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We show that quantum spin fluctuations in inhomogeneous conducting ferromagnets drastically

affect the Andreev reflection of electrons and holes at a ferromagnet—superconductor interface. As a

result, a strong long-range proximity effect appears, associated with electron—hole spin triplet correla-

tions and persisting on a length scale typical for nonmagnetic materials but anomalously large for

ferromagnets. For applications, an important consequence is that this long-range proximity effect

permits to create superconducting quantum intetference devices with the Josephson magnetic junction of

an anomalous large length.

PACS: 74.50.+r, 74.80.Fp, 85.30.St

1. Introduction

In recent years much attention has been paid to
normal conductor—superconductor (N,/S) struc-
tures (for a review, see, e.g., Ref. [1]). Transport
of electric charge in such systems is much affected
by the existence of an energy gap in the spectrum of
elementary excitations in the superconductor. As a
result of the existence of the gap, electronic elemen-
tary excitations which freely propagate in the non-
superconducting material cannot penetrate into the
superconductor to a sufficient distance if their ener-
gy € (measured from the Fermi level g;) is less than
the superconductor energy gap A. A correlated
transferring of two electrons accompanied by their
pairing inside the superconductor is the only mecha-
nism that provides a direct transmission of the
charge into the superconducting condensate that is
the ground state of the superconductor. The above-
mentioned two-electron transfer may be considered
in terms of the conventional scattering scheme as a
process of an electron—hole transformation of exci-
tations inside the normal conductor that takes place
at the boundary with the superconductor. This
scattering (which is known as Andreev reflection)
couples the incident electron and the reflected hole
in such a way that their spins are oriented in
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opposite directions and their energies (+ &) are
symmetrically positioned with respect to the Fermi
energy («Andreev’s hybrid»). Such a two-electron
correlation which arises at the boundary with the
superconductor persists inside the normal conductor
to a distance £ from the superconductor,
vy is the Fermi velocity, and D is the diffusion
coefficient. The destruction of the phase coherence
arises due to the difference between the momenta of
the electron (¢/2,) and hole (- €/v,,) components
in the Andreev hybrid. The other peculiar feature of
the Andreev hybrid, which is that the electron and
hole spins have opposite directions, makes for sensi-
tivity of the Andreev correlation to a magnetic field
H controlling the spin splitting AE = ugH (U is
the Bohr magneton) of the electron and hole ener-
gies in the hybrid.

It becomes necessary to take this splitting into
account for the case of a ferromagnet—superconduc-
tor structure, where the interaction of the quasipar-
ticle spin with the magnetization is of an exchange
character and hence can be extremely large. Conser-
vation of the electron—hole symmetry (that is, the
symmetric positioning of their energies with respect
to the Fermi level) causes an additional difference



Ap =1,/v; (I, is the exchange energy of the ferro-
magnet) in the momenta of the electron and hole
components of the hybrid that drastically decreases
the penetration length Z¢ by orders of magnitude
(in this case the penetration length is L, =
=VED/1, [2]). Such a shortening of the proximity
effect has been actually observed in magnetic mate-
rials [3=7]. On the other hand, measurements car-
ried out in recent works [8—11] demonstrate a long-
range proximity effect in magnetic materials that is
in an obvious contradiction with the general consid-
erations discussed above. It has been pointed out [9]
that spin triplet fluctuations in the electron—hole
correlations caused by the spin—orbit interaction
and electron—impurity scattering [12] cannot (by
two orders of magnitude) explain the large effect
observed in [8-11].

The main message of this paper is that in magneti-
cally inhomogeneous materials (such as multidomain
ferromagnets (F), inhomogeneous «cryptoferromag-
netic» states imposed by the superconductor [13],
F /S interfaces inducing electronic spin—flip pro-
cesses [14]), strong quantum fluctuations of the
electron and hole spins make the proximity effect
less sensitive to the spin selection rule that applies
to Andreev reflections. As a result, a strong long-
range, spin-triplet proximity effect in F /S struc-
tures persists on a length scale typical for nonmag-
netic materials’. We estimate the conductance of
such an F /S structure to be of the same order of
magnitude as the conductance measured in experi-
ments [8—11]. Additional experiments with inten-
tionally introduced magnetic inhomogeneities are
needed to check the predicted effect quantitatively.

A schematic illustration of Andreev reflection in
the presence of a magnetic inhomogeneity is pre-
sented in Fig. 1. For convenience we consider the
inhomogeneous magnetization of the material to be
confined to a layer of finite width, close to the
superconductor—ferromagnet interface. Such a layer
serves as a magnetic spin-splitter for the incident
electron (see Fig. 1). The composite scattering
produced by the F/S boundary and the spin-split-
ter can then be separated into three scattering
events: an incident electron with spin up crosses the
inhomogeneous magnetic layer at point A and splits
up into a coherent mixture of spin up ((e, 1), see
Fig. 1) and spin down (e, 1) electronic states.
These are subject to Andreev reflection at the F /S
interface and are transformed into spin down (%, 1)
and spin up (%, 1) hole states (see the dashed lines
in Fig. 1). These two states encounter the magnetic
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Fig. 1. Sketch of the composite scattering of an electron im-
pinging on the interface between a magnetically inhomogeneous
ferromagnet and a superconductor: Andreev reflection at the
F/S interface is accompanied by spin-splitting scattering in the
region of inhomogeneity (for clarity here assumed to be con-
fined to a finite-width layer). As a result, the reflected hole is
in a mixed state with both spin up and spin down components.

scatterer again at points B, and B, , respectively,
and experience further «spin-splitting». The final
result of the composite scattering process is that the
incoming electron is reflected in two hole-channels,
one with spin up (&, 1) and the other with spin
down (%, ). One of the reflected hole channels has
the same spin orientation as the incident electron.

Taking an alternative point of view one may
consider the time reversed process when a Cooper
pair propagates from the superconductor to the
ferromagnet. Being in the singlet state at the mo-
ment of injection, the pair is then scattered into the
triplet configuration by an inhomogeneously ori-
ented magnetization in the ferromagnet. This sin-
glet—triplet scattering is effective if the length scale
of the inhomogeneity is of the order of LIO , the
separation between the two Cooper pair electrons in
the ferromagnet.

The above result of the two-channel magneto-
Andreev scattering implies that the electron—hole
correlation has a contribution that is unaffected by
the magnetic exchange energy, which leads to a
long-range <spin-triplet» proximity effect.

2. Formulation of the problem

We consider the conductance of a ferromagnet—
superconductor structure schematically shown in
Fig. 2 for a special case when magnetic spin scatter-

* A short formulation of this prediction was published as a Letter in [15]. Analogous prediction based on a somewhat different

approach was simultaneously made in [16].
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Fig. 2. Schematic view of an S/F structure with a magnetic
domain wall at x =0, a distance L, from the S/F interface.
Impurity scattering is assumed to occur out of the ballistic re-
gion (to the right of the vertical dashed line).

ing occurs within a distance, Ly, from the S/F
interface that is shorter than the electronic mean
free path [, (that is, L, << [)). This allows us to
consider the Andreev reflection at the interface to
occur with unit probability and to describe the
magnetic spin scattering using the semiclassical
Eilenberger equation [17], which can be readily
solved in the ballistic transport regime. Proper
boundary conditions for matching the solution of
the Eilenbergerequation to the appropriate solution
in the diffusive part of the ferromagnet can also be
formulated in this model and used to solve the
Usadel equation [18], which is the appropriate
equation in the diffusive transport regime. In this
way, the excess conductance of the F /S boundary
can be calculated.

Solving the model problem described, we find
that a new type of superconducting ordering, corre-
sponding to the triplet spin correlations

tetd
AOEE J' W (r, (e, 0)Texp Gt (1)
7 N
(here 0 =1, 1), is the source of the proximity effect

at distances of order £, >> L[O , Lp = Lg%sz'

The Hamiltonian describing the system is written
as follows.

H = fir WO/ 2m - V() W) +

+ AOW V) + 50w, (0, (0} + hE)o, Wk r)0E)

(2)
where V(r) is the electrical potential; 6‘ are Pauli
matrices; o, B = (1, |) and summation with respect
to double indices is assumed; h(r) = I, e(r) is the

inhomogeneous exchange energy in the ferromagnet
(e(r) is a unit vector along the magnetization at
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point r); the superconductor energy gap A and the

ferromagnet exchange field h have nonzero values in

complementary space regions: A# 0, h=10 in the

superconductor and h # 0, A = 0 in the ferromagnet.
We start with the 4x4 correlation functions

G, 1y = i (WD G7(1, 1) = — () ()0
(3)

where (1) = (WH(D), W, (1), (1), @,(1)) s the
Nambu pseudo-spinor field (its variable is 1=
= (r, t)). Using the correlation functions Eq. (3) in
the standard way (see, e.g., the review article
[19]), one constructs the 8x8 Green’s function in
the 2x2 Keldysh and 4x4 Nambu spaces as follows:

& R GKO
= AAD
H G5

]
where GR4K are retarded (R), advanced (A), and
Keldysh (K) 4x4 matrix Green’s functions which
include both the singlet G, _ and triplet G ;

components of the normal as well as anomalous
Green’s functions:

(4

GR=0 (t, -t )G (1,1 - G(1, 1)
Gr=-0(, - t)G(,1) -G, 1) ()

GK = G7(1,1) + G(1, 1) .

Using Eqgs. (2)-(5) one gets the Eilenberger equa-
tion for the matrix quasi-classical Green’s function
in the Wigner representation

g R €)= (i/n)%sj'dzcu; @ R, (6

where the 8x8 matrix %s is represented in a compact
notation of the tengorial product of Pauli matrices
as 13=0, 0o, 00, the integrand G (p, R; €) is
Fourier-transformed Green’s function Eq. (4) with
respect to the coordinate and time differences; the
space variable in the center-of-mass system is
R=r+r'; vector n is the unit vector along the
momentum p, and & =p?/2m —¢,. . For reference
we write out g% in full as follows:

o sa a sa
%TT fu 9+, fm%
a —a Fa —=a U
‘u=5ku 9., 1\, 9,0 €h)
g =Uq a _a qu
%H o 95 HE
a Za Fa —op
gm 9y, 11y gTTD
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\évhere o =R, A, K. The Eilenberger equation for
g (n, R; €) reads

. 0o o o O oo

anﬁg +le, +A +io —h gl =0, (8)
] O 0o oo

where [A, ZDE] = AB - BA; the impurity induced

self-energy o in the Born approximation is

[u} Tt nao

oc=——9g®mR, ¢, 9)
2t0 ATT g

t, is the impurity scattering time; the pairing poten-

tial A that determines the elegtron—hole correlations

and the operator h =hy+h, that describes the

effect of the inhomogeneous magnetic moment on

the spins of electrons and holes can be written as

[n] ~ A ~ ~ A ~
A:GODGSD(AEB_—A0+); 0,=0,+0,;

L oA PN PN
hy=0,0(ho,0a,+ hycx2 Ooy;  (10)

In the ferromagnet at distances much greater than
the free path length /; (the dirty limit) the Eilen-
berger equation (8) reduces to the Usadel equation
for the symmetric part of the Green’s function
G = [g0(L..Odenotes an average over the directions
of electron /hole momenta):

a ra a a ]

g;m FTl GH FTTI]

a 7=a Tu a U

Du_%u Gu Fu GHD
G% = 0 (11)

md FC( GC( FC(D

gL g

a ~a TTa EGD

0t Tt T

This equation reads as follows:

u]

T OB, ). 1m0, (1)

Pod @l
where IjIO =1,0, 0 05 0 05 ; when writing Eq. (12)
we took into account the fact that at distances
x 2 [, from the boundary the ferromagnet is as-
sumed to be homogeneous with the magnetic mo-
ment parallel to the z axis (k,=1,). Here and
below we also assume all quantities in the structure
to vary only along the x axis which is perpendicular
to the F /S interface.
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3. Boundary conditions for the Usadel
equation

In order to find boundary conditions for the
Usadel equation in the diffusive region we solve the
Eilenberger equation (8) at distances x < b <<,
(seeD Fig. 2), where the impurity scattering term
(0O o) is negligible (we assume the superconductor
to be pure as well; that is, &, = EUF/|A| <<ly. In
this case Eq. (8) reduces to the following linear
equation:

. d o ] ] ] o
g, o9 +[(eT, + Ax) - h(x)), gl =0 . (13)

Deep inside the superconductor (x — — ) we
use the conventional boundary conditions for the
Eilenberger equation (8):

e A
o yEIRe T VTR

— A — €

VR

)

(14)

966~ .
N
gc,—c zgc, —0: c,czfc,cr: 0.

As we consider the case that the transparency of the
superconductor—ferromagnet interface is equal to 1
(that is the Andreev reflection takes place in the
absence of the normal reflection) the boundary
condition at the F /S interface x = -L , (see Fig. 2)
is the continuity of Green’s functions, that is

3(—LD—0):5(—LD+0). (15)

We solve the ballistic linear Eilenberger equa-
tion (13) in the superconductor, where h =0,
A=4,, and in the ferromagnet, where A =0
h = h(x), matching the solutions at the F /S inter-
face.

In order to find the solution in the ferromagnet
one needs to know the detailed character of the
magnetic inhomogeneity. A quantitative theory can
be formulated only in case the magnetic structure is
known in the experiment of interest. In the absence
of any precise information about the magnetic struc-
ture of the samples used in existing experiments, we
turn to illustrative examples of magnetic disorder
and restrict ourselves to making only qualitative
comparisons with experiments. We will consider
two such examples.

1. The spin-splitting magnetic scattering is due
to a multidomain structure with the magnetizations
in the magnetic domain near the F/S interface
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(L, region in Fig. 2) and the rest of the ferromag-
net being collinear but of opposite directions; the
width Ly, of the domain wall between them is
small compared with the ballistic magnetic length
L, =Tov,/1, . In this case the spin-flip takes place
inside the domain wall with a probability amplitude
proportional to the parameter A, = L, ,,,/L,

2. The magnetizations in the magnetic domain
near the F /S interface and the rest of the ferromag-
net are noncollinear, with the domain wall between
them of a negligible small width. In this case the
spin-slip takes place due to Rabi oscillations in the
L, region, the probability amplitude of that being
proportional to the noncollinearity of the magneti-
zat10ns in the neighboring domains

=V + 12 /1,

Insertmg gunenswnless variables into Eq. (13),
one sees that solutions of this equation in the
ferromagnet region are controlled by the parameter
A, for case 1 and by A, for case 2; this allows us to
develop a perturbation theory in A, <<1 and
Ap << 1. Therefore, while solving this equation
inside the ferromagnet we assume the probability of
the spin-flip scattering to be small.

For both cases, rather simple but cumbersome
perturbation-theory calculations show that far in-
side the ferromagnet, where the magnetization is

already homogeneous but one is still in the ballistic
region (at the distance & in Fig. 2), the retarded
and advanced parts of the Green’s function g(@ |
a = (R, A) can be written as follows:

9,20 =140 1[0 + (o, - D sign p,

(16)
(“)(b)—t (b)+t G} O‘(b)+r signp,
where gd(os‘) = g(“)(png @)(- p,) are the antisym-
metric and symmetric parts of the Green’s func-
tions;

9600 g0 g

— (a,s) —(a,5)0

éao,(s E)(as) a O(as) gH E
@l 1 0 gl i 0 E

%D ? @s) ¢ —T(ilys)g

where g(“ S =1 (g4 o) ¥ goo(= P,)); for the case
£ << [A| the antisymmetric T, and symmetric T
matrices (which match the normal and anomalous
components of the Green’s function éu (b; p,) are as
follows:

E 0 t_exp (if) 0 r_exp (i) E
T = isignp 4, exp i) 0 T xXp (1) 0 0 (17
= 0 g
‘ 00 -rjexp(i9) 0 ~t, exp (= )0
0 g
%’E exp (—if) 0 =t exp (- i9) 0 E
and
E 1 t. exp (id) 0 r.exp (i¢)g
% :é t exp (—id) 1 r exp (-id) 0 é (18)
s E 0 - rexp (i) 1 t, exp (id))g
e eX —i 0 —t_exp(—i 1 U
G rlexp (-i0) Lexp (i) 0
ty = it, +t, and T = ir, +r, are the probability 2
amplitudes for an electron incident on the magneti- TREL AN L1
cally inhomogeneous region to be reflected back as t,=1- 2 GLh D =0 t,=0,7 = Lln]"
a hole with the same and with the opposite direc- . . *
tion of its spin, respectively (|t f| +r f|2 =1; (19)

Fig. 1).
For the domains with collinear magnetization
(case 1) one has
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For the domains with noncollinear magnetization
(case 2) one has
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2L, T
t =-cos Cr 0o, t =—_sin ,
L, 1, L,
od
ro=- s sin]—I—ZLD Q0)
$ ]0 nx Lh

(Egs. (19) and (20) are written for
12n|>> 1L,/ L.

Equation (16) together with Egs. (19), (20)
show that the spin-flip scattering at the magnetiza-
tion inhomogeneity accompanied by the Andreev
reflection at the F/S interface produces a new
triplet order parameter Eq. (1) and a new normal
singlet correlation function G — proportional to
the spin-flip probability amplitude r Sf In contrast
to the conventional singlet order parameter, this
triplet order parameter does not decay exponen-
tially at distances from the F /S interface greater
than the magnetic length L 1, in the diffusive ferro-
magnet. This fact can be proved for two cases: 1)
ly<<L,,and2)[,>> L, . Incase 1) one neglects
the terms quadratically small in [r,4 <<'1 in the
Usadel equation (12) (that is, if one neglects the
terms quadratic in F; ; and G, _; and their deriva-
tives). In this case, for the <<usua1>> components
Fg _g and G0 o one gets the conventional Usadel
equatlon that shows exponential decay of Fg _g at
distances greater than L 1, [2]. As for the Fg a
components, the equations’for them show a slow
variation of these components at such distances
because these equations have no terms proportional
to I, . The latter is a mathematical manifestation of
the fact that these correlation functions are associ-
ated with such a scattering process under which the
incident electron is transformed into a hole without
changing the direction of the spin, and hence this
electron—hole transformation requires no change in
the magnetic energy (/) of the quasiparticles, as is
qualitatively explained in the Introduction.

In case 2) (I, >> L,) at distances x >> [, the
Green’s functions behave in the same way. In order
to see this we start with solving the Eilenberger
equation at distances L, <<x <<, , where the
equation is linear with constant coefficients. It is
straightforward to see that the Green functions
Fg s Oexp (ix/(L;n,)), G3 6,0 U exp (ix/(L;n,)),
and hence they are rapidly oscillating functions of
the momentum direction 7, at distances x >> L, .
This means that the averaging with respect to the
momentum direction results in their decay propor-
tional to L,/x << 1 [2]. As to the Green’s func-
tions with the same direction of the spin variables
(Gg 5 and Fg ), they are slowly varying functions
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of the momentum direction, and they survive at
such distances. Neglecting the rapidly oscillating
components of the Green’s function @ @ Daveraged
over the momentum direction (which are small in
parameter L,/x << 1), one finds that only the
triplet components are nonzero:

%} @ g 0 F@

0
0
(0() F

@(u,tr)DEé(u,tr): G F7 0 g
F(u) G@ o 5

Ll L 0

(o)

T 0 O T E

o

(21)

Using Eq. (21), one sees that nonlinear Eilenber-
ger equation (8) splits into two sets of equations for
the slowly varying components of the Green’s func-
tion and the rapidly oscillating ones in the region
L,/x << 1. The latter are not of interest to us as at
distances x > /) they decay exponentially; the ma-
trix Eilenberger equation for the slowly varying
components is as follows:

; i Dtr—Dtr_
v — 6 %T + 7 970" =0, (22)
D
where the reduced matrix Green function (see Eq.

(7)) is

(@) @0

%z o 0o [ %

= @) 7 (o)

~ (a, tr) _ %) 9, f 0 g
= 0

0

g @ u) 0 (23)

b
0
(@ —@
T 0 0 gTT E

In the dirty limit, Eq. (22) reduces to a_set of

Usadel equations for the Green’s functions G (@tn)
(see Eq. (21)) that reads
d Uo . . dG®0O
D "W O+ [et, G @] =0 (20)
dx 0

From the above considerations it follows that
Eq. (22) and Eq. (24) are valid for the both cases
ly<<L,and [,>> L,

We obtain the boundary conditions for Eq. (24)
at distances from the F /S interface of the order of
ly (I, >> L)) for the case fiv, /e >> [ that permits
us to neglect the term proportional to € in the
Eilenberger equation (22) and rewrite it as the
following equation [20]:
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v tni tr_gtr @trD (25)

Dtp
o,
F0 IR @LZ

where

9%y =7 560 5 p))

Averaging Eq. (25) over the momentum direction
one sees C =2 gtrD does not depend on x [20].
Using this fact, Eqs. (16), (18), and (21), and the
relation gtr =1, G(tr) 0 G which couples isotropic
Usadel functlons and the anisotropic one at dis-
tances greater than [ , one gets the desired effective
boundary conditions for the Usadel equation (24)
at x = 0 (that is in the vicinity of the magnetically
inhomogeneous region adjacent the F /S interface)
as follows:

d tr0]
FEWE -

U
dx o= ek | PO (26)

The exchange energy I, does not appear in Egs.
(22), (24) as these equations contain only triplet
normal and anomalous Green’s functions: formally
this set of equations is the same as for a nonmag-
netic conductor—superconductor diffusive structure
if one changes the triplet anomalous Green’s func-
tions to the singlet ones and uses the boundary
conditions (26). From here it obviously follows that
the spin-flip scattering due to magnetic inhomo-
geneity accompanied by Andreev reflection pro-
duces a new (triplet) order parameter (1) (see also
Eq. (7)) that decays at distances from F /S inter-
face of the same order of magnitude as in nonmag-
netic metal-superconductor structures L, = ViD /€
producing a long-range proximity effect in the fer-
romagnet. In the next Section we solve the Usadel
equation (24) using boundary conditions (26) and
find the conductance of such a structure.

4. Solution of the effective Usadel equation
and the conductance of the structure

The current flowing through the structure under
consideration can be written as follows (see,
e.g., [22,23])

Atr)g
t1) dG ——[de
X 0
Q7

N [G<R n 4G
J. Cdx

where gy, is the conductivity of the normal metal;
0O is a 4%4 matrix o, U 0, .
According to the relationship [17,21]
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GGt = § (28)
the Keldysh function G &t reads
("; (Ktr) — é (R,tr)g] _ g]é (4tr) (29)
where ¢ is a diagonal matrix
%H 0 0 0 E
A P 0 0 d
= : (30)
TR0 a0
%D 0 0 g¢,0

while the components of retarded and advanced
Green’s functions (21) satisfy the relations

(V;tr) ¢ (v,tr) (ytr) 7 (v,tr) — 4 .
GG,G Gc,c + Fo,c Fc,c =15 31
G (y,tr) — _ G tn)

0,0 0,0

(y= R,A). Matrix g together with G &) satisfies
matrix equation (24).

Following the reasoning of Ref. [1] and using
Egs. (27)—(30), one can rewrite Eq. (27) for the
current as follows:

N 1
— | de L)-£(0)——, (32)
) I %(fc( ) = £,(0) )

where f(x) is the distribution function for electrons

with the spin 0 = (1, 1), and
L
m(€) = dx
1 G (R, tr)G (Atr) _ F (R, tr)F Atr)

(33)

Therefore, the current is determined by G (R.tr) the
triplet Green’s functions of which for normal pair-
ing GU(I , GR0 and anomalous pairing FR(I
F (fc can be parameterized (see Eq. (31)) in the
standard way as follows:

SR . g cosh(©,) sinh (@) exp (ix,)0
0,0 O sinh (© ) exp (= iX,) - cosh (G)G) 0
(34)

where © and X, are complex functions; the func-
tion X, does not contribute to the conductance (see
Eq. (37)) below).

Using the parameterization (34) and Eqs. (24)
and (26), one gets both the Usadel equation and its
boundary conditions as
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d*e

"D — - 2ie0_ =0, (35)
dx o
d .o _ %
Ix GGE&C:O =0 D IEIthrSEIJ (36)

Here r_ is the magnetic spin-flip scattering ampli-
tude (see Eq. (19), (20). Equations (35) and (36)
are linear due to the smallness of the amplitude for
magnetic spin-flip scattering, |rs| << 1, and are va-
lid in the temperature interval k,T" << A which in-
cludes the Thouless energy kg1 = 2D/ L? << A,

In order to calculate the conductance we follow
Ref. 1 and find that the excess conductance can be
written as

. o0 f 51 L 0
oG _ 1 0 2
G T J'd ~ gj.dx (Re ©) E’
0_1—00 0 0 0
(37)

where G is the conductance of the ferromagnetic
part of the structure; f,(€) is Fermi distribution.

The solution of the Usadel equation (35) with
the boundary condition given by Eq. (36) at x =0
and by ©,=0at x =L, is

o -o ol Jr W sinh [k(e)x - L)] .
o D k(e) cosh (k(e) L)

k(e) =1 +i) VE/BD .

Equation (38) shows that the superconducting
correlations due to the spin-splitting processes in
the magnetic inhomogeneous region decay exponen-
tially in the ferromagnet and vanish at distances of
order L. =VIED/k,T (for energies el1k,T) corre-
sponding to the superconducting correlation length
in nonmagnetic materials.

Inserting Eq. (38) into Eq. (37), one obtains an
excess conductance that can be expressed as

8G/G, =Y[(T/Ty) , (39)

where

y = [ Jr (F(L/1,)°

and f(T/Ty) is a dimensionless function, the tem-
perature dependence of which is presented in Fig. 3,
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N 0 . sinh [2(1 + 9)¢t] — 2(1 + i)t N

[ee]

flx) = % J' dt cosh™2(¢%/2x) x
0

sinh 2¢ — sin 2¢ O
4 |cosh (1 + i)t|25'

0 4G - 1) cosh? [(1 + i)t]

(40)

Using experimental values of the parameters
taken from Ref. 10, D = 100 cm? /s and T/Tyy, =50,
and with the reasonable assumption that 7 0.1
our result for the excess resistance, 0R = -10 Q, is
in agreement with the experiment. The temperature
dependence of the excess conductance in the range
T DTTh is shown in Fig. 3. For higher tempera-
tures, TOA/ky >> Ty = 1D /(kyL?), our theory is
not valid, and contributions of order k,T /A (11 can
modify the temperature dependence of the resis-
tance. Additional measurements around the
Thouless temperature (where the proximity effect is
most pronounced) would permit a comparison with
the temperature dependence coming from the long-
range proximity effect described by our theory.
However, additional investigations of the magnetic
structure of the F /S interface are needed to carry
out a complete comparison with the theory. Multi-
domain ferromagnets suitable for these studies can
be created in various ways. It was recently demon-
strated [24] that grain boundaries, magnetic inho-
mogeneities (including domains with nonparallel
magnetization) can be introduced in a predeter-
mined position in a ferromagnet film by controlling
the epitaxial growth. Experiments in which such
magnetic inhomogeneities are intentionally created
would permit long-range proximity effects to be
studied in well characterized ferromagnet— super-
conductor structures.

dG /yGo

T/ Tt

Fig. 3. Temperature dependence of the normalized excess con-
ductance (see Eqs. (39) and (40)).
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In conclusion, we have shown that spin-splitting
scattering related to magnetic inhomogeneities
modifies the spin-selection rule governing Andreev
reflections at a ferromagnetic normal metal—super-
conductor interface. As a result a long-range pro-
ximity effect, due to correlations between spin-
aligned electrons and holes, appears (a spin-triplet
proximity effect). Estimations of the value of the
excess conductance are consistent with experiments
[8—11]. For applications, an important consequence
of this phenomenon is that the proximity effect can
be stimulated by orders of magnitude by intentionally
produced magnetic inhomogeneity in the sample.

We acknowledge useful discussions with E. V.
Bezuglyi and Z. G. Ivanov. We are grateful to Z.G.
Ivanov for calling to our attention experimental
possibilities for observing the effect predicted by
our theory.
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