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A nonlinear-evolution set of equations of the hydrodynamic type describing a magnet with a
noncollinear arrangement of spins is investigated. An explicit expression invariant to right and left spin
rotations is used for the energy density. The model under consideration can be interpreted as a
continuum limit of a system of distributed symmetric tops. In the three-dimensional case exact solutions
for the spin density are obtained in the form of helical waves for the quadratic-biquadratic energy
density (in terms of Cartan’s invariant functions). Solutions are also obtained for the magnon fields
inducing these waves. The existence of backward helical waves is predicted. Energy transport may occur
at an angle greater than T1/2 relative to the direction of the helical waves. The analytical dependences
of the wave vector and of the frequency on the helical wave amplitude, magnetic susceptibility, rigidity,
and other constants of the model are found. The predicted property would allow for the construction of
backward wave generators based on the use of disordered magnetic materials. The backward electromag-
netic waves in a layered disordered magnetodielectric are considered. The relationship between the
parameters of electromagnetic waves of the (e) layer and of the (i) layer is obtained.

PACS: 71.55.Jv, 75.30.Fv, 75.70.—i, 77.22.—d

Introduction

The spin excitations in magnetic media with a
noncollinear arrangement of spins are investigated
using the hypothesis of spontaneous symmetry
breaking of the statistical equilibrium state [1,2].
Using this hypothesis, Halperin and Hohenberg [3]
proposed a hydrodynamic approach which was used
to derive dynamic equations for magnetic media
with a spontaneously broken symmetry with respect
to spin rotations. Linear dynamical equations were
obtained by Halperin and Saslov [4,5], while non-
linear dynamics was considered in the Lagrangian
approach by Volkov and Zheltukhin [6] and by
Andreev and Marchenko [7]. Dzyaloshinskii and
Volovik used the Hamiltonian formalism for this
purpose [8]. Peletminskii and co-workers developed
this formalism for different magnetic structures
[9,10].

The dynamical variables describing the nonequi-
librium state of magnetic media with a spontane-
ously broken symmetry include the spin density
54X, 1) (@ =x, y, 2) and the order parameter, i.e.,
the orthogonal rotation matrix aaB(x, t). In the
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long-wavelength limit, where spatial nonuniformi-
ties of the dynamical variables are small, we inves-
tigate the dynamics and take into consideration the
possible nonlinear interactions of spin waves, using
the concept of spontaneous breaking of the SO(3)-
symmetry of spin rotations that leave the exchange
interactions invariant. We shall assume that the
energy density is a function of s, @, and Oa or,
which is the same, of the variables Sy Sy S and
Wy = 1% Capy?prdn which is Cartan’s right
form. The evolution equations in terms of s, and
[g)a P as]sume the form of equations with constraints
10,11]:

6t §G = —Dka%ks + eGBV (§B6§y£ + Qp’kag)yka) y

6t %k = —Dka%s + eGBV Qﬁka%e y
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In  these equations, 0;€&€=-wy, where

w, = Capy (6taaT)w3 is the ri_éht form associated
with the time derivative. The set (1) determines the
dynamical properties of the system without taking



dissipation into account and describes the low fre-
quency dynamics with an exchange interaction,
when, for long enough times, rigid spin complexes
are formed because of the strong exchange. These
complexes remain practically undeformed, and their
orientation is determined by the orthogonal rotation
matrix aqp(X, ¢). It follows from set of equations
(1) that the energy density € and the momentum
components TG = s, wy; are conserved locally:

0,8 = —Dka%e a%ke , 0,1, = -0t

tip =0, (€ — 5,0, a) @

€
—azwk’

where ¢, is the momentum flux density tensor. In
practice we used the following expression for the
energy density:

_lo,p L 4,4
%‘g%*;ﬁ’zak*fxfa*z%k*g"f (3)
is the isotropic component and

2@ g B o
€= 4 (—qx oy Wor Loz oy —(xz) (4)

is the <«anisotropic» component (without taking
into account the differential equations of coupling
between @, ., w,, ,®w ) of the energy; X is the
magnetic susceptibility; p is the «stiffness» con-
stant, and X, , p; , P, , and g are phenomenological
coupling constants. This energy density is invariant
to left and right spin rotations. The general set of
equations (1) has been studied by us previously (see
Ref. [11]). Ivanov [12] used the Lagrangian ap-
proach for a quadratic dependence of the energy
density (amorphous magnet) to obtain topological
solitons in spin glasses.

Backward spin density waves

Let us determine the exact nonlinear solutions of
stationary profile of the system (1). These solutions
are helical waves with helical vector k and fre-
quency w [13]:

o -
s, =cgsin ¢, sin@+c cosd,,

s, = T3 o8 ¢ sin B+c, sing,, (5

s.=c,cos O
z 3
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where
1,2
2
k—ﬁ 3|+EC'3.|_@E
= *02 g gd:
p R, HE x H
U U
“ (6)
w=—,0(x, 1) =wt —kx +6,
X
01,03,C3,60,qare constants.

We have used the parametrization of the or-
thogonal rotation matrix a4(x, £) with Eulerian
angles ¢, 6, @ [13,14]. For the sake of simplicity we
have not written out the contribution of the biquad-
ratic terms (see Ref. [13]). The self-consistent mag-
netic field h forming a helical spin density wave
s(x, t) is given by the relation A =0, 8 and is
defined as

h=_s. ™)
X

It follows from formulas (5) and (7) that the
self-consistent static magnetic field has the form
h, =(c,/ X cos ¢, , ¢, /X sind,,0) and determines
the eigenfrequency of the magnetic moments. Ob-
viously, the magnitude of this frequency equals

legl/ X, x> 0.
According to Egs. (2 ), the energy flux density

is defined as

Jp = aéﬂa 6%ka : (8)

Let us now determine the cosine of the angle w
between the direction of wave propagation k and
the direction of the energy flux density j:

ki (9)
Kl

Formula (9) assumes a simple form for all positive
phenomenological coupling constants:

COosS w =

.
@+, +q)
Since the constant ¢y can be positive or negative
in the model under consideration, we arrive at the
conclusion that helical waves in a disordered mag-
net can propagate in the direction opposite (at an

angle greater than 1/2) to the energy transport
direction.

cos w = 73 S80C, . (10)
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Electromagnetic waves in a layered
magnetodisordered dielectric

In a dielectric medium without free charges and
currents, the electromagnetic vectors e, h obey the
Maxwell equations

1
rote=——6tb, divb=0,
¢ (11)

roth=16td, divd=0,

c
where c is the speed of light; b = ph is the magnetic
induction, W is the magnetic permeability; d = €e is
the electric displacement, and € is the dielectric
permittivity.

Since w? = (¢2/eu)k?, as follows from Eqs. (11),
taking into account formula (6), we find

|C3| Ocg D 2
—2 =1 g - HPoatey (12)
C3 o xXow XD

It is evident that this ratlo tends to zero if
€ -1, u-1, and p/X - c2 From the equation
div b =0, we obtain two condltlons.

“0, l=VETE
(13)

The fact that the solution is independent of the
space variable z in the three-dimensional space indi-
cates that the waves are «cylindrical». According to
Egs. (5), (7), and (11), the self-consistent electric
field in the magnetodielectric has the form

k,sin ¢, = ky cosd,, k,

cck

3
e =-— yc059+eo ,
x WXE x

ccskx

e = cosB+e. |,
Y wxe 0Oy

ccylk|

e = sin@+e, ,

z WXE 0z
where e, = (e, , €oy > e,) is a self-consistent static
electric field in the dielectric.

In this phenomenological approach, we cannot

determine the parameters ¢, , q, €, , but the bound-
ary conditions

(14)

nx(h®-h)=0, n (% -¢e)=0

nx(e’-e)=0, nuh®-ph)=0
define the relationship between the parameters of
the dielectric medium (i) and the medium (e). Here
n is the unit vector normal to the boundary surface
of the medium (i) and medium (e).
From relations (15) for the boundary surface
z=0, n=(0,0,1) we obtain, after eliminating the
coordinates of the boundary surface, the following:

(15)

[ ; g A ; 0
ok 5 - cos (b, - ¢8)m+ ck'| G - cos (& - dg)T+
i W 0

+(€iei - €% )5111((1)0 8)=0, sin(¢f)—¢8)¢0-
(16)

ot k1 kg -

HET(E_Eﬁem(e—e) 0, Mﬁ k%;#ﬂ
17)

Now we consider the case when the static electric
field in the dielectric medium is e, = (0, 0, ¢,,).
Since the energy flux density in the dielectric is
j = (¢/4mexh, as follows from Eqs. (11), we find

K Vie! (e /X ) san of + e 0L/ sin O
cos w' o - > 5 > . (18)
k5 %l A \/_ c ZD(C1 Lo ) r ¢! . ! ; i1/2
+2€ u/a—sgnw51n6[|7+ 2—2+eoz7sm 00
T X X 0 x X X O

0 = wit - kix + 66 , and x belongs to the medium (7).

Equation (16) has the real solution

o _ b+ V5 AIK]

W
ipe _ pipe
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with due regard for (13). Solution (19) points to
the existence of the backward electromagnetic waves
according to (18), provided that, for example,

N AR IR K i i . i i
\/rl/a Cq 88N W +eOZsm6 <0, ¢;>0.
If we choose the boundary surface z =0,
n =(0,1,0) then we obtain the following conditions

of coupling between the parameters in the model
under consideration:

P . . .
5 [k° %1’ % — W' cos ¢, cos g — K’ sin ¢y sin ¢SE+
o ® O
0

(20)
1 sin ¢f) cos ¢f - ' cos ¢f) singg # 0 .

& KO & i koD
1 (4 1
R S i R e
i e
B &e ky B kyl] .

Yy _y — ererl _ oipige el
Eg o wegeoy 0, ¢ kxky Ekxky £0. (21)
Formulas (7), (14), (16), and (17) can be applied
to a layered magnetodisordered dielectric medium.

Conclusion

According to Eq. (5), the exact nonlinear solu-
tions presented here are helical waves. The contri-
bution of biquadratic terms to the energy density
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(3), (4) increases with the spin density in the
system [13]. Energy transport can occur at an angle
greater than 1/2 with respect to the direction of
propagation of the helical spin wave. Formulas (7)
and (14), together with the boundary conditions
(15), can be verified in an experiment. The relation
between the parameters of the electromagnetic
waves and the properties of the layer (e) and the
layer (i) for a flat boundary (formulas (16), (17))
is established.
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