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We show with a direct numerical analysis that a dilute Bose gas in an external potential — which is

choosen for simplicity as a radial parabolic well — undergoes at certain temperature 7  a phase

transition to a state supporting macroscopic fraction of particles at the origin of the phase space (r =0,

p = 0). Quantization of particle motion in a well wipes out sharp transition but supports a distribution
of radial particle density p(r) peacked at r =0 (a real-space condensate) as well as the phase-space
Wigner distribution density W(r, p) peaked at r =0 and p =0 below the crossover temperature TCD of

order of T'_ . Fixed-particle-number canonical ensemble which is a combination of the fixed-N condensate

part and the fixed-[ excitation part is suggested to resolve the difficulty of large fluctuation of the

particle number (3N [IN) in the Bose—Einstein condensation problem treated within the orthodox grand

canonical ensemble formalism.

PACS: 64.60.—i

The phenomenon of a Bose—Einstein (BE) con-
densation (see textbooks, e.g., [1—3]) is manifest-
ing itself in the formation of macroscopic fraction of
zero-momentum particles uniformly distributed in a
coordinate space. Such transition was recently ob-
served in a laser-trapped, evaporation-cooled atomic
vapors [4-6] in magnetic traps (see recent reviews
[7-9]). We will show by a direct numerical analysis
partly similar and sometimes overlapping with the
previous theoretical works on the subject [10-13]
that Bose gas in an external confining potential
condenses at low temperature to the position of
minimum of the potential energy; the particles of
that <«condensate» have also zero kinetic energy.
Quantization of particle states in a well makes the
real-space condensation a continuous transition
rather than the phase transition but still supports
macroscopic fraction of particles near the origin of
the coordinate space below the crossover tempera-
ture TC':I which is of the order of Bose-condensation
temperature T .

Experimental realization of BE condensation im-
plies confinement of a dilute gas within some region
of space in a «trap» cooled by its interaction with

an <optical molasses» created by laser irradiation
[14] and finally cooled to microwave range tem-
perature by an evaporative cooling [11]. Bose gas in
a trap may be considered interacting with two
thermal reservoirs, the first one representing the
thermal environement (walls, blackbody radiation
at temperature T',) and second one the optical
molasses at temperature T,, << T . The equilibrium
distribution of particles f(p, r, ¢) can be obtained by
solving the Boltzmann kinetic equation
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where | | is the interaction term (stoss integral)
corresponding to coupling with a media 1, and I,
respectively with media 2. If we choose for simpli-
city the relaxation time approximation for 7, , ,
N f-f
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then the solution for the equilibrium state will be
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The relaxation rate T; is proportional to the laser
intensity P. At large intensity, assuming T§1 >> TI1,
Eq. (3) gives f H f(z) .
In a semiclassical approximation, particle energy is
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where the thermodynamic potential Q =-T'In Z, Z
is the grand partition function (assuming zero spin
of particles)

_ [ dpdr
()

In (1 - e(“_e)/T) , (5)

where % is Planck’s constant. Chemical potential p
is determined from (5) to satisfy an equation
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where N is the number of particles. After integra-
tion over the directions of r and p we receive

; (6)
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where < 0 is chemical potential, in appropriate
dimensionless units.

At low temperature, no nonzero value of { can
satisfy Eq. (7). It therefore vanishes at temperature
T =T,, determined from the condition { =0 thus

giving
T, =hQN/IB3)"% =094 AN (8)

where {(z) is the Riemann zeta function. Below
T,, , ( remains equal to zero with the total number
of particles N, having both r =0 and p =0 values,
determined from

o 70
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Of course, the r =0, p =0 state is not allowed
quantum-mechanically, and the derivation leading
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to Egs. (6), (7) needs a change. Energy of a
particle in a parabolic well, Eq. (4), is

£ =7Q (n1+n2+n3+3/2), niZO, 1, ...

Then, the normalization condition, Eq. (6), re-
duces to
n=

with

n
1
Sn = Z 6n1+nz+ng,n = 5 (n + 1)(n + 2)

n,n_n_=0
177273

and N =exp (K, = W/T), x = BQ/T; |, is the value
of the chemical potential at 7= 0 (u, = ¥ 1Q).

Solution of Eq. (10) shows the dependence u(7)
(Fig. 1) with a crossover between almost linear
dependence above the crossover temperature TC':I ,
and practically zero value below that temperature.
The value of TCIj is very near to T, at large number
of particles, N >> 1.

Particle density distribution is expressed through
the sum of Hermite polynomials [15]. Employing
the identity for these polynomials
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Fig. 1. Chemical potential vs temperature for various values of
N: 102 (1), 10° (2), 107 (3), 10° (4), 106 (5).
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where r, =1 at m even and r, =0 at m odd, we
receive by putting » = 3

20O t (12)
n(r) = 1-13/2 Z 2 Z n e(m+2k)x -1 ’
m=0 k=0

Figure 2 shows the radial density distribution
p(r) = 4Tw?n(r) at various temperatures. Below TCD,
p(r) displays a second maximum at small », which
grows in its amplitude as temperature decreases, the
real-space condensate. Formation of such conden-
sate is even more explicit in the evolution of the
z-projected density distribution, Fig. 3, as tempera-
ture reduces from above to below T, .

At zero temperature, all excited particles above
the condensate vanish. The joint momentum-coordi-
nate distribution function (the Wigner distribution
function [16]) is attaining a value

W —ﬁ P T
p, )= efloe 0, (13)
WO

where 7, = (%/ mQ)1/2 is the zero-point oscillation
amplitude in a parabolic well.

The question remains, how to comply the above
results with the free-space Bose—Einstein condensa-
tion. The BE condensation temperature equals [1]

h—Z
T, =331 ;nw. (14)

The average density of particles in a well above
the condensation temperature is

1,/2
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Fig. 2. Radial density distribution p(r) = 410%n(z) for N = 1000
and various temperatures: T,/T, =0.2 (1), 0.8 (2), 1.4 (3),
2.0 (4).
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7 is a confinement radius (mean radius of gaseous
cloud). It relates to the minimal quantum radius 7,
according to 7 Or NVST,/T )2 By putting
T TC':I as defined above we receive T of the order of
the BE condensation temperature (14). Therefore,
the phenomenon we discussing is just the BE con-
densation mechanism [1]. Except that, in a trap the
condensation occurs both in the momentum and in
the coordinate spaces or, if we choose to explore the
behavior of the dilute low-temperature Bose gas in
a real space, it will condense there making a high-
density globular fraction coexisting with the spa-
tially dispersed <excitations» in the region of size
comparable to the thermal confinement radius 7.

In the grand canonical ensemble which we sofar
have been considering, the number of particle is not
fixed. The mean square fluctuation of particle num-

ber in a state a is @ngﬂz ng(ny, +1). In a con-
densate, by putting &,_,0= N, we receive pLl
U e, -T/N, and Br3tt’2 U N, . This means huge
fluctuation of particle number SN LIN at T << T,,

an unrealistic property of the model [17].

In a canonical ensemble, which better fits to
experiments with dilute gases in traps, average
value of condensate population is given by

N
Z n, Z e_Bgo(ea_ &)y B

Z nor N = nO
n=0 {n} a>0
0= °N a , (16)
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where fr 7 means collection of all state numbers
except Dno ", B=1/T. The average over such states

Fig. 3. Side view of particle distribution: /1 — T =0.2T,
2 — T=0'8Tc0’3 — T=1'4Tc0’4 — T=2'0Tc0'
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does not strongly fluctuates and therefore can be
substituted with its grand canonical value corre-
sponding to an appropriate choice of chemical po-
tential g = “N—no . Therefore we receive

N

Z nOZN—nO
n =0
R Oo0—>— (7
0 N

Z ZN —nO
=0

where Z = e®Q, Q, is thermodynamic potential
of grand canonical ensemble [1].

The quantity Zn:e_BN is not exponentially
small for number of particles » smaller than the
Bose-condensate fraction, n < N, . Therefore, we
can change expression (17) to

N

_BQ
Z ny e N
n =N

@, 00—~ . (18)
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The quantity Q, is strongly peaked at n = N, thus
giving [#,OH N, and, similarly, [612(2)@/2 VN,
rather than [672(2)@/ 2 [N, as in the orthodox grand

canonical ensemble. Indeed, at N << N, (corre-

sponding to T' >> T)), we receive for the thermody-
namic potential Q,, a value QU -NT and

ZyH eN . This agrees with a conclusion reached in

a different way in Ref. 12 that the thermodynamic
properties of Bose condensate in a trap with fixed
total number of particles are very similar to those in
the orthodox grand canonical ensemble with a fixed
average number of particles. The above results are
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consistent with a known statement that the Bose—
Einstein condensation temperature T'; is same in the

canonical and in the grand canonical ensembles [2].

In conclusion, I hope I reached the purpose of
elucidating in a direct way the properties of low-
temperature state of an ideal Bose gas of finite size,
finite particle number systems. I express my deep
gratitude to Prof. B. Tanatar for stimulating discus-
sions and help.
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