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Magnetomechanics of mesoscopic wires
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We have studied the force in mesoscopic wires in the presence of an external magnetic field along

the wire using a free electron model. We show that the applied magnetic field can be used to affect the

force in the wire. The magnetic field breaks the degeneracy of the eigenenergies of the conduction modes,

resulting in more structure in the force as a function of wire length. The use of an external magnetic

field is an equilibrium method of controlling the number of transporting channels. Under the least

favorable circumstances (on the middle of a low conduction step) one needs about 1.3 T to see an abrupt

change in the force at fixed wire length for a mesoscopic bismuth wire.

PACS: 73.23.-Db

I. Introduction

The electrical conductance in a ballistic wire
with dimensions comparable to the Fermi wave-
length increases in steps of G = 2¢%/h as the cross
section increases. This conductance quantization is
observable at room temperature in metallic nano-
wires formed by pressing two pieces of metal to-
gether into a metallic contact. When the two pieces
are separated, the contact is stretched into a nano-
wire, a wire of nanometer dimensions. Several ex-
periments varying this principle have been per-
formed, e.g., using scanning tunneling microscopy
[1], mechanically controlled break junctions [2], or
just plain macroscopic wires [3]. Although most
nanowire experiments have been performed on me-
tals, conductance quantization has been seen in
bismuth at 4 K [4]. Since bismuth has a Fermi
wavelength A, = 26 nm [4], these semimetal «nano-
wires» are larger than the metallic nanowires.

The stepwise variation of the conductance in
such a mesoscopic wire is accompanied by an abrupt
change of the force in the wire [5]. Using a free-
electron model, neglecting all atomic structure of
the wire, it has been shown [6-9] that the size of
the electronic contribution to the force fluctuations
are comparable to the experimentally found values
and that the qualitative behavior, i.e., the abrupt
change that accompanies the conductance steps, is
the same.
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In the wire the transverse motion of the electrons
give rise to quantized modes o of energy E . In the
simplest version of the Landauer formalism, a mode
is considered fully transmitting (open) if E, > E_
and closed otherwise [10]. Each open mode contrib-
utes an amount e%/h to the conductance, if modes
with different spin are considered separately. When
the wire is elongated, the cross section decreases,
more and more modes are pushed above the Fermi
level and closed, thus decreasing the conductance
stepwise. This has been shown in two dimensions
[11] and in three dimensions [12].

It has been suggested [13] that the conductance
and the mechanical force in a nanowire can be
controlled by an applied driving voltage. This effect
originates from the injection of additional electrons
with voltage dependent energy, because of the dif-
ferent chemical potentials of the two reservoirs.
Since relatively large applied voltage is needed, one
will have to worry about heating in this case.

The eigenenergies of the transverse motion can
be affected by an external magnetic field B perpen-
dicular to the cross section of the wire. This will
show up in the conductance and in the force as a
function of B. The effect of magnetic field on the
conductance has been considered in Ref. 14. To use
an external magnetic field is an equilibrium method
of controlling the number of transporting channels,
without significant risk of relaxation.

Because of band bending, due to the small size of
the wire, the eigenenergies will have to be cor-
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rected. This can, however, be taken care of by
introducing an effective Fermi energy E 5 in the
wire. Assuming that the number of electrons (per
unit volume) is constant, E 5 can be determined
self-consistently and will vary with wire length and
magnetic field.

In this paper we present force calculations for
different applied magnetic fields and wire lengths,
using a free-electron model. We take into account
the effect of band bending, adjusting the Fermi
energy in the wire. In order to resolve any effect for
moderate magnetic fields, a low cyclotron effective
mass (which enters in the cyclotron frequency) is
needed, which can be found in semimetals. Metals
are less favorable since, because of a larger cyclo-
tron effective mass (larger Fermi energy), we would
need a larger magnetic field in order to resolve any
effect. For numerical estimates we have used values
for bismuth, a typical semimetal. For bismuth the
spin splitting is also important, since it has a large
spectroscopic spin splitting factor g.

I1. Model

We consider a cylindrical ballistic wire of length
L with circular cross section and a parabolic confin-
ing potential
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W) = =Ly (1)
using cylindrical coordinates (r, ¢, 2); here mU is
the effective electron mass. The wire is along the z
direction. The last equality in Eq. (1) defines
In this equation E, is the zero-B-field bulk value,
yielding a magnetic-field-independent confining po-
tential. We assume that the volume V = mR2L of
the wire is kept constant during elongation, which
makes R and L mutually dependent.

With the above confining potential and an ap-
plied magnetic field along the wire, the Schrodinger
equation has been solved [15]. If also spin is in-
cluded, the eigenenergies are

Roz 1/2
E =EEP+(,)25 n+flh'w+sguBB 2)

a |:|4

n=2m+ll|+1, m=0,1,2, ..,
[=0,x1,%2,..., s=+x1/2, a={m,l, s},
where w_ = eB /mPis the cyclotron frequency; Hp is

the Bohr magneton; sgu, is the magnetic moment
associated with the electronic spin.
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Since our system is open, the electronic contribu-
tion to the force in the wire is given by the deriva-
tive of the grand potential Q = E — uN with respect
to elongation. Here E is the total energy of the
electrons in the wire, [ is the chemical potential,
and N is the number of electrons in the wire. If the
Fermi energy E is much higher than the thermal
energy (as in metals or at low temperature), we
have g = E . The grand potential is then [9]

1,2
D/

QE,) = Z 3 4y STTD (E,-E)"*, 3

where the sum is over all open modes. The force in
the wire is given by

F=- 679 , (4)
oL
which in general has to be calculated numerically.
The magnetic field affects the system primarily
by splitting the otherwise degenerate eigenenergies
of the conduction modes [Eq. (2)]. Since then the
conduction modes will open one-by-one, this will
cause more structure in the force and conductance
when displayed as functions of wire length. Sub-
sequently, when applying an external magnetic
field we will see the (clearest) effect when the
highest open level or the lowest closed level goes
through the Fermi level (whichever happens first).
If one does not adjust the Fermi energy for band
bending but uses the bulk Fermi energy for zero
magnetic field, one can analytically calculate the B
field needed when the wire is kept at a specified
length. The least favorable situation would be on
the middle of a conduction step.

IT1. Results and discussion

We have used numerical values for bismuth, a
typical semimetal with E; =25 meV [4]. Bismuth
has an anisotropic Fermi surface resulting in differ-
ent effective masses in different directions, between
0.009m,—1.8m,, [16]. The cyclotron effective mass is
in the range 0.009m,—0.13m, [16]. Assuming an
isotropic Fermi surface and an quadratic dispersion
relation, both effective masses are the same:

=0.07m, for E; =25 meV. The spectroscopic
splitting factor g can be as high as 260 or an order
of magnitude smaller, depending on the direction of
the magnetic field [17]. With g = 20 the spin split-
ting is roughly of the same order as the Landau
level distance, and becomes dominant for g as large
as 200. We have used g = 20. The wire volume was
kept constant at 30 000 nm? [3].
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Fig. 1. The force in a mesoscopic wire as a function of wire
length for different magnetic fields. The lowest, thick, curve is
for B =0. The next lines, each displaced by 0.5 pN, are for
B =0.5; 1T etc., the uppermost line being for B = 4.5 T. The
splitting of the eigenenergies of the conduction modes is clearly
visible: for larger B fields the curves have more structure, since
now every mode closes one-by-one when the wire is elongated.
We have used the spectroscopic splitting factor g = 20 and an
effective Fermi energy E -

To find the effective Fermi energy of the wire we
have adjusted the value in order to keep the number
of electrons constant, with a tolerance of 1074%.

Figure 1 shows the force in the wire as a function
of wire length for different magnetic fields. For
nonzero fields the force curves show more structure,
since now the eigenenergies of the conduction chan-
nels are nondegenerate and close one-by-one, each
time resulting in a sharp change of the force.
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Fig. 2. The force (thick line) and the conductance in a
mesoscopic wire for two different magnetic fields, in the upper
figure B = 0, and in the lower figure B = 2.5 T. We clearly see
that the abrupt change in the force happens when a channel
closes, i.e., when there is a step in the conductance. We have
used an effective Fermi energy E e
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Fig. 3. The force (thick line) and the conductance in a
mesoscopic wire for the less realistic case of a constant Fermi
energy in the wire equal to the zero-B-field bulk value (25
meV). Results for two different magnetic fields are shown; in
the upper figure B = 0, and in the lower figure B =2.5 T.

The force and conductance for two particular
magnetic fields, B =0 and 2.5 T, are shown in Fig.
2. Each step in the conductance is accompanied by
an abrupt change in the force. We also show the
corresponding picture for the simplest possible case
[9] when we use the bulk value of the Fermi energy,
E , in Fig. 3. In this case the force is one order of
magnitude smaller then in the more realistic case
with E - - This is because the effective fermi energy
has to be larger then the bulk value in order to keep
the number of electrons per unit volume in the wire
constant in spite of the quantization of levels. Also,
the conduction modes close much later in the E 7
case than in the simpler case when the wire is
elongated. The reason for this is that the effective
Fermi energy, as a function of wire length, follows
each eigenenergy before intercepting it and closing
the channel.

On the middle of the second conduction step
(G =3G, , n = 2) the circumstances are least favor-
able to see the effect of the magnetic field. For the
case with the zero-B-field bulk value of the Fermi
energy (L =19.8 nm), we have analytically calcu-
lated that one needs B = 2.4 T in order to see the
highest open level go through the Fermi energy,
thus giving a sharp change in the force as well as in
the conductance. For higher conduction modes one
will see the effect for smaller fields, since the
splitting is proportional to [, whose absolute maxi-
mum is equal to n.

In Fig. 4 we see the force and the conductance as
a function of magnetic field for a fixed wire length,
L =54.6 nm. This is for the case with an effective
wire Fermi energy and a length corresponding
to the middle of the second conduction step
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Fig. 4. In the upper figure we show the force (thick line) and
conductance for L = 54.6 nm. This length corresponds to the
middle of the second conduction step. In the lower figure we
show the eigenenergies of the second conduction step and the
effective Fermi energy of the wire (thick line). We see that
when the highest level goes through the Fermi level (for ap-
proximately B = 1.3 T) there is a step in the conductance and
an abrupt change in the force.

(G =3G, , n =2). We see that we need about 1.3 T
before the highest open level goes through the
Fermi surface, showing us the pronounced effect of
the magnetic field. In the lower part of the same
figure we also see the effective Fermi energy (thick
line) and the eigenenergies of the second conduction
steps. Notice how the Fermi level increases with the
eigenenergy before it intercepts. However, these
variations are small compared to the overall magni-
tude of the Fermi energy.

So far we have used the spectroscopic splitting
factor g =20. In Fig. 5 we show the force as a
function of length for B =1 T for different g fac-
tors: g = 0, 2, 20, and 200. For g =0 there is no
spin splitting, but we still see more structure than
for B = 0 (cf. Fig. 1). This is due to the breaking of
the degeneracy into the Landau levels. With in-
creasing g factor the spin splitting becomes larger
and larger; however, whatever the size of the spin
splitting, more structure appears in the force with
an applied magnetic field.

The Fermi energy of the bulk will also be af-
fected by the magnetic field, due to the de Haas-van
Alphen effect. In the case when an effective Fermi
energy E - is used, this does not affect the results,
since the bulk Fermi energy does not enter into the
calculations. When adjusting the bulk Fermi energy
for de Haas-van Alphen effect, in the simpler case
shown in Fig. 3, there is no significant change of
the force. We have also studied the influence of a
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Fig. 5. Force as a function of length for B=1 T for different
g-factors. The lowest curve is for g =0, and the following
curves, each displaced by 1 pN, for g = 2, 20, and 200, respec-
tively. We see that no matter what the g-factor is, an external
magnetic field will give the force curves more structure than
for B =0 (cf. Fig. 1).

moderate applied voltage (in the mV range) but
have seen no significant effect.

For metals the Fermi energy is in the eV range,
demanding much higher magnetic fields to resolve
results similar to those for bismuth above. Since the
size of the splitting is proportional to the number of
open channels, having more channels will decrease
the magnetic field needed. Therefore, if we design
the circumstances to be more favorable, i.e., having
more open channels and being close to a conduction
step, a moderate magnetic field will be enough to
make an eigenenergy go through the Fermi level,
thus giving an effect in the force and in the conduc-
tance.

IV. Conclusion

Using a free-electron model, we have shown that
the force in a mesoscopic wire can be affected by an
external magnetic field parallel to the wire. With a
magnetic field present the degenerate eigenenergies
of the conduction modes split and become conduct-
ing (open) at different elongations, resulting in
more force fluctuations with increasing wire length.
At fixed wire length we propose that an external
magnetic field is an equilibrium method that can be
used to affect the force as well as the conductance
in mesoscopic wires. Since no atomic rearrangement
is required (contrary to elongation experiments) in
an experiment along these lines, it may give new
insight into the nature of the intrinsic mechanical
properties of these wires.
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