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In type II superconductors the magnetic response can be irreversible due to two different reasons:

vortex pinning and barriers for flux penetration. Even without bulk pinning and in absence of a

microscopic Bean—Livingston surface barrier for vortex penetration, superconductors of nonellipsoidal

shape can exhibit a large geometric barrier for flux penetration. This edge barrier and the resulting
irreversible magnetization loops and flux-density profiles are computed from continuum electrodynamics
for superconductor strips and disks with constant thickness, both without and with bulk pinning.

Expressions are given for the field of first flux entry H__and for the reversibility field H _above which

the pin-free magnetization becomes reversible. Both fields are proportional to the lower critical field

H_, but else depend only on the specimen shape. These results for rectangular cross section are compared

with the well known reversible magnetic behavior of ideal ellipsoids.

PACS: 74.60.Ge

1. Shubnikov phase with Abrikosov’s flux-line
lattice

Many metals, alloys, and compounds become
superconducting when they are cooled below a tran-
sition temperature T, . This critical temperature
ranges from r,<1K for Al, Zn, Ti, U, W and
T, =4.15 K for Hg (the first superconductor dis-
covered in 1911 [1]), over T, = 9.2 K for Nb (the
elemental metal with the highest 7)) and T'; = 23 K
for Nb;Ge (the highest value from 1973 to 1986, see
the overview [2]) to the large T, values of the
high-T, superconductors (HTSC’s) discovered in
1986 [3], e.g., YBa,Cu,;0,_5 (YBCO, & << 1, [4])
with  7,=925 K and Bi,Sr,Ca,Cus0,,,.5
(BSCCO [5,6]) with T, up to 120 K, then
Tl,Ba,Sr,Ca,CugO,, [7] with maximum 7, =
=127 K, some Hg-compounds which under pressure
have reached T, =164 K [8,9], and the only re-
cently discovered «simple» superconductor MgB,
with T, =39 K [10].

The superconducting state is characterized by the
vanishing electric resistivity p(T) of the material
and by the complete expulsion of magnetic flux,
irrespective of whether the magnetic field B, was
applied before or after cooling the superconductor
below T, . The existence of this Meissner effect
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proves that the superconducting state is a thermo-
dynamic state, which uniquely depends on the ap-
plied field and temperature but not on previous
history. As opposed to this, an ideal conductor
expels the magnetic flux of a suddenly switched on
field B but also «freezes» in its interior the mag-
netic flux which has been there before the conduc-
tivity became ideal.

Lev Shubnikov realized that some superconduc-
tors do not exhibit complete expulsion of flux, but
the applied field partly penetrates and the magneti-
zation of the specimen depends on the magnetic
history in a complicated way [11,12]. Early theories
tried to explain this by a <«sponge-like» nature of
the material, which could trap flux in microscopic
current loops that may become normal conducting
when the circulating current exceeds some critical
value. The true explanation of partial flux penetra-
tion was given in a pioneering work by Alexei
Abrikosov in 1957 [13]. Abrikosov, a student of Lev
Landau in Moscow, discovered a periodic solution
of the phenomenological theory of superconducti-
vity conceived a few years earlier by Ginzburg and
Landau [14]. Abrikosov interpreted his solution
as a lattice of parallel flux lines, now also called
flux tubes, fluxons, or Abrikosov vortex lines.
These flux lines thread the specimen, each carrying



a quantum of magnetic flux @, =h/2e=
=2.07007" T2 At the center of a flux line the
superconducting order parameter Y(r) (the complex
Ginzburg—Landau (GL) function) vanishes. The
line Y = 0 is surrounded by a tube of radius = g, the
vortex core, within which || is suppressed from its
superconducting value |(| = 1 that it attains in the
Meissner state. The vortex core is surrounded by a
circulating supercurrent J(r) which generates the
magnetic field B(r) of the flux line. In bulk speci-
mens the vortex current and field are confined to a
flux tube of radius A, the magnetic penetration
depth; at large distances » >> A, current and field
of an isolated vortex decay as exp (- #/A).

In thin films of thickness d << A, the current
and magnetic field of a vortex extend to the larger
distance Ag; = 202 /d, the circulating current and
the parallel magnetic field at large distances
r >> Ag, decrease only as 1/ and the perpen-
dicular field as 1,/7°, and the vortex core has a
wider radius = (12Ag £2)1/3 [15,16]. These thin
film results have been applied to the high-T', super-
conductors with layered structure, defining the vor-
tex lines as stacks of vortex disks («pancake vor-
tices») in the superconducting CuO layers [17].
The coherence length &(T) and magnetic penetration
depth A(T) of the GL theory diverge at temperature
T,as(1-T/T) 2

The ratio kK =A/€ is the GL parameter of the
superconductor. Within GL theory, which was con-
ceived for temperatures close to the transition tem-
perature T, , K is independent of T. Abrikosov’s
flux-line lattice (FLL) exists only in materials with
K > 1,/V2; these are called type II superconductors
as opposed to type I superconductors, which have
K <1,/¥2. Type 1 superconductors in a parallel
applied field H, < H (T) are in the Meissner state,
i.e., flux penetrates only into a thin surface layer of
depth A(T)), and at H, > H (T) they become normal
conducting. Here H (T) is the thermodynamic criti-
cal field. Type II superconductors in a parallel
applied field B, < B_(T) < B,(T) are in the Meiss-
ner state, i.e., no magnetic flux has penetrated,
their inner induction is thus B =0; in the field
range H_(T) < H, < H_,(T) magnetic flux pene-
trates partly in form of flux lines (Shubnikov phase
or mixed state with 0 <B <y, H,); and at
H, > H_(T) 2 H,(T) the material is in the normal
conducting state and thus B =y, H, . H,; and H
are the lower and upper critical fields. One has

H (Ink +0.5
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All three critical fields vanish for T - T, as
T,-T and have approximate temperature depen—
dence 01- T2/T2

When the superconductor is not a long specimen
in parallel field then demagnetization effects come
into play. For ellipsoidal specimens with homogene-
ous magnetization the demagnetizing field is ac-
counted for by a demagnetization factor N with
0 <N <1 If N> 0, flux penetration starts earlier,
namely, into type II superconductors at H,, =
=(1-N)H_, in form of a FLL, and into type I
superconductors at H, = (1 = N)H_ in form of nor-
mal conducting lamellae; this «intermediate state»
is described by Landau and Lifshitz [18],
also [19,20]. GL theory yields that the wall energy
between normal and superconducting domains is
positive (negative) for type I (type II) supercon-
ductors. Therefore, at H, = H, the homogeneous
Meissner state is unstable in type Il superconduc-
tors and tends to split into normal and supercon-
ducting domains in the finest possible way; this
means a FLL appears with normal cores of radius
= . Considering demagnetization effects, the field
of first penetration of flux lines into type II super-
conductors is thus H,, = (1 -N)H_, < (1 -N)H,,
and into type 1 superconductors [21] H =
=[(1 - N)*H? + K*]V? > (1 - N)H, with K pro-
portional to the wall energy. Superconductivity
disappears when the applied field H  reaches the
critical field H , (type II) or H, (type I), irrespec-
tive of demagnetization effects, since the magneti-
zation vanishes at this transition.

The order parameter |P(r)}> and microscopic field
B(r) of an isolated flux line oriented along z for
2k? >> 1 are approximately given by [22,23]

W) = 1,/(1 + 2847 ,

) 2 + 280
ZKO :
o A O

B(r) =

with 7 = (x> + #%)1/? and B z K (x) is a modified
Bessel function with the limits — In (x) (x << 1)
and (1/2x)'/2 exp (- x) (x >> 1). This field B(r)
exactly minimizes the GL free energy if the above
variational ansatz |P(r)|* is inserted. The maxi-
mum field occurs in the vortex core, B, =
= B(0) = (9,/2\?%) In k = 2B, (still for K2 > 1)
From this B(r) one obtams the current density
circulating in the vortex J(r)=
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= (@22 ) (r/ADK,(7/N) with 7= (r? + 28%)1/2.
Inserting for the modified Bessel function K, (x) the
approximation K;(x) =1/x valid for x <<,
one obtains the maximum current density J_ . =
=J(r=v28) =q,/(4V2\%p ) = (27,/32)1%] where
Jo =0y (3V3 TO\ZEUO) is the «depairing current den-
sity», i.e., the maximum super-current density
which can flow within the GL theory in planar
geometry (see, e.g., Tinkham [24]). Thus, for large
K >> 1 the field in the flux-line center is twice the
lower critical field, and the maximum vortex cur-
rent is the depairing current.

A curious property of the flux-line lattice is its
softness, which is due to the long range interaction
between the flux lines over several penetration
length A, which typically is much larger than the
flux-line spacing. This leads to «nonlocal» elastic
behavior and to highly dispersive elastic moduli for
compression [c,,(k)] and tilt [c,,(k)], while the
very small shear modulus [cge << ¢,(0) = ¢,,(0) =
~B2/u0 for B > pyH ] does not depend on the
wave vector k of the strain field [25]. For more
properties of the ideal and pinned FLL, also in the
highly anisotropic or layered high-T', superconduc-
tors, see the reviews [26,27], and for the rather
complex statistical theory of pinning and thermally
activated depinning of vortex lines and pancake
vortices the review [28]. The properties of the ide-
ally periodic FLL have recently been computed
with high accuracy for the entire ranges of the
induction 0 < B < y,H , and of the GL parameter
1/V¥2 < K < o by an iteration method [29].

The present paper considers the magnetic behav-
ior of superconductors which are not long cylinders
or ideal ellipsoids but have a more realistic constant
thickness, i.e., they have rectangular cross section
in the planes containing the direction of the mag-
netic field. For such realistic geometries, the con-
cept of a demagnetization factor does not work.
Moreover, a new type of magnetic irreversibility
occurs, which is not related to flux-line pinning but
to the non-ellipsoidal cross section that causes a
«geometric barrier». This barrier delays the pene-
tration of flux lines at the four edges of the rectan-
gular cross section of the specimen. It will be shown
that this problem can be treated within a continuum
approach, which considers the induction and cur-
rent density averaged over a few cells of the FLL.

2. Magnetic irreversibility

The irreversible magnetic behavior of type Il
superconductors usually is caused by pinning of the
Abrikosov vortices at inhomogeneities in the mate-
rial [30]. However, similar hysteresis effects were
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also observed [31] in type I superconductors, which
do not contain flux lines, and in type II supercon-
ductors with negligible pinning. In these two cases
the magnetic irreversibility is caused by a geometric
(specimen-shape dependent) barrier which delays
the penetration of magnetic flux but not its exit. In
this respect the macroscopic geometric barrier be-
haves similar as the microscopic Bean—Livingston
barrier [32] for straight vortices penetrating at a
parallel surface. In both cases the magnetic irre-
versibility is caused by the asymmetry between flux
penetration and exit. The geometric irreversibility
is most pronounced for thin films of constant thick-
ness in a perpendicular field. It is absent only when
the superconductor is of exactly ellipsoidal shape or
is tapered like a wedge with a sharp edge where
flux can penetrate easily due to the large local
enhancement of the external magnetic field at this
edge in a diamagnetic material.

Ellipsoids are a particular case. In supercon-
ducting ellipsoids the inward directed driving force
exerted on the vortex ends by the surface screening
currents is exactly compensated by the vortex line
tension [27,33]. An isolated vortex line is thus in an
indifferent equilibrium at any distance from the
specimen center. The repulsive vortex interaction
therefore yields a uniform flux density and the
magnetization is reversible. However, in specimens
with constant thickness (i.e., with rectangular cross-
section) this line tension opposes the penetration of
flux lines at the four corner lines, thus causing an
edge barrier; but as soon as two penetrating vortex
segments join at the equator they contract and are
driven to the specimen center by the surface cur-
rents, see Figs. 1 and 2. As opposed to this, when
the specimen profile is tapered and has a sharp
edge, the driving force of the screening currents
even in very weak applied field exceeds the restor-
ing force of the line tension such that there is no
edge barrier. The resulting absence of hysteresis in
wedge-shaped samples was clearly shown by Moro-
zov et al. [34].

For thin superconductor strips with an edge
barrier an elegant analytical theory of the field and
current profiles has been presented by Zeldov et
al. [35], using the theory of complex functions, see
also the calculations [36,37]. With increasing ap-
plied field H,, the magnetic flux does not pene-
trate until an entry field H_ is reached; at
H, = H_, the flux immediately jumps to the center,
from where it gradually fills the entire strip or disk.
This behavior in increasing H , is similar to that of
thin films with artificially enhanced pinning near
the edges [36,38], but in decreasing H , the behavior
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Fig. 1. Field lines of the induction B(x, ) in strips with aspect
ratio b/a =2 (top) and b/a = 0.3 (bottom) in perpendicular
magnetic field H . Top left: H /H  =0.66, in increasing
field shortly before the entry field H,_ /H_ = 0.665. Top right:
H,/H, = 0.5, decreasing field. Bottom: H /H_ =0.34 in in-
creasing field just above H_ /H_ =0.32. Note the nearly
straight field lines in the corners indicating the tension of the

flux lines. The field lines of cylinders look very similar.

is different: In films with enhanced edge pinning
(critical current density Jgdge) the current density
J at the edge immediately jumps from +J§dge to
—]gdge when the ramp rate reverses its sign, while
in pin-free films with geometric barrier the current
density at the edge first stays constant or even
increases and then gradually decreases and reaches
zero at H, =0. For pin-free thin strips the entry
field H, was estimated in Refs. 35, 39, 40.

The outline of the present work is as follows.
Section 3 discusses the reversible magnetic behavior
of pin-free superconductor ellipsoids. The effective
demagnetization factor of long strips (or slabs) and
circular disks (or cylinders) with rectangular cross
section 2a x 2b is given in Sec. 4. In Sec. 5 appro-
priate continuum equations and algorithms are pre-
sented that allow to compute the magnetic irre-
versibility caused by pinning and/or by the
geometric barrier in type Il superconductors of
arbitrary shape, in particular of strips and disks
with finite thickness. Results for thick long strips
and disks or cylinders with arbitrary aspect ratio
b/a are given in Sec. 6 for pin-free superconductors
and in Sec. 7 for superconductors with arbitrary
bulk pinning. In particular, explicit expressions are
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Fig. 2. 3D plots of the screening current density J(x, y),
Eq. (11), in superconductor strips with b/a =2 (top) and
b/a = 0.3 (bottom) as in Fig. 1. Shown is the limit of small
applied field H << H , before magnetic flux has penetrated.
For better presentation the depicted J (x, y) is smeared over a
few grid cells.

given for the field of first flux entry H_ and for the
reversibility field H , above which the magnetiza-
tion curve is reversible and coincides with that of an
ellipsoid.

3. Ellipsoids

First consider the known magnetization of ideal
ellipsoids. If the superconductor is homogeneous
and isotropic, the magnetization curves of ellipsoids
M(H , ; N) are reversible and may be characterized
by a demagnetizing factor N. If H is along one of
the three principal axes of the ellipsoid then N is a
scalar with 0 <N <1. One has N =0 for long
specimens in parallel field, N =1 for thin films in
perpendicular field, N = 1,2 for transverse circular
cylinders, and N =1,/3 for spheres. For general
ellipsoids with semi-axes @, b, ¢ along the cartesian
axes x, y, z, the three demagnetizing factors along
the principal axes satisfy N+ Ny +N_=1. For
rotational ellipsoids with @ = b one has N = Ny =
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=(1 =N,)/2 where for cigars with @ =b < ¢ and
for disks with a =b>c¢ with eccentricity e =
=1 = ¢2/a?1/2 one obtains [18]

2

(arctanh e — e) , (cigar) ,

¢ (1)
1 - e?

e

(e — arctan e) , (disk) .

For thin ellipsoidal disks with @ > b >> ¢ one
has [41]

C
=1 -7 E(), (2)

where E(k) is the complete elliptic integral of the
second kind with k% =1 - b%/42.

When the magnetization curve in parallel field is
known, M(H, ; 0) = B/}, — H,, where B is the flux
density inside the ellipsoid, then the homogeneous
magnetization of the general ellipsoid, M(H , ; N),
follows from the implicit equation

H =H -NMH,;0). (3)

Solving Eq. (3) for the effective internal field H, ,
one obtains M = M(H_ ; N)=M(H,; 0). In par-
ticular, for the Meissner state (B =0) one finds
M(H,;0)=-H, and

H

M(H ; N) =~ 1 _“N for |H |< (1 =N)H_, . (4)
At the lower critical field H, one has H, = H
H,=H =(1-NH,, B=0, and M=-H_, .
Near the upper critical field H , one has an approxi-
mately linear M(H,; 0)=YH, - H_ ) <0 with
y > 0, yielding

A Y _ ~
M(H_; N) = DY, (H,-H_,)forH = H_ .(5)

Thus, if the slope y << 1 is small (and in general,
if |M/H J << 1 is small), demagnetization effects
may be disregarded and one has M(H,; N) =
=M(H,; 0).

The ideal magnetization curve of type 1l super-
conductors with N =0, M(H ; 0) or B(H ; 0)/1, =
=H,+M(H,;0), may be calculated from Ginz-
burg—Landau theory [29], but to illustrate the geo-
metric barrier any other model curve may be used
provided M(H,; 0) = - M(- H,; 0) has a vertical
slope at H, = H,, and decreases monotonically in
size for H,> H_, . Below for simplicity I shall
assume H 4 <<H, (i.e., large GL parameter
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K>>1) and H, << H, . In this case one may use
the model M(H, ; 0) =~ H, for [H < H,, and

H3 I3-H (6)

a

MH,; 0)=H, /H)HP -
for [H | > H,, , which well approximates the pin-
free GL magnetization [29].

4, Thick strips and disks in the Meissner state

In non-ellipsoidal superconductors the induction
B(r) in general is not homogeneous, and so the
concept of a demagnetizing factor does not work.
However, when the magnetic moment m =
=1 rrx J(r) d3 is directed along H,, one may
define an effective demagnetizing factor N which
in the Meissner state (B = 0) yields the same slope
M/H, =-1/(1 - N), Eq. (2), as an ellipsoid with
this N. Here the definition M =m/V with
m=mH, /H_ and specimen volume V' is used. In
particular, for long strips or slabs and circular disks
or cylinders with rectangular cross-section 2a x 2b
in a perpendicular or axial magnetic field along the
thickness 26, approximate expressions for the slopes
M/H_ =m/(VH ) are given in Refs. 42, 43. Using
this and deflmng q= (|M/H | - 1)(b/a), one ob-
tains the effective N for any aspect ratio b,/a in the
form

=1 -1/(1 +qa/b)

m
Ty = Z+064tanh§)64—1n§7+12b%

4 2 b ar
9 i = 3n+§tanh%2 Eln%+g% . (D

In the limits b << @ and b >> a, these formulae are
exact, and for general b/a the relative error is
< 1%. For a = b (square cross-section) they yield
for the strip N = 0.538 (while N =1,/2 for a circu-
lar cylinder in perpendicular field) and for the short
cylinder N = 0.365 (while N = 1 ,/3 for the sphere).

5. Computational method

To obtain the full, irreversible magnetization
curves M(H,) of non-ellipsoidal superconductors
one has to resort to numerics. Appropriate conti-
nuum equations and algorithms have been proposed
recently by Labusch and Doyle [44] and by the
author [45], based on the Maxwell equations and
on constitutive laws which describe flux flow and
pinning or thermal depinning, and the equilibrium
magnetization in absence of pinning, M(H, ; 0).
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For arbitrary specimen shape these two methods
proceed as follows.

While method [44] considers a magnetic charge
density on the specimen surface which causes an
effective field H,(r) inside the superconductor, our
method [45] couples the arbitrarily shaped super-
conductor to the external field B(r, £) via surface
screening currents: In a first step the vector poten-
tial A(r, t) is calculated for given current density J;
then this linear relation (a matrix) is inverted to
obtain J for given A and given H_ ; next the
induction law is used to obtain the electric field
[in our symmetric geometry one has E(J, B) =
=-0A/0t], and finally the constitutive law
E = E(J, B) is used to eliminate A and E and obtain
one single integral equation for J(r, £) as a function
of H (¢), without having to compute B(r, ¢) outside
the specimen. This method in general is fast and
elegant; but so far the algorithm is restricted to
aspect ratios 0.03 < b/a < 30, and to a number of
grid points not exceeding 1400 (on a personal com-
puter). Improved accuracy is expected by combin-
ing the methods [44] (working best for small b/a)
and [45]. Here I shall use the method [45] and
simplify it to the two-dimensional (2D) geometry
of thick strips and disks.

In the 2D geometry of thick strips [42] or short
cylinders [43] in an applied magnetic field
B, =y H,=0xA, along y, one writes r = (x, )
orr = (p, y) (in cylindrical coordinates p, ¢, y). For
a homogeneous applied field the applied vector
potential in these two geometries reads A, = - xB,
or A, =—-pB_ /2. The current density J(r, #), elec-
tric field E(r, ¢), and vector potential A(r, £) now
have only one component oriented along z or ¢ and
denoted by J, E, A. The method [42,43,45] des-
cribes the superconductor by its current den-
sity J(r, ), from which the magnetic field
B(x, y, t) = (B, , By) or B(p, y, 1) = (Bp , By), the
magnetic moment m(t) (along y), and the electric
field E(r, t) = E(J, B, t') follow directly or via the
constitutive law E = E(J, B). For high inductions
B >>pH g one has B=pH everywhere and
J=- u(_)1D (A—-A,). The current density J is then
obtained by time-integrating the following equation
of motion,

JH=-+ J' d*r K(r, ") E(J, B) + 4 (¢, 1)].

(®)

Here K(r, ¥') = O(r, r')"! is an inverse integral ker-
nel obtained by inverting a matrix, see [42,43] for
details. The kernels Q and K apply to the appropri-
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ate geometry and relate J to the current-caused
vector potential A — A, in the (here trivial) gauge
O[A = 0 via integrals over the specimen volume V,

A(r) = 1, J' &’ O, ) +A (), (9
|4

Ji =+ ‘[ 4% K(r, ¥) [A(F) - A4 (#)] . (10)

Ho

The Laplacian kernel Q is wuniversal, e.g.,
O(r, ') =— (1,721 In |r - r'| for long strips with ar-
bitrary cross-section, but the inverse kernel K de-
pends on the shape of the specimen cross-section.
Putting A(r') = 0 in Eq. (10) (Meissner state) one
sees that

J(0) =- € J' &’ K(r, A () (1D

is the surface screening current caused by the ap-
plied field. In particular, one has J (t) = 0 inside the
superconductor. In our above method J  automa-
tically is restricted to the layer of grid points
nearest to the surface, see Fig. 2. Analytic expres-
sions for the current J_ in thick rectangular strips
with applied field H, and/or applied current I,
were recently given [46] for this limit of vanishing
magnetic penetration depth A - 0. Finite A >0
may be introduced into these computations by
modifying the integral kernel according to [47]
K@, ')y =[O(r, ') + A23(r - ')]7!.  The resulting
screening current then flows in a surface layer of
finite thickness A.

If one is interested also in low inductions one has
to generalize Eq. (8) to general reversible magneti-
zation H = H(B). This is achieved by replacing in
the constitutive law E(J, B) the genuine current
density J = u:D x B by the effective current den-
sity Jiy =0 xH which drives the vortices and
thereby generates an electric field E. That
Jy; =0 x H(B, r) enters the Lorentz force is rigor-
ously proven by Labusch [44]. Within the London
theory this important relation may also be con-
cluded from the facts that the force on a vortex is
determined by the local current density at the
vortex center, while the energy density F of the
vortex lattice is determined by the magnetic field at
the vortex centers. Thus, Jy; = O x (9F,/0B) is the
average of the current densities at the vortex cen-
ters, which in general is different from the current
density J = u51D x B averaged over the vortex cells.
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In our 2D geometry one thus has to replace in
Eq. (8)

ELJ(r), B()] - ELJ,(r), B(r)],  (12)

where J, =0H, /0x - 0H_ /0y depends on the
reversible material law H(B) = 0F/0B with H, =
= H(B)B, /B, H, = H(B)By /B, and B=(B2+
+B2)1/2,

yThe boundary condition on H(r) is simply that
one has H = B/} at the surface (and in the vacuum
outside the superconductor, which does not enter
our calculation). This boundary condition may be
forced by an appropriate space-dependent material
law H = H(B, r) which outside and at the surface of
the superconductor is trivially H=B/u,. The
specimen shape thus enters in two places: via the
integral kernel K(r, r') and via the material law
H = H(b, r).

To compute the induction B(r) entering H(B), for
maximum accuracy one should not use the deriva-
tive B = 0 x A but the Biot—Savart integral

B(r) = J‘ d*r L(r, ¢)J (') + B (r) (13)
14

with appropriate kernel L(r, r'). The accuracy of
the method then depends mainly on the algorithm
used to compute the derivative Jy=0xH. A
useful trick is to compute Jy as Jy=J+0x
x (H-B/y,) where H- B/}, is typically small
and vanishes at the surface.

For the following computations I use simple
models for the constitutive laws of an isotropic
homogeneous type Il superconductor without Hall
effect, though our method [45] is more general.
With Eq. (6) and H = B/, — M one has

H(B) = ' 1B}, + B°)'/° (14)

with B, = Y H,, . A simple B-dependent current—
voltage law which describes pinning, thermal de-
pinning, and flux flow is E(J, B) = p(J, B)J with

(/1)°
p(J, B)=py B ———— . (15)
1+ (/)°

This model has the correct limits p 0 J°, (J << J_,
flux creep) and p = p B = ., (J >> J, flux flow,
P, = const), and for large creep exponent 0 >> 1 it
reduces to the Bean critical state model. In general
the critical current density J = J (B) and the creep
exponent 0(B) = 0 will depend on B. For pin-free

986

superconductors (J, — 0) this expression describes
usual flux flow, i.e., viscous motion of vortices,
E = p;{B)J, with flux-flow resistivity p;, 0 B as
it should be.

6. Pin-free superconductors

The penetration and exit of flux computed from
Egs. (8)—(15) is visualized in Figs. 1-3 for iso-
tropic strips and disks without volume pinning,
using a flux-flow resistivity p,,.=p,B(r) with
P, = 140 (strip) or p, =70 (disk) in units where
H, =a=y,=|dH, /dt| = 1. Figure 1 shows the
field lines of B(x, y) in two pin-free strips with
aspect ratios b/a =2 and b/a = 0.3; Fig. 2 shows
the surface screening currents in the same strips
before flux has penetrated; and Fig. 3 plots some
induction profiles in a strip and some hysteresis
loops of the magnetization and of the induction in
the center of a strip and disk.

a

[ Hu/Hc1
I 0.8

disk

[ 0.7 e e e e

| 0.6 mz=mmmmoeo o

0,52 TN\ /

10,48 = S N\, 9

-~ o= ~ N \
| 0,44 ——Z77 7T =R SA i

Fig. 3. The axial magnetic induction By(r, y) in the midplane
y =0 of a pin-free superconductor disk with aspect ratio
b/a = 0.3 in increasing field (solid lines) and then decreasing
field (dashed lines), plotted at H, /H_ =0.4, 0.42, ..., 0.5,
0.52, 0.6, 0.7, 0.8, 0.7, 0.6, ..., 0.1, 0 (a). The induction
B (0, 0) in the center of the same disk (solid line) and of a
strip (dashed line), both with b,/a = 0.3. The symbols mark the
field values at which the profiles are taken. Also shown are the
magnetization loops for the same disk and strip and the corre-
sponding reversible magnetization (dotted lines) (b).
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The profiles of the induction B_(r, y) taken along
the midplane y = 0 of the thick dyisk in Fig. 3 have
a pronounced minimum near the edge » = @, which
is the region where strong screening currents flow.
Away from the edges, the current density
J=0xB/y, is nearly zero; note the parallel field
lines in Fig. 1. The quantity J; = 0 x H(B) which
enters the Lorentz force density Ji X B, is even
exactly zero since we assume absence of pinning and
the viscous drag force is small. Our finite flux-flow
parameter p, and finite ramp rate dH, /dt =+ 1
mean a dragging force which, similar to pinning,
causes a weak hysteresis and a small remanent flux
at H_ = 0; this artefact is reduced by choosing a
larger resistivity or a slower ramp rate.

In Fig. 3 the induction B = By((), 0) in the
specimen center performs a hysteresis loop very
similar to the magnetization loops M(H ) shown in
Figs. 3 and 4. Both loops are symmetric,
M(-H,)=-M(H) and By(-H)=-ByH,). The
maximum of M(H,) defines a field of first flux
entry H, , which closely coincides with the field
H'_ at which B, (0, 0) starts to appear. The com-

en

puted entry fields are well fitted by

(16)
HYE /[ = tanh V06764 .

These formulae are good approximations for all
aspect ratios 0 < b/a < oo, see also the estimates of
H_ =Vb/a for thin strips in Refs. 35, 39.

The virgin curve of the irreversible M(H ) of
strips and disks at small H, coincides with the ideal
Meissner straight line M =-H_ /(1 - N) of the
corresponding ellipsoid, Eqs. (4), (7). When the
increasing H, approaches H_ , flux starts to pene-
trate into the corners in form of almost straight flux
lines (Fig. 1) and thus |M(Ha)| falls below the
Meissner line. At H,=H_ flux penetrates and
jumps to the center, and |[M(H a)| starts to decrease.
In decreasing H , , this barrier is absent. As soon as
flux exit starts, all our calculated M(H ) exhibit
strong «numerical noise», which reflects the insta-
bility of this state. Similar but weaker noise occurs
at the onset of flux penetration.

As can be seen in Fig. 4, above some field H.. ,
the magnetization curve M(H ) becomes reversible
and exactly coincides with the curve of the ellipsoid
defined by Egs. (3), (6), and (7) (in the quasistatic
limit with pyldH, /dt - 0). The irreversibility
field H, is difficult to compute since it slightly
depends on the choices of the flux-flow parameter
Py (or ramp rate) and of the numerical grid, and
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Pin—free disks and cylinders

0 0.2 0.4 0.6 0.8 1 1.2

Fig. 4. The irreversible magnetization curves — M(H ) of pin-
free circular disks and cylinders with aspect ratios b,/a = 0.08,
0.15, 0.25, 0.5, 1, 2, 5, and o in an axial field (solid lines).
Here the irreversibility is due only to a geometric edge barrier
for flux penetration. The reversible magnetization curves of the
corresponding ellipsoids defined by Egs. (3), (6), and (7) are
shown as dashed lines.

also on the model for M(H, ; 0). In the interval
0.08 <b/a < 5 we find with relative error of 3%,

H"®/H = 0.65+0.121n (b/a) , .
HYE /| =0.75+0.151n (b/a) .
This fit obviously does not apply to very small
b/a << 1 (since H ,, should exceed H , > 0) nor
to very large b/a >> 1 (where H__ should be close
to H,). The limiting value of H  for thin films
with b << a is thus not yet known.

Remarkably, the irreversible magnetization
curves M(H ) of pin-free strips and disks fall on top
of each other if the strip is chosen twice as thick as
the disk, (b/a)Strip = 2(b/a) ;s - This striking coin-
cidence holds for all aspect ratios 0 < b,/a < o and
can be seen from each of Eqs. (7), (16), and (17).
The effective N [or virgin slope 1,/(1 = N)], the
entry field H, , and the reversibility field H  are
nearly equal for strips and disks with half thick-
ness, or for slabs and cylinders with half length.

Another interesting feature of the pin-free mag-
netization loops is that the maximum of |M(H )|
exceeds the maximum of the reversible curve (equal
to H ) when b/a < 0.8 for strips and b/a < 0.4
for disks, but at larger b/a it falls below H,, . The
maximum magnetization may be estimated from the
slope of the virgin curve 1,/(1 = N), Eq. (7), and
from the field of first flux entry, Eq. (16).
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H,y = const
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N
7
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-0.5 /
-1

H_/H
a

ci

Fig. 5. The magnetization curves M(-H )= — M(H ) of a thick
disk with aspect ratio b/a = 0.25 and constant H , for various
pinning strengths, ]C=0, 0.25, 0.5, 1, 1.5, 2, 3, 4 in units
H_/a, and various sweep amplitudes. Bean model. The inner
loop belongs to the pin-free disk (J,=0), the outer loop to
strongest pinning. The reversible magnetization curve of the
corresponding ellipsoid is shown as a dashed curve.

The formulae (7), (16), and (17) are derived
essentially from first principles, with no assump-
tions but the geometry and finite H,; . They should
be used to interpret experiments on superconductors
with no or very weak vortex pinning. At present it
is not clear how the presence of a microscopic
Bean—Livingston barrier may modify these conti-
nuum theoretical results.

15 T T T T

Disk with b/a = 0.25

H . = const
cl

1
H_/H
a cl

Fig. 7. Magnetization curves of the same disk as in Fig. 5 but
for the Kim model, J (B)=J /(1 +3B|/B,,) for various pin-
ning strengths jco =0, 0.25, 0.5, 1, 1.5, 2, 3, 4 in units Hd/a.
Presentation as in Fig. 5.
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Fig. 6. Magnetization curves of a disk as in Fig. 5 but with
jC = const and for various lower critical fields HC1 in units
a]c . Bean model.

7. Superconductors with pinning

Figures 5—8 show how the irreversible magneti-
zation loops of disks with b/a = 0.25 (and in Fig. 9
for a thinner disk with 6/a = 0.125) are modified
when volume pinning is switched on. In Figs. 5, 6,
and 9, pinning is described by the Bean model with
constant critical current density J,, while in
Figs. 7 and 8 the Kim model is used with an
induction-dependent J (B) = J /(1 + 3|B|/By) with
By = Wy H,, /3 (Fig. 8) or By = pyal,,/3 (Fig. 9).
In Figs. 5, 7, and 9, H,, is held constant; with
increasing J,, or J,, (in natural units H,/a) the
magnetization loops are inflated nearly symmetri-
cally about the pin-free loop or about the reversible

1.2 T T T T T
H =1 ) )
; ¢ Disk with b/a = 0.25
- , A B |
A J,= (B
~
0.8F / AR 1
N
N
/ hY
= 06f 7 T
=° n'/g SaL \
§ 0.4F g .o 1
= 44 RS
= /f'.;LL_ A
I o2p ) =3 1
s
’ 7
0 / —
b\
-0.2} Hy =0
s
7
-0.4 . : : ! 1
) 0.2 0.4 0.6 0.8 1
H_/ad (0)
a Cc

Fig. 8. Magnetization curves as in Fig. 6 but for the Kim
model J (B) =J /(1 +3|Bl/aJ ) with J_, =const for various
H_ =0,0.1,0.2, 035 05, 0.7, 1 in units af , . Also depicted
are the pin-free magnetization (line with dots; M and H here
are in units HC1 since jco =0) and the irreversible magnetiza-
tion of the corresponding ellipsoid.
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Disk with b/a = 0.125

H ., = const 1
c

Fig. 9. Same magnetization curves as in Fig. 5 but for a thinner
disk with aspect ratio b/a = 0.125 for various degrees of pin-
ning J a/H , =0, 0.25, 0.5, 1, 1.5, 2, 3, 4 and constant H,.

curve (above H ), and the maximum of [M(H )|
shifts to higher fields. Above H  the width of the
loop is nearly proportional to J, , as expected from
theories [42,43] which assumed H,, =0, but at
small fields the influence of finite H , is clearly
seen up to rather strong pinning.

In Figs. 6 and 8, J_ or J, is held constant and
H_, increased from zero (in natural units aJ ). As
expected, the influence of finite H,, is most pro-
nounced at small applied fields H, , where it causes
a peak in —M even in the Bean magnetization
curves, which without consideration of H,, consist
of two monotonic branches and a monotonic virgin
curve. Within the Kim model, or with any decreas-
ing J(B) dependence, the magnetization loops ex-
hibit a maximum even when H_, =0 is as-
sumed [48]. With increasing H, this maximum
becomes sharper and shifts to larger fields (cf.
Fig. 8). Comparing Figs. 5 and 9 one sees that for
superconductor disks with pinning and with
H_ >0, the peak in — M(H ) becomes more pro-
nounced and shifts towards smaller applied fields
when the disk thickness is decreased.

In the classical Bean model, i.e., if the lower
critical field H,, and the B dependence of J (B) are
disregarded (both conditions are satisfied when B is
sufficiently high) then there exist analytical solu-
tions for the critical state not only for the simple
longitudinal geometry [32] but also for the more
realistic geometries of thin disks in axial field [49]
and for long thin strips in perpendicular field [50].
Interestingly, the expressions for the profiles of the
current density, J(p) and J(x), have identical form
in these two geometries, but an analytical expres-
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sion for the magnetic field profiles, By(p) and
By(x), exists only for the strip geometry but not for
the disk. Recently the critical state problem has
been solved also for thin ellipsoidal disks in perpen-
dicular magnetic field [41]; this general solution
contains the circular disk and long strip as limiting
cases. Exact solutions where also obtained when the
critical current density in thin films depends on the
orientation of the local magnetic field with respect
to the film plane, i.e., on the inclination angle of
the flux lines [51]. This out-of-plane anisotropy of
pinning occurs, e.g., in high-T, superconductors
with layered structure.
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