consider, as a
specific example, a model in which identical cylin-
ders are stacked periodically into a tube and the
tunnel junctions between them are determined by
the hopping integral 0. Such a model has recently
found support in experiments on carbon nanotubes
[31]. The corresponding density of states, associ-

652

ated with the electron transport along the tube in
this model, is given by the relation
g(e) = 1,/T(402 — €2)'/2. Integration of Eq. (2) with
this g(g) yields 1 = J(4mop,/€), so that the factor
Qp becomes

0,=2J, gi?gcos @mRk) (31
Ooo°n0

(Jy(x) is the Bessel function). The case of a single
cylinder corresponds to the prohibition of electron
tunneling between the adjacent cylinders, i.e.,
0 = 0. The density of states in this limit is given by
g(€) = 0(g), which implies that Ip equals unity and
Q, = 2cos (2pR k). Having at hand Egs. (29) and
(3101), one can calculate the sum in Eq. (30), which
determines the shape of the oscillations of the criti-
cal temperature 8T (®) = (T (®) - THR))/TY(R) in
units of the quantity N(O)e, . The results of the
numerical calculations of 8T (®) for different values
of the parameters a = 2T[2T?(R) /€y and b=V /Tr]?(R)
are shown in Fig. 1. We see that in general the
shape of the Aharonov—Bohm oscillations of the
transition temperature in the superconducting tube
is not of the simple cosine form cos 2m®,/® ) be-
cause of the contributions from the higher harmon-
ics (p=2, 3, ...). It takes the harmonic sinelike
form only for sufficiently large ¢ and b as one can
see in Fig. 1,e. These quantities depend on T?(R)
and the energy level broadening v, which therefore
act as factors damping the amplitudes and smearing
the fine structure of these oscillations. The value of
the hopping integral also strongly affects the shape
and amplitudes of the oscillations, as one can tell by
comparing Fig. 1,a and Fig. 1,b. The enhancement
of 0 changes the oscillation pattern and strongly
depresses the amplitudes.

The temperature and broadening v influence the
amplitude of the pth harmonic through the factor
N p(T, v), which decreases rapidly as the parameters
b and a, increase. In the case when 2mR >> &(7),
this factor becomes an exponential function

ol'oo_ 0 vO

Np(T, v)=71+bexp O G..0PofP 0 0
D%DD o g

(32)

depending on some characteristic temperature T5=
= EUO/ZT[2R, which is a decreasing function of the
radius R. It follows then from Egs. (30) and (32)
that the quantum AB oscillations of the critical
temperature decrease exponentially with R if
2TR >> E(T?). On the other hand, when R exceeds
the Ginzburg—Landau coherence length EGL(T?)
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The Aharonov—Bohm oscillations of the critical temperature of a stack of hollow superconducting cylinders
- TCD(R))/Yf(R) (see Eq. (30)) in units of the quantity N(0)e; (® is the flux through a hollow, and ®, denotes

the flux quantum). The numerical calculations of 8T (@) in Figs. 1,a~1e are done for different values of the parameters

a =21TYR) /¢, ,

b :v/T[Tg(R), ¢ =47o/¢, , and Rky=1000: a=0.1, b=1,¢=0.1 (Fig. 1,a); a = 0.1, b=1, ¢ =10 (Fig. 1,b); a =

0.25,b=1,¢ =10 (Fig. 1,c); a=0.5,b=1, ¢ =10 (Fig. 1,d); a=1, b =1, ¢ = 10 (Fig. 1,e).

(i.e., in the GL regime), the gradient term in the
free energy expansion should be added to the right-
hand side of Eq. (27):

2
{ O 2eA0 [
—mU0-—o¥Yo - (33)
2m cg o

The Ginzburg-lLandau order parameter W in Eq.
(33) is proportional to A [32]: W =y!/2A, where
V= 7((3)mv(2) N(0)/ 2T[2T2 for clean superconductors

F ~ 2
p1

r/J
] '

[| 00
%m——
]

]

We see that two physically different regimes should
be distinguished. In the mesoscopic regime,
2R < &(T), the free energy given by Eq. (27)
oscillates with period ®, on account of the AB
effect. In the  Ginzburg—Landau regime,
2R >> E(T?), the harmonic oscillations given by
the sum over p in Eq. (34) vanish, and the period
of oscillations becomes equal to the supercon-
ducting flux quantum ®_=® /2. In this case the
oscillations are completely determined by the super-
current term mv?/Z, as in the case of the conven-
tional Little-Parks effect. The critical temperature
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0
¢ [

> QN (T, V) cos %TW o m*
0

and y* = Tono N(0)/ 12ﬁT? for dirty superconduc-
tors. Here v, is the Fermi velocity, and {(3) is the
zeta function, [ = fiv/v. The fluxoid quantization
in a thin superconducting cylinder makes the super-
current velocity o = (%/mR) min l(n - @/ GJS)2| an
oscillatory function of the ratio ®/®, which is a
manifestation of the Little—Parks effect [7,8] (n is
an integer). Thus the free energy expansion of Eq.
(27) in the GL regime takes the form

0
He ... (34)
0
0

oscillates in this regime according to the standard
Little-Parks equation

€l

T(®) = THR) +0.73 — 2 To(R) min Th - q’DD
o %00
(35)

Thus an increase of R results in a crossover from
harmonic oscillations of the critical temperature
T (®) with period ®, in the Aharonov—Bohm re-
gime (see Eq. (30)) to the parabolic Little—Parks
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oscillations with period ®_in the Ginzburg—Landau
regime described by Eq. (35).

4. Magnetization, persistent current,
and susceptibility oscillations

Having at hand equations for the free energy,
one can calculate the magnetization M and the
susceptibility X by taking derivatives:

oF oM

M=-"" x=—r.
o’ X" om

Consider first the magnetization. In the AB regime
H enters the free energy, as one can see from Egs.
(24) and (28), through a strongly oscillatory func-
tion cos 2mp®,/®,), so that derivation in Eq. (36)
is trivial and yields

(36)

4T 2mSO_ . ®0
Moo= e Up 0y OpW,(T, 4 v)p sin %T?? JD'
0 070 Oymy 0 %o

37)

It is instructive to begin the analysis of the shape of
the function M (®) with consideration of the limi-
ting case A=0o=v =T =0, since the sum in Eq.
(37) in this case can be calculated analytically.
Setting to zero these parameters in Eq. (37), we
have

M (P=M_+M_,

0sc sSC 0sc

(38)

where

2

(39)

The sum in Eq. (39) is exactly a saw-tooth function
of its argument in the parenthesis. Therefore the
magnetization M__ (®) of a single cylinder (o = 0)
at zero temperature and level broadening v is a sum
of two saw-tooth profiles, as is shown in Fig. 2,a.
The persistent current and the corresponding mag-
netization function M__ (®) of a thin normal ring
(first obtained by Kulik [27]) were studied in the
paper [33] and later discussed in detail in a review
article [34]. Nonetheless, as one can see from Eq.
(37), the magnetization of the tube is strongly
affected by the additional factor Q (o). The role of
the stacking factor Q (0) in the shape of M __ (®) is
nontrivial and is illustrated by the relative trans-
figurations of the oscillation patterns shown in
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Figs. 2,a and 2,b. Increasing the temperature and
level broadening damp the amplitudes of the har-
monics, making the form of M__(®) close to si-
nelike, as one can see in Fig. 2,c. The shape of the
magnetization oscillations in the superconducting
tube calculated on the basis of Eq. (37) for differ-
ent values of the parameters A, o0, v, and T is shown
in Fig. 3. The magnetization of the stack of cylin-
ders is inherently related to the so-called persistent
current I =cM/S (S =mR?). This current flows
around the hollow and thereby creates the magneti-
zation. Therefore oscillations of the magnetization as
a function of flux also imply oscillations of the persistent
current, with the amplitude I__ (®) =cM _(P)/S.
The oscillations of the susceptibility can be calculated
by taking the derivative X .(®) = M _.(P)/0H. In
the normal state, under the conditions A=g=v =
=T =0, the magnetization function M __(®P) i

0osc

given by the saw-tooth function of Eq. (38) and is
a
2L

E@ 0_ \/5\!\1 i\\(\}z 20
vﬁ\\/ﬁ\v/ :

-1.5F

Fig. 2. The Aharonov-Bohm oscillations of the magnetization of
a stack of hollow normal cylinders M __ (®/®) (given by Eq.
(37) with A =0) in units of the quantity M(0) = 2¢,S/®, . The
numerical calculations of M __ (®,/®,) in Figs. 1,a—1c are done
for different values of the parameters a = 2Tr278(R)/£0 ,
b=v/TTR), ¢ = 410/¢; , and Rk, : @ = 0.01, b=0.01, ¢ = 0.1,
Rky= 1000 (Fig. 1,a); = 0.01, b= 0.01, ¢ = 1, Rky= 100
(Fig. 1,b); @ = 0.01, b=0.01, ¢ = 0.1, Rk, = 100 (Fig. 1,¢).
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Fig. 3. The Aharonov—Bohm oscillations of the magnetization
of a stack of hollow superconducting cylinders M __(®/®)
(see Eq. (37)) in units of the quantity M(0) = 2¢,S/®; . The
numerical calculations of M _(®/®) in Figs. 1,a—1,c are done
for different values of the parameters a = 2T[2T2(R)/£0 ,
b=v/TTYR), c¢=4no/e, , d =2mA/g, , and Rk, : a= 0.01,
b=0.01,¢c=1, d=0.05 Rko = 1000 (Fig. 1,@); a=0.01, b=
=0.01,¢c=1, Rko =100, d = 0.05 (Fig. 1,b); a = 0.01, b =0.5,
¢=1,d =05, Rk, = 1000 (Fig. 1,0).

shown in Fig. 2,a. Thus X, (®) in this case would
have delta-function peaks at the jumps of the saw-
tooth and a negative constant value between them.
Temperature and v, as well as A and o, smear the
singular features in M (®), as one can see in
Fig. 2,a and Fig. 3,c, making the X . .(®) a harmonic-
like function too. Near the transition temperature,
provided that it is high enough that the higher
harmonics can be neglected, we have from Eq. (27)

a simple analytical expression for the susceptibility:

2
2 2mSAQ o0
X= D0 QNI ) cos %ngm. (40)
00O oo 0 0[]
According to Eq. (32) the temperature behavior of

the susceptibility near T, is

T
X O exp 2 ;DE. (41)

g+ 0
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Such a temperature dependence of the magnetic
susceptibility has been found recently in experi-
ments on a bundle of electrically isolated Ag,/Nb
wires [19]. Every wire in the bundle was a very
clean Ag cylinder coated with thin superconducting
Nb layer. The authors of Ref. 19 also observed a
crossover in the temperature behavior of the suscep-
tibility which doubles the ratio T/TH - 2T /T in
the exponent of X(T) when T < TH We can relate
this phenomenon to the fact that the quantity
&(T") = hoy/T0 has a double meaning in the problem
in question. First, it is the coherence length that
determines the amplitudes of the AB oscillations.
Second, the length &,/(T) = fiv /1T is known to be
the length that determines the spatial scale of the
proximity effect. In the context of our analysis this
means that at the temperature 7 = TU the Ag cylin-
der became completely superconducting due to the
proximity with superconducting Nb coating, since
at this temperature EN(T[) = 2TR. As a result, the
flux is expelled from the interior of the wire, and
the cylinder can no longer trap the flux in the Ag
core. Therefore the crossover observed in the
Ag/Nb cylinders may be considered as a conse-
quence of the crossover in the topology of the
system as the temperature decreases: <hollows
cylinders with a flux trapped inside the normal Ag
core (for temperatures T > T became completely
superconducting when T becomes less than T and
expel the flux from the Ag core.

5. Conclusions

The original AB effect was formulated in [14] as
a gedanken experiment in which the interference
pattern of two electrons moving around the solenoid
in the absence of a magnetic field depends on the
flux through the solenoid. This theoretical predic-
tion was soon confirmed in a real experiment done
by Chambers [35]. Later on, different manifesta-
tions of the AB effect in solids have been studied
and many examples were found in which various
physical properties exhibit oscillations as functions
of the flux with period ®, (many references on the
subject contain review articles [15,16,34]). A the-
ory of the AB oscillations of the free energy in a
metal ring and the related problem of the persistent
currents in such systems was first considered in the
paper [27] (see also Ref. 36 in this connection) and
was later generalized to the case of superconducting
ring in Ref. 18, where Aharonov-Bohm oscillations
of the transition temperature 7 (®) have been pre-
dicted. The theoretical consideration given in this
work develops further the results of the papers
[18,27]. For this purpose, we have studied the free
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energy of a stack of superconducting cylinders in
external magnetic field within the microscopic BCS
model and have calculated analytically the oscilla-
tory part of the free energy (see Eq. (19)). We have
also found explicit expressions for the AB oscilla-
tions of the critical temperature T (®) (Eq. (30)),
the oscillatory part of the magnetization (Egs.
(37)—-(39)), and the susceptibility X(7) near the
transition temperature (Eq. (40)). The oscillatory
dependence of all above quantities on the flux ®
with the fundamental period ®, stems, in the long
run, from the gauge invariance of the theory of
nonsimply connected solids. In our particular case
this flux dependence appears due to the quasiparti-
cle energy given by Eq. (13). The results of a
numerical analysis of these oscillations is shown in
Figs. 1-3. These pictures demonstrate strongly non-
sinusoidal oscillating patterns for the functions
T (®) and M__(P) in the case of low temperatures
and small level broadening. Such nonsinusoidal
behavior of the oscillations is caused by the small
decrease of the harmonic amplitudes with their
number p in this case. Increasing the temperature
and v as well as A damps the amplitudes of the
harmonics and smears the singularities in the oscil-
lation patterns, making them close to sinelike or
cosinelike in shape. The way in which the cylinders
are stacked into a tube also strongly affects the
oscillation patterns through the factor Q_ of Eq.
(21). This factor in turn depends on the stacking
factor I p given by Eq. (2) and determined by the
density of states g(€) related to electron motion
across the stack (along the tube). The dependence
of the oscillation pattern on the hopping integral ¢
between cylinders in a stack in a model described by
the factor of Eq. (31) is rather sophisticated and
can be seen from a comparison of Figs. 2,a and 2,b.
The Aharonov—Bohm effect has been observed re-
cently in circular carbon nanotubes [30]. It was also
shown that structural disorder effectively breaks
carbon nanotubes into a series of cylinders (or dots)
separated by tunneling barriers. The transmission
probability between the cylinders was estimated to
vary within the limits 0.001-0.1 [31]. Thus nanotu-
bes as well as coated wires are good candidates for
the physical realization of the model adopted in this
paper.

Being quantum in nature, the AB oscillations of
the critical temperature 7 (®) vanish exponentially
when R is increased to values of the order of the GL
coherence length. Further increase of R results in a
dimensional crossover from the AB oscillations to
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the Little—Parks ones. The LP oscillations have half
as large a period in the flux, ® =®,/2, and have
the shape of periodic parabolas (see Eq. (35)). The
LP oscillations take place in the GL regime
R 2&,;(T), in which the quantum size effects are
irrelevant and quantum AB oscillations are sup-
pressed. The LP oscillations arise due to external-
field-induced oscillations of the superconducting
current of the Cooper pairs around a hollow in the
cylinder. Since the Cooper pairs carry double elec-
tronic charge, the period of these oscillations in the
flux becomes half as large as for the quantum AB
oscillations. We also found that near the transition
temperature the magnetic susceptibility X(T') of the
superconducting cylinder is given by Eq. (40),
which, through the factor of Eq. (41), displays the
nontrivial exponential temperature dependence ob-
served in Ag/Nb wires [19].

In conclusion, we would like to stress yet an-
other important point of our consideration. The
physics behind the quantum AB oscillations in su-
perconductors, in essence, is very much similar to
that which governs the dHvA oscillations in the
vortex state. In spite of the fact that the AB
oscillations are periodic in the direct field, the
damping factors LIJp and Qp entering Eq. (19) are
akin to the appropriate factors in the dHvA oscilla-
tions in superconductors [25]. For example, the
factor W determined by Eq. (25), after the substi-
tution &, = 7Q, becomes identical to the appropriate
factor in the dHvA oscillations describing the
damping of the pth amplitude due to the supercon-
ducting gap A(T). It is impossible to single out
experimentally the contribution of A to the damping
of the dHvA oscillations in superconductors because
of the spatial modulation of the order parameter
A(r) caused by the vortices [28]. Since there are no
vortices in the AB system under consideration, the
comparative experimental studies of the damping of
the AB and dHvA oscillations can provide the
information necessary for separation of the «vortex
matter> contribution to the damping of the dHvA
oscillations in superconductors in the mixed state.
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