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Thermo-electric effects in a Luttinger liquid
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Thermoelectric effects in a Luttinger liquid (LL) wire adiabatically connected to the leads of
noninteracting electrons are considered. For a multichannel LL a staircase-like behavior of the thermal
conductance as a function of chemical potential is found. A thermopower for a LL wire with an impurity
is evaluated for two cases: (i) LL constriction and (ii) infinite LL wire. We show that the thermopower
is described a Mott-like formula renormalized by an interaction-dependent factor. For an infinite LL the
renormalization factor decreases with increase of the interaction. However, for a realistic situation,
when a LL wire is connected to the leads of noninteracting electrons (LL constriction), the repulsive
electron—electron interaction enhances the thermopower. A nonlinear Peltier effect in a LL is briefly

discussed.

PACS: 73.23.—b, 71.45.Lr, 73.61.-r

1. Introduction

Charge and heat transport through a narrow wire
whose width is comparable to the electron Fermi
wavelength occur via a finite number of transport
channels associated with quantization of the elec-
tron’s transverse momentum in the wire. Further-
more, at low temperatures the phase-breaking
length, )\p(T), can exceed the length of the wire,
A(T) > L, and the electron transport becomes
phase coherent. In the Landauer approach [1] to
such quantum mechanical transport problems the
complexity of calculating the relevant transport
coefficients is reduced to a single-particle scattering
problem, with the transport properties of the elec-
trons described in terms of the probability for
transmission of the electrons through the effective
scattering potential represented by the wire. In-
deed, this approach, whose implementation is often
simpler than the use of the Kubo treatment of such
problems, proved to be most useful for the descrip-
tion of the transport properties of noninteracting
electrons through wires (constrictions) of reduced
dimensions (see reviews in Ref. 2).

It is well known that for strictly one-dimensional
(1D) interacting electron systems the Fermi liquid
(FL) description of the low-energy excitations does
not hold. Instead, for such systems with interac-
tions which leave the electronic spectrum gapless,
the corresponding «long wavelengths theory is that
of the Luttinger liquid (LL) [3]. Unlike the Fermi
liquid description, where charged excitations are
represented by quasiparticles (electrons and holes),
electrons do not propagate in a (infinite) LL.
Rather, the excitation spectrum of the LL consists
of gapless bosonic excitations (charge and spin
density waves); harmonic oscillations of boson
fields are neutral, whereas their topological excita-
tions carry charge and spin.

Since the LL and the FL have qualitatively
different excitation spectra, transport properties of
LLs have been the subject of theoretical interest,
and it was shown rather early [4] that the electric
conductance G of an impurity-free infinite LL de-
pends on the interelectron interaction, i.e.,
G =gG, , where G, = e2/h is quantum of the con-
ductance and ¢ is the dimensionless electron—elec-

© |.V. Krive, I. A. Romanovsky, E. N. Bogachek, A. G. Scherbakov, and Uzi Landman, 2001



tron interaction parameter of the LL. Subsequent
intensive investigations pertaining to transport
properties of LLs were triggered by the studies of
Kane and Fisher [5] and of Glazman et al. [6], who
considered the transport of charge through a local
impurity in the LL, finding that for repulsive elec-
tron—electron interactions the conductance scales
with temperature (at low temperatures) as a power
law G(T) DTZ/TZ; such behavior has been reported
in recent experiments [7,8].

Heat transport in a LL was first considered in
Ref. 9, where it was shown that in an infinite
homogeneous LL the thermal conductance K(T) is
not renormalized by the interactions, i.e., K(T) =
=K,(T) = (T[2/3)k%3 T /h, while in the presence of an
impurity K(T') UT3. This result, together with the
one for the electrical conductance, predicts vio-
lation of the Wiedemann—Franz law in a LL.

The above results which were derived for effec-
tively infinite LLs, cannot be tested directly in
quantum wires connected to source and drain leads.
To address this issue, the transport properties of the
LL were considered for a finite 1D wire adiabati-
cally connected to FL leads modeled by 1D reser-
voirs of noninteracting electrons. The results ob-
tained for such a finite and impurity-free LL wire
were found to be qualitatively different from those
derived for the infinite LL. In particular, it was
shown that for finite LL wires with adiabatic con-
tacts to the reservoirs the electric conductance is
not renormalized by the interelectron interac-
tion [10] and that the thermal conductance is sig-
nificantly suppressed (for spinless electrons) for a
strong repulsive interparticle interaction [11,12].
These predictions have a rather simple physical
explanation. Since the electrons in the reservoirs are
taken as noninteracting particles, one could use the
Landauer approach for calculation of the electric
and thermal conductances. For an adiabatic LL
constriction the electrons are not backscattered by
the confining potential of the wire, and conse-
quently charge is transmitted through the wire with
unit probability. Therefore, the electric conduc-
tance of a LL constriction coincides with the con-
ductance of a single-channel quantum point con-
tact. In contrast, heat is transported in the LL by
plasmons (charge—entropy separation [11]) which,
for strong interactions, are significantly backscat-
tered at the «transition» region between the LL
wire and the FL reservoirs, and consequently heat
transport is suppressed.

The aforementioned studies dealt with spinless
electrons and a single-channel LL. However, in
many real situations the quantum wires may sup-
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port several 1D (transport) channels, and currently
thermoelectric effects in LLs remain largely unex-
plored. In this context, we remark that it has been
noted [13] that the thermopower of a Hubbard
chain, in the vicinity of a Mott—Hubbard phase
transition to a dielectric phase, can be calculated
using the Mott formula (see, e.g., [14]) for nonin-
teracting fermions. This observation was ex-
ploited [15] in a derivation of the thermopower of a
homogeneous infinite Hubbard chain in the limits
when the Hubbard model can be mapped onto a
model of spinless Dirac fermions.

In light of the above, we report here on studies
of heat transport through a multichannel LL con-
striction connected to Fermi liquid leads, as well as
investigations of the thermopower (Seebeck) and
Peltier effect in a LL wire (Fig. 1).

First, we study heat transport through a mul-
tichannel LL constriction. In this case the thermal
conductance as a function of the chemical potential
M demonstrates a staircase-like behavior. We show
that at low temperatures 7' << T, QﬁvO/L (v, is
the characteristic velocity, which is determined by
the strength of the confining potential, and L is the
length of the LL wire) the steps in the conductance
K(p) are practically unaffected by electron—electron
interactions. On the other hand, strong interactions
suppress the heat conduction at temperatures
T UT,; however, the steps are pronounced even in
this high temperature region. Subsequently, we
evaluate the thermopower for a finite LL wire
connected to FL leads. In this case a simple physical
approach to the problem was used. The finite LL
wire is modelled by an effective transmission coeffi-
cient which determines in the Landauer—Buttiker
approach the charge and the heat transport between
the leads. We predict that the thermopower of a LL
with an impurity is described by a Mott-like for-
mula — it depends linearly on the temperature and
it is proportional to the logarithmic derivative of
the bare (unrenormalized by the electron—electron
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Fig. 1. Schematic of a Luttinger liquid (LL) nanowire of
length L, connected to Fermi liquid (FL) reservoirs that are
kept at different temperatures. The impurity (scattering poten-
tial denoted by X) is placed in the middle of the LL wire.
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interactions) electric conductance. At low tempera-
tures ky T << A, Elfis/L (L is the length of the LL
wire, and s is the plasmon velocity) the ther-
mopower is not renormalized by the electron—elec-
tron interactions, and it is described by the well-
known formula for the thermopower S, for a system
of noninteracting electrons (see, e.g., [14]). At
temperatures kBT >> A, interaction renormalizes
the thermopower, and consequently for strong in-
teraction S, , [1.S,/ g% >> S, - The renormalization
factor is different for spinless and spin-1,/2 elec-
trons, and the enhancement of the thermopower is
more pronounced for spinless particles.

Next, we calculate the thermopower for an infi-
nite LL. Although the situation when the effects of
the leads are excluded appears somewhat artificial
from the experimental point of view, it is useful to
elaborate this problem by a powerful LL calculation
technique. In particular, we note that the transport
properties of 1D interacting electrons have been
studied mostly for an infinite LL, and thus the
evaluation of the thermopower for this case repre-
sents an interesting and important theoretical prob-
lem. We show that for an infinite LL. wire with an
impurity the thermopower is described by the Mott
formula, S , multiplicatively renormalized by the
electron—electron interaction.

For an infinite LL the renormalization factor
decreases with the increase of interaction
S(g << 1) DgSO . This result does not contradict
our previous claim since the two problems under
study (infinite LL wire and LL wire adiabatically
connected to metallic leads) are not identical. In
particular, the driving voltage which enters the
definition of the thermopower is different for the
two cases in question. For an infinite LL it is the
voltage drop V across the impurity. In the case of
the LL constriction the bias voltage U is defined as
the difference of the chemical potentials of the leads
U = Ap/e. It has been shown [16] that for strong
impurity (weak tunneling) V =g?U. Thus, the
thermopower of a LL wire, when expressed in terms
of U, is enhanced by interaction. This derivation
supports our finding that the strong interelectron
interaction strongly enhances the thermopower of a
LL with an impurity.

It is well known (see, e.g., [14]) that in the
linear response regime the Peltier effect is deter-
mined by the same thermoelectric coefficient as the
Seebeck effect. However, in the nonlinear regime
the Onsager symmetry relations between the trans-
port coefficients cease to be valid, and the Peltier
coefficient for eV 2 k,T (V is the bias voltage)
describes an independent thermoelectric phenome-
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non. We evaluate the nonlinear Peltier coefficient
for a LL wire, with an impurity, which is connected
to the leads. The phenomenological approach, when
the finite LL wire is modeled by an effective trans-
mission coefficient, does not predict the renormali-
zation of the nonlinear differential Peltier coeffi-
cient by the interaction.

The paper is organized as follows. In Sec. 2 the
thermal conductance of a multichannel LL is stud-
ied. In Sec. 3 the thermopower of a LL constriction
with an impurity is evaluated in a phenomenologi-
cal approach. In Sec. 4 bosonization technique in
conjunction with a tunneling Hamiltonian method
is used for a calculation of the thermopower of an
infinite LL. In Sec. 5 we investigate the Peltier
effect in a Luttinger liquid. The main results are
summarized in the Sec. 6.

2. Interaction-enhanced staircase behavior of
the thermal conductance

To calculate the thermal conductance of a mul-
tichannel LL wire adiabatically connected to 2D
reservoirs of noninteracting electrons we will use
the multimode LL model developed in Ref. 16. The
Hamiltonian of the model in the boson repre-
sentation takes the form

- /2‘(35) M
H:ZJ'dx i + 5 U
=t

U N
+ 70 > nn, J' dx f(u @), (1)

ij=1

where u,(x) is the displacement operator of the jth
mode; u. = 6uj /0x; p. is the conjugate momen-
tum Witﬁ [u;(x), pj(y)] = iﬁéijﬁ(x—y); n; is the num-
ber density of the electrons in the jth mode and
v.=Thn, /m is the corresponding Fermi velocity,
and U, determines the strength of electron—elec-
tron interaction, which is assumed to be local:
U(x=y) = U, d(x-y). We introduced into the
Hamiltonian in Eq. (1) a smooth function f,(x)
that restricts the electron—electron interaction to a
finite region of length L. The electron reservoirs are
modeled as 1D N-channel Fermi gases and they are
represented, in the boson form, by the noninteract-
ing part of the Hamiltonian.

The Hamiltonian in Eq. (1) is quadratic and it
can be easily diagonalized. In diagonal form it
describes N noninteracting <«bosonic» modes with
velocities s, (n =1, ..., N) which are adiabatically
transformed into N modes with velocities v,
(n=1,..., N). The latter modes correspond to the
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N noninteracting electron channels in the leads.
The plasmon velocities s, are determined by the
equation [17]

v 1

N
n
=—. (2)
Rttt
n=1 n

For a two-channel (N = 2) case the above equa-
tion can be easily solved, yielding

3

Yoy~ Z’1(2) (4)

In the limit of strong interelectron repulsion, i.e.,
U, >> Mo, , the interaction parameters of the

two-channel LL, defined as g, = v, /s, , take the
form (v, 2 v,)
1/2
1 QE”EU1 Y %/
91 =5 20 g o<<1
Posy gl 2+l
U U (5)
0,
52 Q\/?)z/v <

Note that for spin-1,/2 interacting electrons the
Hamiltonian of a single channel LL is given by
Eq. (1) with N = 2 and v, = v, = v. In this case the
velocity of the «spin» mode s, = v is not renormal-
ized by the interaction, i.e., g, = 1. In the following
we will see that «spin» channels offer «easy path-
ways» for heat transport through a LL constriction.

In the absence of electron backscattering (see
discussion below) the plasmon modes are noninter-
acting. Consequently, the Landauer approach [1]
can be used for calculation of the thermal conduc-
tance. The corresponding expression reads [11,12]

[ee]

N
1 , 0 07,0
K(n_Tth'dae S-Egtn(a), (6)
=1 0

where f,, = [exp (e/kgT) - 1]” !'is the Bose—Einstein
distribution function of the plasmons, and ¢,(¢) is
the plasmon transmission probability through the
nth mode of the LL. As we have said, we assume
here that the contacts of the LL to the Fermi liquid
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reservoirs are adiabatic, which means that there is
no backscattering of charged excitations in the LL.
Formally Eq. (6) represents the thermal conduc-
tance of a purely bosonic noninteracting sys-
tem [18]. As was shown in Ref. 11 and 12, this
formula also applies to an adiabatic (no electron
backscattering) LL wire, where the heat is trans-
ported by bosonic excitations (plasmons), whose
dynamics, in the absence of local scatterers, is
described by a quadratic Hamiltonian. These con-
siderations lead one to conclude that Eq. (6) yields
the exact thermal conductance of a LL wire in the
absence of impurities. However, the plasmons could
be backscattered by the «transition region» between
the LL and the FL reservoirs. Since the width d of
the transition regions obeys A, << d << L, we can
model them as zero-width boundaries located at
x =0 and x = L. Consequently, the mismatch of the
plasmon velocities at the boundaries will cause
strong backscattering of the plasmons. Thus the
transmission coefficient ¢,(€) in Eq. (6) can be ob-
tained by taking for the function f, (x) in Eq. (1)
the form f,(x) =0(x)0(L — x) [where 6(x) is the
Heaviside step function] and matching the wave
functions of the plasmons at the boundaries. Since
there is no channel mixing, ¢ (€) takes a form
analogous to that calculated in Ref. 12:

where An = Esn /L is the characteristic energy scale
for the finite LL wire and the plasmon velocities s,
(n=1, ..., N) are determined by Eq. (2). Note
that for spin-1,2 electrons the <«spin» mode is not
renormalized by interaction, and the corresponding
correlation parameters g(s) =1 (n=1,..,N/2),
i.e., for the <spin channels» tff) =1 and the heat
transport associated with spin density wave excita-
tions is not affected by the electron—electron inter-
action.

The expressions given in Egs. (2), (5), and (7)
generalize the problem of heat transport through a
single-mode spinless LL [11,12] to a multi-channel
LL. Now the Fermi velocities v, depend both on the
chemical potential 1 and the «transverse» quantum
number n which characterizes the quantization of
the transverse electron momentum. For a parabolic
confining potential U (y) = mQ?%y®/2 the corre-
sponding transverse energy takes the values
EE =hQm-1,/2)(n=1, ..., N) and the Fermi ve-
locity of the nth mode is given by
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0 1 0o 1 D1/2
vn:voe H+——nD u+——nD , (8)

Q 2 g 2 g

where v, =V2IX)/m. The appearance of the step
function in the definition of the Fermi velocities of
the multimode LL results in a staircase behavior of
the electric G(4) and thermal K(U) conductances as
functions of the chemical potential .

An important comment concerning Eqs. (6)—(8)
is warranted here. Note that Eq. (7) is an exact
result for noninteracting plasmon excitations —
that is, when the electrons are not backscattered by
the confining potential in the LL constriction. Such
condition is fulfilled at low temperatures and for
chemical potentials satisfying L # 7Q (n — 1,/2). In
the vicinity of g =7Q(n — 1,/2) an additional elec-
tron mode is converted from being an evanescent
mode to becoming a propagating one. This implies
that upon reaching the threshold [ for entrance into
the contact, the character of the corresponding
mode changes, and in doing so the mode is strongly
influenced by the confining potential. Conse-

o

A

w

2.2
G, m?k2T/3h

Fig. 2. The thermal conductance, in units of T[ZkéT/Sh, plotted
as a function of the dimensionless chemical potential
W/ (RQ) + 1,2 for several values of the strength of the electron—
electron interaction U,/ (rfhvy). In (@) the temperature was
taken to be T = k, TL/(fv,) = 0.1, and in (6) T =10.
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quently, at such threshold values of the chemical
potential the assumption of adiabaticity of the LL
constriction fails, and in calculating the thermal
conductance the contribution due to electron trans-
port needs to be considered. However, it is well
known that the transport of charge through a local
(of the order of A.) potential in a LL is strongly
suppressed due to plasmon renormalization of the
bare scattering potential [9], implying that for suf-
ficiently long wires and for strong electron—electron
repulsion the contribution of electron transport to
the thermal conductance K(T) is small and can be
neglected. Therefore, we conclude that under such
circumstances Eq. (6) is valid for practically all
values of the chemical potential except at the very
beginning of the steps. We note that at low tem-
peratures, T' << EUO/L, the staircase-like behavior
of the thermal conductance is practically unaffected
by electron—electron interaction (Fig. 2,a). At high
temperatures T >> fiv, /L the thermal conduc-
tance, althongh being suppressed in the case of
strong interaction [11,12], still demonstrates a clear

staircase behavior as a function of chemical poten-
tial (Fig. 2,b).

3. Impurity-induced thermopower in a
Luttinger-liquid constriction

The thermopower is a measure of the capability
of a system of charged particles to generate an
electromotive force when a temperature gradient is
applied across the system. In the linear response
regime it can be represented as a ratio of transport
coefficients,

LT, )

ST, W= G

9

where G is the electric conductance and L is the
cross-transport coefficient which connects the elec-
tric current to the temperature difference for nonin-
teracting particles. These coefficients can be calcu-
lated using formalism developed in Ref. 19 and
adapted in Ref. 18 to the Landauer scheme [1]. In
this approach the transport coefficients are ex-
pressed in therms of the transmission probability
t.(¢) for an electron to arrive at the drain electrode
in the jth channel as

[ee]

N 0 9f,0
G, w=6G, Y [de gggt].(e) , (10
=170

and
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[ee]

k, N 0 of,0
_ B Foe— |
LT, W) =Gy~ Z‘[a’e Er_aa g—kBT t(e). (1)
j=t

Here G, is the conductance quantum and /(e — W)
is the Fermi—Dirac distribution function of the
electrons in the leads.

Equations (10), (11) cannot be applied to an
infinite LL where electrons are not the propagating
particles and the conventional scattering problem is
«ill-posed». A general approach for calculating
transport coefficients in a system of strongly inter-
acting particles is the Kubo formalism, and a recent
publication where it was used for calculation of the
thermopower for a Hubbard chain can be found in
Ref. 15. As may be seen from that study, with the
Kubo approach it is difficult to calculate the ther-
mopower in the whole range of external parameters
(temperature, interaction strength, density of parti-
cles, etc.), and indeed the final analytic expressions
for the desired quantities were derived [13,15] only
in the limits when the Hubbard model can be
mapped to a model of noninteracting fermions, for
which a Mott-type expression for the thermopower
could be used.

To obtain thermopower results pertaining spe-
cifically to the transport properties of systems of
strongly interacting electrons, and to consider ther-
moelectric effects for quantum wires which could be
tested in experiments, we choose to invoke at first
certain simplified (yet physically reliable) models
of strongly interacting electron systems. Such
physical models of charge transport in LLs of
strongly, as well as weakly, interacting electrons
were proposed in Refs. 6 and 20 and they were
shown to yield the same results as those obtained
from more conventional (and rigorous) treatments
of LL effects [5,21], through the use of Landauer-
like expressions for estimating the dependence of
the conductance on the temperature and on the bias
voltage. In this Section and in Sec. 5 we use such a
phenomenological approach (see also [22]) for
studying the Seebeck and Peltier effects in mul-
tichannel LLs.

When a LL is connected to FL reservoirs with
given temperatures and chemical potentials one
could make use of Eqgs. (10) and (11), with ()

]
now regarded as the probability of transmission of
the electrons (in the jth channel) through the
effective potential barrier formed by the LL piece of
the wire. For a wire which is adiabatically con-
nected to the leads the transmission coefficient is
unity as long as we neglect the backscattering of
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electrons by the confining potential. For a perfect
wire the backscattering effect is exponentially small
for practically all values of the chemical potential,
except at the narrow regions in the vicinity of
conductance jumps (steps) where an additional
mode is converted from being an evanescent mode
to becoming a strongly propagating one. Such
physical picture results in a staircase-like behavior
of conductance as a function of the chemical poten-
tial and is often modeled by abrupt jumps of the
electron transmission coefficient from zero (re-
flected mode) to one (transmitted mode). This
model is too simplified for real quantum point
contacts, where the specific features of the confin-
ing potential could be important for a correct de-
scription of the transition region between the con-
duction plateaus. However, for strongly interacting
electrons this simple model, which does not depend
on the details of the bare scattering potential, could
be the correct approximation. Indeed, the transmis-
sion of electrons through a long but finite LL is
determined by an effective scattering potential that
includes the effects of electron—electron interac-
tions. This potential for sufficiently long wires and
for temperatures k,T << E;; quenches all modes
whose bare transmission coefficients ¢, are not very
close to unity (see the corresponding discussion in
Ref. 22). Since according to Egs. (9)—-(11) the
thermopower S(T°, ) O 0G 70U, we observe that for
a multimode LL constriction the thermopower va-
nishes on the conductance plateaus and it peaks at
the conduction steps (that is, at the transition
regions from one conductance plateau to the next
one). The qualitative distinction of the ther-
mopower in a LL from that evaluated for noninter-
acting electrons [23,24] is in the shape of the ther-
mopower peaks. For strongly interacting electrons a
simple approximation when the (now effective)
transmission coefficient is modeled by a Heaviside
step function could be a quite reliable procedure.
Then the temperature behavior of the peaks will be
universal (it will not depend on the concrete shape
of the confining potential). To make more definite
predictions we need to evaluate the thermopower
for a quantum wire with a single impurity.

Since it is known that in the presence of an
impurity the conductance of a LL is strongly sup-
pressed, one may naively expect that the ther-
mopower S 0 0G,/0du will also be strongly sup-
pressed in such a wire. However, as we show below,
that is not the case. Instead, we find that for
strongly (repulsive) electron—electron interactions
the impurity-induced thermopower of a LL is sig-
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nificantly enhanced in comparison with the ther-
mopower of a system of noninteracting particles.

To calculate the thermopower of a finite-length
LL in the presence of a local impurity (which we
place for simplicity in the middle of the constric-
tion) we will model the effective transmission coef-
ficient as

a

@, O
£Me) = ¢ (e) 20 for e-EJ<<a, , (2
0
and

(E-E, 0
te) = ¢ (e) E—I—D for e~ E,|>>n, . (13)
Here £,(¢) << 1 is the bare transmission coefficient
determined by the unrenormalized scattering poten-
tial (we restrict ourselves to a single-mode LL);
A, =Tis/L is the characteristic low-energy scale (s
is the plasmon velocity), A is the cutoff energy,
which for a purely 1D LL is of the order of the
Fermi energy E, . The exponent a depends on the
electron—electron interaction strength and is differ-
ent for spinless and spin-1,2 electrons [17]

1/2
d .0 o U, 0"
o= -1m; = or s=0,
2% g g=g+——q f 0
0 0 “rp
(14)
and
, 020, |]1/2
a=—-1; g =2+ o for s=1,/2.
Is 0 YF0

(15)

The transmission probability ¢ff in Eq. (12)
results in an expression for the linear conductance
which coincides (up to an irrelevant numerical
constant) with that obtained in Ref. 25 via a renor-
malization group calculation. In fact, the same
expression has been used [6] for estimation of the
temperature dependence of the LL conductance in
the limit of strong interaction (g << 1); this is also
the limit of interest to us, since for weak interac-
tions LL effects would be much weaker.

The bare transmission is commonly assumed to
be a smooth function of the energy around E i€,

1116

[0t (16)
t () Blt(E,) + (e - Ep) E—l—D .
(oe [y - E,
With this form, Eqs. (10) and (11) yield
G, (1) =Gy ty(Ep) X
a
LD
o, kBT << AL,
0
X
D a
- k7O
-2 (4 UF) , B, kT <<A,
oA O
Aa7n
and
Gek,T0
1 =G D—DtO(E )%
a
LD
o, kBT <<A4,,
X A D
D a
06 T

- k7O
-2 @+ a2+ o)E——0 , kT 24, ,
oA O

(18)

where M'(x) and {(x) are the gamma function and the
Riemann zeta function, respectively.

From Eqs. (9), (17), and (18) we conclude that
at low temperatures kT << A, the thermopower
of a LL constriction with an impurity is not renor-
malized by the interelectron interactions. Instead it
is described by a Mott-type formula for noninteract-
ing electrons [24]

T[2kT 0\ []
S(T)Q— Kl mlnG(s) ’

(19)
O O0s Q -5
F
where GOg) is the corresponding (bare) conduc-
tance of the noninteracting electrons. This finding
is not surprising, since at kT << A, the electrons
in the leads determine the transport properties
of the LL constriction. However, at temperatures
kpT >> A; the thermopower, being still a linear
function of temperature, undergoes a strong multi-
plicative renormalization
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S,,T=24, /k)DC@S(D),  (20)

3 1-271%2(a +2)
Clg)==
9= -2l (@)

Note that unlike the electric conductance G, (T)
and the cross-coefficient L, , (T), the thermopower,
S, ;(T), does not depend on the cutoff parameter,
and therefore the interaction- and spin-dependent
factor C(g) cannot be absorbed into a definition
of A.

For noninteracting electrons C(g =1) =1, and
the Mott-type formula (Eq. (19)) holds (as it
should) for all temperatures (kT << E,). In the
limit of strong interaction U, >> 1o,

(a +1)(a +2).

U
0
Cg<<1)=12 —— 21)
0(9 ) T?EUF
U
0
C << 1) =6 . 22

From Egs. (20)-(22) we observe that the LL ef-
fects on the thermopower are most significant for
strong interactions, U, >> TIFZUF , and that they are
more pronounced for spinless particles than for
spin-1,2 electrons (Fig. 3).

Since for the thermopower the interaction de-
pendence factorizes. Equation (20) could be readily
generalized for the case of wires with dilute impuri-
ties, where the average spacing between the impuri-
ties is large enough so that the impurities act

12

10

C(g)
(0]

Uo /(mhivy)

Fig. 3. The renormalization parameter C(g) and the dimension-
less electron interaction parameter g plotted versus the dimen-
sionless strength of the electron—electron interaction U /(o)
for spinless (solid line) and spin-1,/2 (dashed line) electrons.
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incoherently. In this case the thermopower will still
be described by Eq. (20) at temperatures
kT > hsn, where 7 is the mean concentration of
the impurities. An interesting example is a LL
junction made of a perfect LL wire of length L
connected to leads through a potential barrier at the
contacts. The thermopower of such a LL junction
for temperatures kyT >4, is described by
Egs. (19) and (20) with the total (bare) conduc-
tance G = G?Gg/ (G? + Gg), where G? and Gg are
the (bare) conductances of the contacts.

The thermopower, being the ratio of transport
coefficients, is less affected by interaction than the
transport coefficients themselves (Eqs. (17), (18)).
It is the prefactors in the power-law dependences of
G(T) and L(T) on the temperature that determine
the dependence of the thermopower on the interac-
tion strength. In the phenomenological approach
developed above, the quantitative correctness of
these coefficients cannot be proved. Therefore, we
conclude that the electron—electron interaction en-
hances the thermopower of a LL wire, and we will
attempt to find a more rigorous treatment of the
problem. In the next Section we evaluate the ther-
mopower of an infinite LL with an impurity by
making use of the bosonization technique when
calculating the current in the wire induced by the
bias voltage and by the temperature difference.

4. Thermopower of an infinite Luttinger liquid

Let us consider an infinite LL wire with a single
impurity placed (for definiteness) at x = 0 (i.e., the
middle of the wire; see Fig. 1). It is known that for
a LL with repulsive electron—electron interaction
the charge transport through an impurity is sharply
suppressed at low temperatures. Therefore, the LL
is «split» by the impurity into two disconnected
semi-infinite segments, and the charge current
through the impurity can be evaluated with the use
of the tunneling Hamiltonian method.

We start with the Hamiltonian

H= z H0m+H
m=1,2

t?

where H|, . describes two (m =1, 2) identical semi-
infinite parts of the LL wire. In the bosonic form it
reads

sh _
H,, = gTJ.dx 9@, © ) +¢7'@, @ )]. (23)

Here s is the plasmon velocity, g = v, /s is the LL
correlation parameter, ® (x) is the displacement
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field, and ©, (x) is the field complementary to
®, (x), obeying the commutation relation (see, e.g.,
Ref. 25) [0,(x), ®,(x)] = 2163, sgn(x — x').
The tunneling Hamiltonian is

0 +00

H, :J.dx1J.dx2 [, | T | x1E|J;(x2)l]J1(x1) +
—0 0

T | T |, W, ()] (24)

where @ (§}) is the electron annihilation (crea-
tion) operator, the index m labels two identical
semi-infinite segments of the LL wire, [, | T| x,is
the tunneling matrix element in the coordinate
representation, i.e., the amplitude for the process
of electron tunneling from the point x, to the po-

int x, .
Let us introduce the «slows annihilation and
creation operators of two types — for right- and

left-moving  electrons: Y, (x) = eiprxLPm’ R +
+ e_’pF’”Llme 1 (). At first we suggest that our contact
is pointlike. Then one can simplify the tunneling
Hamiltonian and write it in the form

H=7% (Aow;rz(())w“i(())+h.c.), (25)
v’y

where ‘Pmy rm(LIJ;’ ’m) is the operator of annihilation

(creation) of electron from the mth half of the wire

(for right-moving (R) electrons r, =+1, for left-

moving (L) electrons r, = —1).

t
rr v
12 172

We assume that the bare tunneling amplitude
A, is small. Then the tunneling rate of electrons
through the barrier to the leading order can be
obtained from Fermi’s «golden rule». The total rate
of electrons from the left («1») LL to the right
(«2») LL is of the form (see, e.g., [27])

2m -
My = 7 > |EE,|H,| E1E2[I? x
E .E E E
1772771772
xp S0 +E -E -E -8 (0
ER = R B QE’

where P,, is the probability of finding the system in
the state |E1EZD and V is the bias voltage. The
standard evaluation (see below) of the tunnel cur-
rent J(V, T)=e[l,(V,T) =T, (V, T)] results in
the well-known expression for the conductance
G(T) of the LL with impurity [3].

Let us assume now that the temperatures of the
left (T',) and the right (T,) parts of the wire are
different. In this case one can expect the contribu-
tion (J;) to the charge current induced by the
temperature gradient. Hamiltonian given by
Eq. (25) with a constant bare tunneling amplitude
does not allow one to evaluate this contribution. To
obtain temperature-induced current we have to take
into account the finite size of the barrier. We can do
it by modifying the tunneling Hamiltonian. The
modified Hamiltonian includes extraterms contain-
ing the derivatives of the field operators:

H=73 (Aow;rz(())ww(()) +he)+ Y {—iﬁ)\1[r1L|J;r2(O)ax L”1,r1(0) -1, LIJ;rZ(O)LIJ”1(O)] +hel .

(27)

Here |\ | is a small additional parameter (A [p. LA ). Notice that this form of the Hamiltonian corresponds

to a tunneling amplitude which depends

upon the

momentum of the tunneling electron

(o | T | p,0= Ny + N\y7,q, + \7yq, , wWhere g, =p,—r, p, is the momentum of the electron toward the

Fermi level.

Now the total electron current through the barrier can be written in the form

+00

e 2 i N N
J = 2ie| A, | Z dt sin (eVt) Wz,rz(t)wz,rzmﬁ,ri(t)%,rF+

¥t
1" 2 —0

+00

U
U
# 20BN+ N ) 3 [t cos (Voo Wy, (1 Y, ) mpzyrz(t)w;r[% -
U
Lk

T
1772 —00
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= 2ieiAN ]+ AN ) Y

rr
172 —00

where [..0 denotes the thermal average, and

v ’m(t) are the field operators in the Heisenberg

representation, W =W  (0). The correlation

functions in Eq. (28) can be calculated by making
use of the bosonization formula

Yo (x t)= Ly e, e, 012
m rm \/QT[a me

(29)
Here a is the cutoff parameter (a DEUF /Er), and
U, , is the unitary raising operator, which in-
creases the number of electrons on the branch r, by
one particle but does not affect the bosonic ex1ta—
tions. We will not specify its form since this opera-
tor enters the formulas we are studing only in the
combination UU* =1. Now the bosonic fields
®, (x, t) and O, (x, t) are in the Heisenberg repre-
sentation.

In our case we have to impose a boundary condi-
tion on the displacement field ® (x) at x =0 to
account for the semi-infiniteness of each segment of
the LL wire, i.e.,

P,(0) =, (0)=0. (30)
Besides this, the boson fields ©,(x) in
Egs. (23), (29) satisfy the boundary condition

j(x:O):ia © (0)=0. (31)
2.,.[ X m

The boson fields obeying the boundary conditions
Egs. (30), (31) in the momentum representation
take the form

+00

1,2
02s O ¥, 0O
(©) (x)—zJ.dp SD (b - b") cos ELa)
P 0 O
+o00 1/2 (32)
0 ¥, 0O
¢ (x) = | dp B_QD (bp + b;) sin Bsﬁ x0,
0% O 0e O

where b, and b* are the standard bosonic annihila-

tion and creation operators ([b b+] = pp)
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dt cos (th)(ran

[l
1
+ +
|3",2,r (t’ X)Lpz,r [ﬂ EPLr (t)qJLr [% ’ (28)
2 2 1 [l
1
Lk

J., =8i Vidt
v Gy VJ

€,=s | p| is the energy of bosonic exitation with
momentum p.

With the help of Egs. (29), (32) it is strightfor-
ward to evaluate the correlation functions. In the
vicinity of the contact (x J0) one gets the desired
correlator

W' (x, )¥.  0OH
mrm m,rm

_(_+r )

QL U 1 Tle X e %
2T gl +iv, X/a sinh (0, )()D
o T, G

M G @)
a +iv,n/a sinh (TITm r])D

where X =t — x/s and n =t + x/s. By substituting
Eq. (33) into Eq. (28) we find the total electron
current. In the linear response approximation
V -0, T, -T,=A4T - 0, the voltage- (/) and
temperature-induced (/) currents take the form

20 7
|)\0|e t D Tt D2/g

(1+iv t/a)z/g gmh(Tt)D

—00

(34)

16iTe

(21a)>

I S O+ A

/g ~
[ Tt DZ/g
0. 7.0 =
oinh (Tt) g

° -2
RAT C gD optO
X — O +: [l
Up J.TtD a0

—00

N N N th
x [Tt cosh (Tt) — 1] %t cosh (T't) - Eﬂ +1i TS E .
(35)

Here T = Tk, T/h, T =(T, +T,)/2 is the mean
temperature.

The integrals in Eqs. (34), (35) look very com-
plicated. Fortunately we are interested only in the
limit @ - 0. In this case the asymptotics of the
above integrals can be easily found. Both currents

Jy p are the power-law functions of the small di-
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mensionless parameter Y =1k, Ta/Tio,; << 1. The
leading terms in the asymptotics Y - 0 are

J,=VG&(I), (36)
2 2
2.2 i
anQMJeBﬂ_j%@%T@
it 7 B o, [
0 0
J. = kATL(T) (37)
L(1) 8
2y
Ow, Tal9
Te O B 100 B °Q
O —= QA +AA Dk TB X N
25 UF D% UF %

Here B(x, y) =T ()l (y),/T(x + y) is the beta func-
tion. Equation (36) coincides with the one found in
Ref. 28. It predicts the power-law dependence of
conductance on temperature. Equation (37) is a
new result. From Egs. (36), (37) one easily gets
the thermopower

2
kg B32, g T 2
e B2, g NS %

S(g) = - AN+ AA) -

(38)

For noninteracting electrons (g = 1) Eq. (38) has
to transform into the Mott formula, Eq. (19). This
allows us to relate the parameters A;, A, of the
tunneling Hamiltonian to the conductance and its
derivative at the Fermi energy

2 . 1 36°n
PV AR e S TRNED
F0 Q::EF

where G is the bare (unrenormalized by interac-
tion) conductance. Thus, the thermopower of an
infinite LL takes the form

2
2g kBT oln G°&)0 39

S@g) =- o =
2+g € oe _ 2+g
Nk

0"

(40)

We showed that the electron—electron interac-
tion in 1D systems modeled by a Luttinger liquid
multiplicatively renormalizes the thermopower S,
of the Fermi liquid. For an infinite Luttinger liquid
the renormalization factor decreases with increasing
interaction. At first glance this result, Eq. (40),
contradicts the conclusion derived in the previous

1120

Section. Notice however, that the two problems in
question are not equivalent. It is well known, for
instance, that the dependence of the conductance on
the interaction strength is different for infinite LL
and for a finite LL wire connected to reservoirs of
noninteracting electrons (see, e.g., [10]). To relate
the two problems under study we will follow the
considerations presented in Ref. 16. In that paper it
was shown that for a LL wire adiabatically con-
nected to electron reservoirs the voltage drop V
across the strong impurity (no electron tunneling)
is connected to a voltage drop U measured on the
leads by the simple relation V = g>U. This formula
is the manifestation of the Coulomb blockade phe-
nomenon. Physically it is evident that in the limit
of strong interaction ¢® [J%w ./ e << 1 the shift of
the chemical potentials in the leads (AW, =eU)
cannot change significantly the charge densities in
the LL wire «split» into two parts by a strong
impurity potential. So, to relate (at least qualita-
tively) the thermopower S(g) evaluated for infinite
LL to the thermopower S,,(g) of a LL smoothly
connected to the leads of noninteractive electrons
we first of all have to replace the voltage V in
Egs. (26), (28), (34), (36) by g¢?U. Then
S, (@) 0S(g)/g* 09TE S,/g. This means that
for a real situation when the voltage drop U is
measured between the leads the interaction en-
hances the thermopower. It supports our claim
based on the calculations done in the pheno-
menological approach. Notice that there is still
discrepancy (by a factor ¢! >> 1) between the
above estimates and Eq. (40) in the limit of strong
interaction. This inconsistency could be attributed
to the qualitative nature of our estimations based on
the phenomenological model (Sec. 3).

3. Nonlinear Peltier effect in a Luttinger liquid

According to the Thompson relation for the
cross-coefficients of the 2 x 2 matrix of transport
coefficients in the linear response theory, the Peltier
coefficient M(T, V) (defined as the ratio of heat
current to the electric current in the absence of a
temperature gradient across the system),

T, v) = ggg , (41)
o LAT=0

obeys the relation M =-k,7TS, where S is the
thermopower. It is rather easy to verify that this
relation holds also for a LL if eV << kBT, and thus
the linear Peltier coefficient in the LL can be
described using Eqs. (17)—(22). In the nonlinear
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regime, eV > kT, the Onsager symmetry relations
between the transport coefficients cease to be valid.
For noninteracting electrons the nonlinear Peltier
effect has been studied in Ref. 29, and here we
remark on its behavior for a LL with an impurity.

In the Landauer—Buttiker approach the electric
and heat currents between reservoirs of noninteract-
ing electrons at fixed temperatures and chemical
potentials Hy(y) are given by [18,19]

[ee]

G
J(T, V)= 70 .!’ de tNe)[f,(6) - f,&)] . (42)

[ee]

1
JoT V) =7 I de t*"(e)(e - WIf,(©) - f,()] ,
0

(43)
where
-1
0o L&- p(z)D 0
f.\(€) = éxp E}—D+1D
1(2) kT
O 0B O 0O

are the distribution functions of the electrons in the
reservoirs, Wy =H teV,/2 for a symmetric LL
wire, and V is the voltage drop across the wire. In
the following we will model (as in Sec. 3) the
transmission probability t*ff(E) for a finite LL with
an impurity placed in the middle of the wire by
Eq. (12).

Prior to proceeding with our analysis we note
that J—V characteristics of a finite LL connected to
FL reservoirs were studied in Refs. 30 and 22 using
different approaches. In Ref. 22 the current—volt-
age dependence was calculated using a qualitative
physical approach, similar to that employed by us in
the present study, while a more rigorous treatment
of charge transport through a finite LL with an
impurity, based on renormalization group analysis,
was elaborated in Ref. 30. Unlike the linear-re-
sponse transport regime where the above two ap-
proaches arrived at similar results, in the nonlinear
regime they yield different behaviors for the current
as a function of voltage at low temperatures
(T - 0). Since the backscattering of the electrons
by a local impurity in an infinite LL leads to a
power-law dependence of the electric current on the
voltage [3], it may be expected, and is indeed found
in our model, that for a finite LL this behavior
would cross over to an ordinary ohmic /J—V behav-
ior for eV << A, . However, the analysis given in
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Ref. 30 revealed the occurrence of additional oscil-
lations of the current as a function of the bias
voltage, which do not appear in our model. Under-
lying these oscillations is the multiple scattering of
the plasmon by the impurity potential and at the
boundaries of the LL, and the phase of these oscil-
lations is sensitive to the position of the impurity.
While our approximation scheme does not reveal
these mesoscopic oscillations, one may expect that
such fine structure in the J—V characteristics would
be obliterated upon averaging over the position of
the impurity.

With the above assumptions, and using Eq. (12)
in Eq. (42), we obtain for the differential electric
conductance at kBT << eV,

o, m, 0
— =G t(E,) B=0 for eV <<A, , 44
ov ~ GofoER) o L “n
and
aJe
(E ) ?D for eV>A (45)

In a similar fashion we obtain for the heat
current at kBT <<eV

a
aJ 2[N, O
e, VoL
— -t (E,) g5 0B—0 for eV <<A
ov. h 0TTF 2 ED/\D L
(46)
and
aJ ;2 a
e, eVorVo
— Lt (E for eV =A
ov O WD T2 0G0 L
(47)

From Egqs. (44)-(47) it is readily seen that
within the framework of our calculations the non-
linear Peltier coefficient for a symmetric LL con-
striction with an impurity placed in the middle of
the LL wire does not depend on the interelectron
interactions, with the differential Peltier coefficient
given by (at k,T << eV)

0], /0V 4 y 3Dl te)0
aje /v e 0400 08 Oep
F

We remark, however, that an influence of the
interelectron interactions on the Peltier coefficient
may occur for asymmetric LL wires or when the
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aforementioned mesoscopic oscillations are in-

cluded.

6. Conclusions

In this paper we have investigated, using physi-
cally motivated models, the heat transport through
a multichannel LL wire, as well as the thermopower
and Peltier effect in a single-channel LL with an
impurity.

(i) For a multichannel LL wire, we predict that
electron—electron interactions would stabilize the
staircase-like behavior of the thermal conductance
K(T, ) as a function of the chemical potential
(which can be controlled through the use of a gate
voltage). For strongly interacting particles the
jumps in the thermal conductance at each value of
M=y, , where a new propagating channel is al-
lowed to enter the constriction, remains sharp even
at comparatively <high» temperatures.

(ii) For a perfect (impurity-free) LL wire the
thermopower (Seebeck coefficient) vanishes on the
conductance plateaus and it peaks sharply at the
conductance jumps. In addition, we considered the
thermopower effect for a single-channel LL con-
striction with an impurity placed at the middle
of the constriction. For this system the Mott ex-
pression for the thermopower holds at low tempera-
tures k,T << A, =Tis/L, where s is the plasmon
velocity and L is the length of the LL wire. How-
ever, at kyT > A, the thermopower is multiplica-
tively renormalized by the electron—electron in-
teractions. The effect of this renormalization is
predicted to be more pronounced for spinless parti-
cles than for spin-1,/2 electrons. This conclusion is
supported by an evaluation of the thermopower for
an infinite LL with an impurity by the tun-
nel Hamiltonian method. The Peltier coefficient
MN(T, V) of a LL wire, in the linear-response regime,
is determined by the thermopower,
M(T) = - kTS, (T). Unlike the thermopower
(Seebeck coefficient) the nonlinear Peltier coeffi-
cient is found in our model to be unaffected by the
interelectron interactions, and thus it is determined
by the energy dependence of the bare transmission
probability through the wire.
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