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Giant magnetooscillations of the Josephson current
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Josephson current flowing through an antiferromagnetic metallic barrier is studied. We consider the

most interesting case of the spin-valve structure when the barrier is formed by ferromagnetic layers

ordered antiferromagnetically in the direction perpendicular to the current. The most remarkable feature

is an appearance of giant magnetooscillations of the current amplitude.

PACS: 74.50.+r, 74.80.Dm

Introduction

Study of various resonance phenomena is an
important area of the condensed matter physics
related to unique information about spectra and
properties of various materials. The phenomena
such as measurements of Shubnikov—de Haas oscil-
lation, de Haas—van Alphen effects, cyclotron reso-
nance, etc., are well-known and described in many
textbooks and monographs.

In this article we will describe the effect of giant
magnetooscillations. The proposed method which
combines the Josephson tunneling spectroscopy and
novel magnetic systems is very sensitive to magnetic
structure of the compounds.

We focus on the special case of the S—N-S
junctions when the normal (N) metallic barrier is a
magnetic compound. It is well known that the
ferromagnetic material (F) used as a barrier frust-
rates the Josephson current because of the pair-
breaking effect of the exchange field. Below we
consider the antiferromagnetic barrier and, more
specifically, the most interesting case of the so-
called A-structure (S,—A-S, junction). This is the
situation when the barrier is formed by multilayer
system. It consists of ferromagnetic layers, perpen-
dicular to the S-electrodes with an antiferromag-
netic ordering in the direction perpendicular to the
current. In other words, the neighboring layers have
an opposite magnetization.
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At first, we describe the compounds and their
A-structure. Afterwards, we introduce the giant
magnetooscillations phenomenon for the S;—A-S,
junction.

A-structure. Spin-valve effect

There are two interesting systems which are
characterized by A-structure. One of them is a
mixed-valence manganite with some characteristic
level of doping, and the second one is an artificial
structure, so-called giant magnetoresistance (GMR)
multilayer.

As is known, the most remarkable property of
manganites (see review [1]) is the colossal magne-
toresistance. These materials with the composition
A, Sr,MnO; (A = La, Ca) have a rather compli-
cated phase diagram.

The low temperature phase diagram has been
analyzed in our papers [2,3]. The parent material,
LaMnOg , is an insulator. The region 0.17 < x < 0.5
corresponds to metallic state. The undoped manga-
nite (e.g., LaMnO, crystal) has the following cubic
structure. The Mn§+ ions are located at the corners,
and the La ion is at the center of the unit cell. In
addition, the Mn3" is caged by the 02~ octahedron;
locally this forms an MnOg complex with the Mn
ion in the central position surrounded by light O
ions.



The d-shell of the Mn ion in the cubic environ-
ment is splitted into a doublet and triplet. It is
important that the three-fold manifold (¢, ) is occu-
pied by three d-electrons, whereas the upper dou-
ble-degenerate term ey, i3 occupied by one electron
only.

The key ingredients (interactions) are the fol-
lowing: 1) the strong Hund’s rule coupling (this is
the largest energy scale) aligns all spins in the same
direction; 2) hopping, and 3) cooperative Jahn—
Teller (JT) effect. As a result, the total Hamil-
tonian is a sum:

H:HH+Ht+H]T. (1)
Here
HH:JHZGSi, (2)
i
Hi=3%t s 3

HJT:Zg(TiQi)+Z ]elQ?’ (4)

where Q is a normal coordinate, 0 is the electronic
spin, S is the ionic spin, J is the elastic parameter,
T is the pseudospin.

The Hund’s coupling between the local spin S
(§ =3/2) formed by the £, electrons and the e,
electron is described by tﬁe term (2); © (Paulg
matrices) correspond to the spin of the €y, electron;
Jy U1 eV. Note, that the unit cell Contams one
€y electron and its motion through the lattice
is described (in the tight-binding picture) by the
term (3).

The third term in Eq. (1) describes another
important ingredient which also affects the beha-
vior of the system, namely the Jahn—Teller instabi-
lity. Indeed, the €y, electron is in the double-dege-
nerate state, and 1t follows from the JT theorem,
that the electron-lattice couplng will lead to a static
distortion and consequently, to a change in the
crystal symmetry. In Eq. (4) g is the electron-pho-
non coupling constant, Q, are the local active JT
modes.

In a simple band picture with one electron per
unit cell, the system should be metallic. This is
contrary to the experimental fact that the parent
compound is an insulator. Nevertheless, a more
careful analysis which includes not only the hop-
ping term, but also a strong Hund’s interaction
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along with the cooperative Jahn—Teller effect, leads
one to the picture of a peculiar band insulator [2,3].

As noted above, Hund’s coupling corresponds
to the largest energy scale (J, [ 1 eV), so that
Jy>>1t,90Q,;tUgQ, 0.1 eV.

It is interesting that the magnetic structure of
the undoped crystal belong to the A-type: antiferro-
magnetic (AF) ordering along the Z-axis along with
the ferromagnetic ordering in the XY plane. The
appearance of such a structure is caused by an
interplay between the Hund’s interaction and the
hopping energy. In other words, the A-structure is
stabilized by the gain in the kinetic energy of the
band electron. One can explain the underlying phys-
ics, if we consider the two-center problem (Mn3*—
Mn** with spins S, and S,). The low energy elec-
tronic term has a form:

E:—]H5+tcosq/2—0(t2/JH)~ (5)

Therefore, at J,, >> ¢, the main gain in the energy
is due to the =J S term. Although, because of the
averaging, there is no linear contribution to the
total energy, a small gain, of order of #?/J g is
achieved. The equation 2] y <<t sets a lower
energy scale for the Neel temperature T\, which is
indeed small ([J140 K) relative to the structural
transition temperature ([J0.1 eV). Within a single
layer the electrons may be treated as ferromagneti-
cally polarized. This ferromagnetism is provided by
the double-exchange mechanism introduced by Ze-
ner [4] and developed in [5,6].

As was noted above, the pure LaMnO; com-
pound can be treated as a band insulator. This
means that a change in the carrier concentration
might lead to metallic behavior.

Consider now a doped manganite, e.g.,
La,_.Ca,MnOg . An increase in x will lead initially
to the formation of finite clusters; each of them
contains itinerant polarized electrons. Eventually
one can observe a formation of the infinite cluster
and the transition to the metallic ferromagnetic
state. Such transition can be described by percola-
tion theory.

A very interesting observation has been reported
in [7-10]. The presence of metallic A-phase has
been observed. The examples are the compounds:
A, St MnO; (A=La Nd with x= 055 or
Pr, sSry sMnOg . This is a natural spin-valve struc-
ture.

Another case is an artificial A-structure which is
a basic for the GMR phenomenon (see reviews [11,12]).
Such multilayer system (e.g., Co—Al,0,—Co) consists
of alternating ferromagnetic and nonmagnetic la-
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yers with an antiferromagnetic ordering in the di-
rection perpendicular to the layers.

Let us evaluate the energy spectrum for such
metallic A-system. This is an important step for the
calculation of the Josephson current through such a
barrier. For concrettness, we consider the metallic
manganite in A-phase.

The Hamiltonian for the barrier’s states has a
form:

H= Z t(p)apcapc + Z JHS(Q)apc 00 p—Q;c”
+ Z JHS(_Q)a;cI’(Oz)G'G” ap—Q;c” +
p.Q
* Z J Mapﬁ( 1)0'0” Q0" - (6)

Here t =t + ¢, ¢ and f are electron hopping
parameters for the in-plane and out-of plane mo-
tion, J,, is the Hund’s coupling, and S(Q) is the
Fourier component of the AFM ordering along the
¢ directions; [5,0=S(-1)". The structural vector
Q = (0, 0, /a) reduces the Brillouin zone (a is the
lattice constant). We consider a more general case
of a canted structure; M is the canted magnetic
moment: S; = (+ [$,0 M), S? + M2 = 5(S + 1) OS2
Note that the Jahn—Teller effect is not essential for
the metallic state.

With use of equation of motion

+J M)

/i
oo’ ko

)]

and similar equation fork -~ k+Q (e=¢ - t), one
can determine the following energy spectrum:

€ - fhayg =7, SEQ0, g

e=x ]S £ 2/ Mt + 7]/ (8)

which consists of four branches. For the manganites
Jy >> t (see above). As a result, for these systems,
only two branches are filled:

g, 0= IS+ (M/9) ¢ ©))

Josephson current through an
antiferromagnetic barrier. Magnetooscillations

Let us evaluate the Josephson current through
the A-barrier. We consider the case of a singlet
pairing (s or d), that is the Cooper pair consists of
two carriers with opposite spins and momenta. The
A-barrier contains the states with opposite spins;
they belong to the neighboring layers and, contrary
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to the F barrier, one should not expect any frustra-
tion for the Josephson current. Nevertheless, the
calculation of the current should be carried out with
a considerable care. Indeed, the Josephson current
is a transfer of correlated electrons and this implies
that the layers are not totally independent. The
barrier should be treated as an anisotropic metal
with the spectrum (8), (9). The Josephson current
can be evaluated with use of the spectrum (8), (9)
and the interface Hamiltonian:

H_ . =VA W) ()

pair

(10)

which described the transition of pair in the ith
superconductor (i =1, 2) into the barrier (4, , A,
are the order parameters, W(i) and W*(i) are the
field operators for electrons of the barrier). With
the use of Eq. (10) we find a correction to the
thermodynamic potential, dQ, caused by the bar-
rier; the current is obtained as 0Q,dp with ¢ being
a phase difference between two superconductors’
order parameters. The Josephson current is deter-
mined by the Cooper diagram:

K =mT|V?| S A, J' dpdq exp (iqL) N(iw , q) ,

n

(11)

where

Niw, . 9= Y (0),4C

o, 0",0'”,0"”

o0 (0, P) (")) g X
* G gn (Ciw, , q = p) = 2[G (0, , ) X

xG, (-iw ,q-p) -G, (o ,p) G, (-iv , q-p)

(12)

(we use the method of thermodynamic Green’s
functions, see, e.g., [13]), L is the distance between
the superconductors.

The Green’s function entering Eq. (12) can be
expressed in terms of new Fermi amplitudes which
correspond to the branches (8), (9). The transfor-
mation to the new amplitudes can be described by
Z K, a,

canonical transformation a , one can

ip "’
show that 0 = (11), Kgy = 0.5[1 - (M/S)|V2% K, =
=-K ,=05[1+ (M/S)]1V/2, where the operators
o, correspond to the branches (8), (9). Then we

p
obtain the following expression for the Cooper

term:
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: M
jn=d - géwznAﬂAZFrrr x

O
Owlld dLtMpo
xz J.dlvDJ.dpz EXPH' “ %COSD | 0-
i el oo
(13)

In the tight-binding approximation ty =ty cos P, d).
Equation (13) contains the integration over the
cross-section of the Fermi surface (dl).

As a result, we arrive at the following expression
for the amplitude of the Josephson current:

J,=r 1= M/SPTAL/T)T(BM/S) . (14)

Here {y, = hvy/210" is the coherence length inside
the barrier, B = (¢,/T )NL/&,); &y = hvp/2T0, , vy =
= U% is the minimum value of the component of the
Fermi velocity along L, r 0 pAA, V2, f(x) = exp (-x)
for x >> 1 and f(x) = ™! (x << 1). Therefore, near
T =0 K, the function f= {y/L. Note, that since
r OT, the amplitude J, in this case does not
depend on T. However, near T, and in the interme-
diate temperature region, the exponential depen-
dence f = exp (-L/C,) is perfectly realistic.

Discussion

Consider the junction placed in an external mag-
netic field. Its presence creates the canting. For
weak magnetic field the canting is small and the
dependence of the amplitude is determined by the
factor J (BM /S) in Eq. (14). Since B >> 1, one can
use an asymptotic expression for the Bessel func-
tion, and we obtain:

J,, =1 1= M/

-1,2

L oM M
X exp = —DSTB—D cos E—,I‘L - L[E (15)
5 &MFn2s o oS 4o
0 0

The expression is valid if L >> ;.

Equations (14), (15) display remarkable pro-
perty of the junction with an A-barrier, namely a
phenomenon of giant magnetooscillations (GMO).
Indeed, one can directly from Eq. (15) that the
amplitude oscillates as a function of M, and, there-
fore, as a function of the external field H.

The GMO effect is caused by magnetic structure
(spin-valve effect) and is entirely different from the
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usual Fraunhofer oscillations. Note also that, be-
cause B >> 1, the period of GMO is much smaller.
Moreover, one can choose such geometry of the
Josephson contact that the only magnetic structure
is affected by magnetic field. The increase in mag-
netic field leads eventually to the situation when
M =S5; then J =0 (see Eqgs. (14), (15)). This
occurs because the external field affect magnetic
ordering in the barrier. If M =S, then we are
dealing with 3D ferromagnetic ordering. As for the
the S—F contact, it frustrates the Josephson current;
this is due to the pair-breaking effect of the ex-
change field (we do not consider some modifications
caused by the spin-orbital coupling, see [14]). The-
refore, the amplitude of the current can be control-
led by an external magnetic field and even switched
off at larger H (order of 1 T). Note that for the
GMR structure the switching can be obtained with
use of weaker magnetic field (order of 3—4 Oe).

In summary, we show that the Josephson current
can flow through an antiferromagnetic barrier. The
most interesting case corresponds to the case of the
A-ordering in the direction perpendicular to the
current. One can show that the amplitude of the
current oscillates as a function of applied magnetic
field (GMO).

Lev Vasiljevich Shubnikov was a remarkable
scientist who made key contributions to various
areas of physics. We are pleased that this paper is
published in the Special Issue devoted his memory.
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