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The behavior in an external magnetic field is studied exactly for a wide class of multichain quantum
spin models. It is shown that the magnetic field together with the interchain couplings cause commensu-
rate—incommensurate phase transitions between the gapless phases in the ground state. The conformal
limit of these models is studied and it is shown that the low-lying excitations for the incommensurate
phases are not independent, because they are governed by the same magnetic field (chemical potential
for excitations). A scenario for the transition from one to two space dimensions for the exactly integrable
multichain quantum spin models is proposed, and it is shown that the incommensurate phases in an
external magnetic field disappear in the limit of an infinite number of coupled spin chains. The
similarities in the external field behavior for the quantum multichain spin models and a wide class of
quantum field theories are discussed. The scaling exponents for the appearence of the gap in the
spectrum of low-lying excitations of the quantum multichain models due to the relevant perturbations
of the integrable theories are calculated.
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Commensurate-incommensurate phase transitions for multichain quantum spin models

1. Introduction

There has recently been considerable interest on
low-dimensional quantum-correlated spin and elec-
tron systems. These systems, especially one-dimen-
sional (1D), manifest the specific features of, e.g.,
magnetic behavior at low temperatures, which are
absent for the standard, conventional 3D magnetic
systems. Spin systems usually manifest 1D behavior
at temperatures higher than the temperature of the
3D magnetic ordering, but lower than the maximum
characteristic energy of the interaction between
spins, i.e., in our case the intrachain spin-spin
coupling. The origin of such specific features is the
enhancement of the quantum fluctuations of the 1D
systems due to the peculiarities of the 1D density of
states together with the quantum nature of spins.

Moreover, during the last decade a large number
of new quasi-1D spin compounds have been created
and studied experimentally. These compounds
manifest at low temperatures the properties of a
single or several quantum spin chains weakly cou-
pled to each other [1,2]. It is strongly believed that
this class of compounds will provide new informa-
tion on the transition from 1D to 2D in quantum

many-body physics. It is very important, because
the 2D quantum many-body physics has been a
challenge for both theorists and experimentalists
since the beginning of the study of low dimensional
quantum systems. On the other hand, the advantage
of the 1D theoretical studies is the possibility of
obtaining exact solutions by using non-perturbative
methods, which are difficult to apply for the higher-
dimensional quantum many-body models. The re-
sults of the exact calculations of the 1D models can
serve as testing grounds for the use of perturbative
and numerical methods in more realistic situations.

Recently several exactly solvable models [3–5]
have been introduced, in which the zigzag-like in-
teraction between two quantum spin chains was
studied exactly using the Bethe ansatz tech-
nique [6]. This method is widely known by now,
see, e.g., the recent monography [7] and references
therein. The Bethe ansatz method permits exact
calculation of the static characteristics of quantum
many-body systems, such as the ground state beha-
vior, the influence of an external magnetic field,
and the thermodynamic features of the temperature
dependence of the specific heat, magnetic suscepti-
bility, etc. These results should apply to more-re-
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alistic systems, but it is not obvious how the inter-
actions between the chains modify the answers. The
mean-field-like approximations for the interchain
couplings are not sufficient, because the mean field
approach in any version already implies the exis-
tence of the (sometimes hidden) order parameter. It
is, unfortunately, also unclear whether the numeri-
cal calculations, which can be directly applied for
the quantum many-body systems of very small sizes,
by now (say, at most several tens of sites) describe
well the properties of the real systems, in which,
even in quasi-1D ones, the number of sites is at
least of order 108. On the other hand, it must be
admitted that some features of the exactly solvable
1D models are far from what is observed experimen-
tally, but these unrealistic features of the 1D mod-
els are known and simple to recognize.

The behavior of the multichain spin systems in
an external magnetic field is especially interesting
see, e.g., [5,8–10] because of (i) the possibility of
experimental observations due to recent progress in
high-magnetic-field measurements and (ii) very
interesting theoretically predictable effects which
are possible to recognize in experiments, such as
phase transitions in the external magnetic field.
However, several important issues are far from
being resolved in the quantum two-chain spin mo-
dels. For example, there are three questions that
need to be answered: (1) Are the properties of those
exactly solvable two-chain spin models unique or is
it possible to say something about the more general
class of two-chain quantum spin models? (2) How
are the multichain quantum models connected to
the 2D many-body systems, i.e., what is the sce-
nario of the transition from 1D to 2D when one
increases the number of coupled chains while keep-
ing the conditions of integrability? (3) What will
happen with the behavior of the nonintegrable mul-
tichain spin models if one goes beyond the frame-
work of integrability, i.e., adding some perturba-
tions to the exactly solvable model? (For example,
Ref. 10 implies that namely the spin chirality,
which separately breaks the time-reversal and parity
symmetries in the two-chain integrable model [11],
is the reason for the emergence of the additional
phase transitions in an external magnetic field for
the two-chain spin-1/2 model as compared to the
single-chain system.)

The goal of this paper is to answer these ques-
tions. First, we revisit the exactly integrable two-
chain spin-1/2 model and show that the inclusion
of the magnetic anisotropy of the «easy-plane»
type, with which the system stays in the quantum
critical region, will not drastically change the be-

havior in an external magnetic field but will shift
the critical values of the magnetic fields and in-
trachain couplings at which the phase transitions
occur and will affect the critical exponents. We will
show that these two-chain spin models share the
most important features of the behavior in an exter-
nal field with the wide class of (1+1) quantum field
theories. Next, we will introduce the higher-spin
versions of the two-chain spin models, e.g., investi-
gating the important class of 1D two-chain quan-
tum ferrimagnets with different spin values at the
sites of each chain. We will also investigate the
behavior of the multichain exactly solvable spin
models in an external magnetic field and show how
the additional phase transitions arising due to the
increasing number of chains vanish in the quasi-2D
limit. Finally, we will show how the relevant devia-
tions from integrability, e.g., the absence of terms
in the Hamiltonian which separately break the pa-
rity and time-reversal symmetries give rise to gaps
in the spectra of low-lying excitations of the mul-
tichain quantum spin systems, and we will calculate
the scaling exponents for the gaps.

The paper is organized as follows. In Section 2
we revisit the exactly solvable two-chain uniaxial
spin model [4] to remind the reader of the main
steps of the Bethe ansatz. The investigations [9,10]
of isotropic spin-1/2 two-chain models are gene-
ralized in this section for the case of uniaxial
magnetic anisotropy. The calculations in this sec-
tion are rather simple, but we will write them in
detail because they provide the basis for the more
nontrivial generalizations of this class of models,
and will be used in the following Sections. In
Section 3 we point out the similarities between the
behavior of the uniaxial two-chain quantum spin
models and a class of quantum field theories (QFT)
in an external magnetic field, predicting new phases
for the QFT. In Section 4 we introduce the SU(2)
generalization of the integrable two-chain model for
higher values of the site spins (possibly different) in
each chain, i.e., a quantum ferrimagnet. We point
out the similarities of the quantum ferrimagnet with
QFT with a nonzero Wess—Zumino term and pre-
dict new phases for the latter in an external mag-
netic field. We derive integral equations for the
critical exponents. In Section 5 we consider the
multichain quantum spin model and discuss how the
external field behavior of the integrable multichain
models is changed when the number of chains is
increased while preserving the exact solvability. In
Section 6 we briefly sketch how the deviations from
integrability change the magnetic and low-tempera-
ture properties of this class of multichain quantum
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spin systems. The paper is closed  with a discussion
of the main results and some conclusions.

2. Two-chain uniaxial quantum spin model

A common property of some of the Bethe ansatz
solutions is the presence of shifts θj of the spectral
parameter λ for the associated transfer matrix of an
algebraic version of the Bethe ansatz (the Quantum
Inverse Scattering Method (QISM) [7]). Those
shifts also appear in the Bethe ansatz equations
(BAE) for the quantum numbers called rapidities,
which parametrize the eigenfunctions and eigenval-
ues of the Hamiltonians. Hence, the distributions of
the rapidities are also affected by the shifts. An
interesting property is connected with those shifts:
depending on their values and the external mag-
netic field, even for (quasi)particles of the same
type, additional minima may appear in distributions
of the rapidities. These additional minima also re-
sult in nonmonotonic behavior of the dispersion
laws of the low-lying excitations. Also, they pro-
vide additional Dirac seas for low-lying excitations,
changing the structures of the physical ground
states of the models. These additional minima deter-
mine the special behavior of the models in an
external magnetic field [3,5,9,10]. In particular,
the appearance of the new phases and new phase
transitions is due to the emergence of these new
minima in the distributions of the quantum num-
bers.

To set the stage, let us first remind the reader
about the main steps of the QISM. The common
feature of the Bethe-ansatz-solvable models is the
factorization of the monodromy matrix (the ordered
product of all two-particle scattering matrices,
which depend on some spectral parameter) [7].
Exact (Bethe ansatz) integrability requires exclu-
sively elastic scattering between (quasi)particles.
For such theories the two-particle scattering matri-
ces and L operators satisfy the Yang—Baxter rela-
tion [7,12]. In turn, the factorization of the mono-
dromy matrices guarantees that they satisfy the
Yang—Baxter equations, too. The transfer matrices
of the associated statistical problem are traces over
some additional, auxiliary subspace of monodromy
matrices [7]. The most important feature of transfer
matrices with different spectral parameters is their
commutativity. The necessary and sufficient condi-
tion for this is the validity of the Yang—Baxter
equations for two-particle scattering matrices and
hence for monodromy matrices. The commutativity
of the transfer matrices implies that one can con-
struct an infinite number of integrals of motion,
which commute with one another and with the

transfer matrix. Therefore the exact integrability is
proved. Usually the structure of these integrals of
motion is determined by their locality. For instance,
the best-known of series of integrals of motion is the
series of derivatives with respect to the spectral
parameter of the logarithm of a transfer matrix
taken at some special value of the former [7]. Loca-
lity means that for the first derivative of the loga-
rithm of the transfer matrix (usually called the
Hamiltonian of the lattice system) only short-range
particle—particle interactions contribute.

In this paper we will see that namely the afore-
mentioned shifts of the spectral parameters yield
new phases in the ground state behavior in an
external magnetic field of a wide class of exactly
solvable models, quantum spin multichain models
and QFT. We will show that in the conformal limit
these phases of the lattice models correspond to one
Wess—Zumino—Witten (WZW) model or to se-
veral of them with dressed charges (proportional to
the compactification radii) of scalar or matrix types
for each of the phases, respectively.

Let us start with the form of the Bethe ansatz
equations (BAE) for the set of rapidities {uα}α=1

M .
In this paper we will concentrate only on the
critical, «easy-plane» type of the magnetic aniso-
tropy for the antiferromagnetic spin multichain mo-
dels, 0 ≤ γ ≤ π/2 (γ = π/q, where q is an integer,
parametrizing the magnetic anisotropy), and the
repulsive interactions in QFT. This corresponds to
hyperbolic or rational solutions of the Yang—Bax-
ter equations for the two-particle scattering matri-
ces, or to U(1) and SU(2) symmetries of the
scattering processes, respectively. For the simplest
case of one shift θ, which pertains to the two-chain
quantum spin models and most a QFT, the BAE
have the form (here we use the more general hyper-
bolic parametrization first; for the rational limit see
below) [4]

∏ e1
N± (uα ± θ) = eiπM   ∏ 

β=1, β ≠ α

M

  e2(uα − uβ) ,  
(1)

where N± are the numbers of sites in each
of the spin chains; en(x) = sinh (x + iγn/2) ×
× sinh (x − iγn/2)−1; and M is the number of down
spins. The shift θ determines the interchain co-
upling constant for two-chain quantum spin-1/2
models [4,11,13]. Please note that the Bethe ansatz
equations are just the quantization conditions for
the rapidities, which parametrize the eigenwaves
and eigenvalues of the many-body quantum model.
The Hamiltonian is the first derivative of the loga-
rithm of the transfer matrix (note that the transfer
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matrix of the two coupled spin chains in this inte-
grable model is the product of two «standard»
transfer matrices of each chain with the spectral
parameters λ ± θ [11]:

Ĥ1/2 = 
1

sinh2 θ + sin2 γ
 ×

× ∑ 
n



cos γ sinh2 θ (S

n,1 Sn+1,1 + S
n,2 Sn+1,2) +

 + 2 sin2 γÎS
n,1 (Sn,2 + Sn+1,2) +

+ 2 sin γ sinh θ (ĴSn+1,2 − ĴS
n,1) [S

n+1,1 × Sn,2]

 ,

(2)

where Î = diag (cosh θ, cosh θ, cos γ ) and Ĵ =
= diag (cos γ, cos γ, cosh θ), diag (a, b, c) is 3×3
diagonal matrix, and [×] denotes the vector pro-
duct. Please note that the sum runs over n to N+ for
the chain with spins Sn,1 and to N− for the chain
with spins Sn,2 . The parameter θ determines the
intrachain coupling in our two-chain spin model.
For θ = 0 the Hamiltonian and BAE coincide with
the ones for the single «easy-plane» antiferromag-
netic spin-1/2 chain of length N+ + N− with only
nearest-neighbor interactions in it. The eigenvalue
of the Hamiltonian (energy) is parametrized as the
function of the rapidities as follows:

E = sin γ ∑ 

±

∑ 

α=1

M

N± [e1(uα ± θ) + e1
−1(uα ± θ)] + E0 ,

(3)
where E0 is the energy of the vacuum (ferromag-
netic) state (with M = 0). The isotropic SU(2)-
symmetric antiferromagnetic quantum spin two-
chain model [9,10,11,13] can be obtained from
the uniaxial (U(1)-symmetric) one of Eqs. (1)–(3)
by the simple change of variables in the limit:
uα → γuα , λ → γλ, θ → γθ, γ → 0. (The last limit
corresponds to the rational, SU(2)-symmetric
solution of the Yang—Baxter equations for two-
particle scattering matrices.) The two-chain iso-
tropic (SU(2)-symmetric) spin-1/2 Hamiltonian
obtained in this limit from Eq. (2) takes the
form [4,9,10,11,13]

Ĥis = 
1

1 + θ2 ×

×∑
n


θ2(S

n,1Sn+1,1 + S
n,2Sn+1,2) + 2S

n,1(S
n,2 + S

n+1,2) +

 + 2θ(S
n+1,2 − Sn,1)[S

n+1,1 × Sn,2] 
 . (4)

The summations over n run to N± for each kind of
spins, respectively. Note that for θ → ∞ Eqs. (4)
and the BAE recover the Hamiltonian and BAE of
two decoupled spin-1/2 chains of lengths N± with
the only nearest-neighbor interactions in each of the
chains.

The solution to the BAE (1) is usually obtained
in the thermodynamic limit (N± , M → ∞, with the
ratio M/(N+ + N−) fixed). Here instead of the dis-
cret set of rapidities one introduces the distribution
of a continuous density of rapidities. The ground
state corresponds to the solutions of the BAE with
negative energies, i.e., it is connected with the
filling up the Dirac sea(s) for the model. For the
«easy-plane» antiferromagnetic two-chain spin-1/2
model the ground state corresponds to the filling of
the Dirac sea for real rapidities, i.e., no spin bound
states have negative energies. In the thermodynamic
limit the real roots of Eqs. (1) are distributed
continuously over some intervals, which determine
the Dirac seas of the model. The set of integral
equations for the dressed densities of the rapidities
uα (ρ(u)) and dressed energies of the low-lying qua-
siparticles (ε(u)) are (see, e.g., Ref. 7 for the stan-
dard procedure of deriving these integral equations
from the BAE and Refs. 11,13 for the isotropic
two-chain spin-1/2 model)

ρ(u) + ∫
(Q)

 dv K(u − v) ρ(v) = ∑ 

±

N±
N

 ρ±
0

(5)

and

ε(u) + ∫
(Q)

 dv K(u − v) ε(v) = h − ∑ 

±

N±
N

 ε±
0 , (6)

where the kernels of the integral equations are

K(u) = 
∂ln e2(u)

∂u
 = 

sin (2γ)

2π[cosh (u) − cos (2γ)]
 , (7)

and h is an external magnetic field. The values

ρ±
0(u) = 

∂ln e1(u ± θ)

∂u
 ≡

≡ 
∂p±

0(u)

∂u
 = 

sin γ

2π[cosh (u ± θ) − cos γ]
(8)

are bare densities of the rapidities, and

ε±
0(u) = h − 

sin2γ

cosh(u ± θ) − cos γ
(9)
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are bare energies (here «bare» corresponds to non-
interacting particles, and the interaction «dresses»
them as usual [7]). The integrations are performed
over the domain (Q), determined in such a way that
the dressed energies inside these intervals are nega-
tive. The limits of integration are determined by the
zeros of the dressed energies and are the Fermi
points for each sea. The analysis of the integral
equations (5) and (6) in an external magnetic field
shows that in general, for some values of θ and h,
there can be one Dirac sea (it corresponds to one
minimum of the bare densities of the rapidities and,
hence, to one minimum of the bare energy). On the
other hand, for higher values of θ and for some
domain of h, two Dirac seas of the same type
(gapless, see below) of excitations are possible (for
two minima of the bare energies of the rapidities
and thus two minima of the bare density). Note that
for θ → ∞ at fixed N± all the roots of the integral
BAE separate into two sets of «right-» and «left-
moving» seas, centered at ±θ, respectively.

Here we briefly revisit the analysis of Refs. 9,10,
but for the case of the uniaxial two-chain model.
Analytical solutions to Eqs. (5) and (6) can be
easily obtained in closed form in the limit of zero
field and equal lengths of the chains N+ = N− . The
simplest nontrivial exited quasiparticle (spinon) is
a hole in the Dirac sea for real rapidities, with the
quasimomentum

p(u0) = 2 arctan 




sinh (πu0/γ)

cosh (πθ/γ)




 , (10)

where u0 is the spinon’s rapidity. Note that for
topological reasons such particles have to exist in
pairs for the SU(2)-symmetric case, etc. [14,15].
The energy of this spinon is given by

º(u0) = − sin γ 
∂p(u0)

∂u0

 . (11)

It can be rewritten as a function of the quasimomen-
tum, i.e., in the form of the commonly used disper-
sion law

º(p) = π
γ
 sin γ tanh 

πθ
γ

 sin 
p
2
 



cos2 

p
2
 + sinh−2 πθ

γ




1/2

.

(12)

A spinon corresponds in the usual Bethe ansatz
classification of BAE solutions to a string of length
1 [7]. Naturally Eqs. (1) have string solutions of
higher lengths too. Other spin excitations can be
obtained as combinations of spinon quasiparticles

and higher-length strings with different rapidities.
However, spinons here are picked out because only
their dressed energies may be negative, i.e., only
spinons may form Dirac seas of the ground state of
the model.

One can see that the dispersion law Eq. (12) of
the low-lying excitation of the «easy-plane» two-
chain spin-1/2 antiferromagnetic model is facto-
rized into two parts: the gapless part at p = 0, π and
the gapped one at p = π/2, cf. [9,10]. The former
corresponds to the oscillations of the magnetization,
while the latter is connected with the oscillations of
the staggered magnetization [9]. The analysis, simi-
lar to the analysis of the solutions of Eqs. (5)
and (6) for nonzero magnetic field h ≠ 0 (here we
point out that according to the very accurate analy-
sis [16] the solution of the integral BAE in the
first-order approximation reproduces correctly both
the low- and high-coupling asymptotic behavior),
shows that: (i) the dressed energy of a spinon as a
function of the dressed quasimomentum has only
one extremum, a maximum at p = π/2 for θ < θc ,
and (ii) for θ > θc there are two maxima and one
minimum (situated at p = π/2). At the (tri)critical
point θc , the minimum disappears and the two
maxima join into a flatter one (at p = π/2). In the
limit θ → ∞ the mimimum is transformed into a
cusp. It reveals that the gap of the staggered mag-
netization vanishes in this limit of two independent
spin chains. This simple picture helps us to under-
stand what happens if one switches on an external
magnetic field h. Besides the usual phase transition
to the ferromagnetic (spin-polarized) phase at

h
s
 = ∑ 

±

N±
N

 ε±
0(0) , (13)

there is an additional transition between two
phases. One of these corresponds to one Dirac sea of
spinons (at small θ), while the other one is con-
nected with two Dirac seas for the same kind of
spinons (at large θ). It can also be seen from the
right-hand side of Eqs. (5) and (6) for the densities
and dressed energies that the bare density and bare
energy (corresponding to terms which do not de-
pend on ρ(u) and ε(u)) have either one or two
minima, respectively. Hence, they reproduce the
same property in the dressed characteristics: the
interaction simply «dresses» the (quasi)particles, as
usual, but the «dressing» does not affect the picture
qualitatively. The new critical field value can be
approximated by hc ≈ (π/γ) sin γ cosh−1 (πθ/γ) in
the first-order approximation [9]. In this approxi-
mation the tricritical point is the root of the equ-
ation 1 ≈ sinh (πθc /γ). At this point two second-
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order phase transition lines hs and hc join. Hence,
the «easy-plane» magnetic anisotropy in the antifer-
romagnetic two-chain model does not change quali-
tatively the ground state behavior in the external
magnetic field; cf. [9,10]. However it changes the
critical values of the magnetic field and the intra-
chain coupling. The difference between the two
(gapless) phases is obvious: the first phase corre-
sponds to a Ne′el-like antiferromagnetic ground state
for spins in both chains (along the zigzag line),
while the second phase is connected with Ne′el-like
antiferromagnetic ground states in each of the
chains, i.e., effectively to two magnetic sublattices
in the two-chain model.

That is why our simple model explains in which
domains of parameters the two-chain spin system
behaves like a one-sublattice quantum «easy-plane»
antiferromagnet, and where it behaves like a two-
sublattice one. Note also that the phase transitions
we study here are manifestations of the commen-
surate—incommensurate phase transitions for spin
systems. One can obviously see this, because the
intra-chain coupling for two spin chains can be
interpreted as the next-nearest-neighbor spin inter-
actions for a single spin chain of higher length
N+ + N− . Here the magnetic couplings are spin-
frustrated, and so the emergence of the incommen-
surate magnetic states is understandable.

As a consequence of the conformal invariance of
(1+1)-dimensional quantum systems, the classifica-
tion of universality classes is simple in terms of the
central charge (conformal anomaly C) of the under-
lying Virasoro algebra [17]. The critical exponents
in a conformally invariant theory are scaling dimen-
sions of the operators within the quantum model.
They can be calculated considering the finite-size
(mesoscopic) corrections for the energies and quasi-
momenta of the ground state and low-lying excited
states. Conformal invariance formally requires all
gapless excitations to have the same velocity
(Lorentz invariance). The complete critical theory
for systems with several gapless excitations with
different Fermi velocities is usually given as a
semidirect product of these independent Virasoro
algebras [18]. Here we briefly sketch the procedure
and write the results for the finite-size corrections
to the energy, following the standard procedure;
see, e.g., Ref. 18. One can see that for θ < θc and
for θ > θc , h < hc , the conformal limit of our
uniaxial two chain spin-1/2 model corresponds to
one level-1 Kac—Moody algebra (one WZW model
of level 1 with the conformal anomaly C = 1). The
finite-size correction to the energy is rather stand-
ard (cf. [18]):

Efs
 (N+ + N−) = − 

π
6
 v

F
 + 2πv

F
 (∆

l
 + ∆

r
) , (14)

where vF is the Fermi velocity of the spinon, and
the conformal dimensions of the primary operators
are (please note that the lower indices denote the
conformal dimensions for right- and left-moving
quasiparticles, at the right and left Fermi point,
respectively)

2∆ 
l,r = 





∆M
2z

 ± z∆D




2

 + 2n
l,r , (15)

where ∆M is an integer denoting the change of the
number of particles induced by the primary ope-
rator; ∆D is an integer (half-integer) denoting the
number of transferred particles from the right to the
left Fermi point (back scattering processes); and
nl,r are the numbers of particle—hole excitations of
right- and left-movers. The values of the quantum
numbers are restricted by ∆D = ∆M/2 (mod 1).
The dressed charge z = ξ(Q) is the solution of the
(standard) integral equation [18]

ξ(u) + ∫
(Q)

 dv K(u − v)ξ(v) = 1 (16)

taken at the limits of integration (these are the
Fermi points, symmetric with respect to zero).
In this phase there is only one region of integration
over v. The dressed charge is a scalar. The behavior
of our class of models in this phase in the confor-
mal limit is rather standard [18]. The correlation
functions decay asymptotically ∝ (x − vF t)−∆

l ×
× (x + vF t)−∆

r. The choice of the appropriate quan-
tum numbers of excitations ∆M, ∆D, and nl,r is
determined for the leading asymptotic terms of the
correlators by taking the possible numbers with
smallest exponents.

But for θ > θc , h > hc , the conformal limit of
the «easy-plane» two-chain spin-1/2 model corre-
sponds to the semidirect product of two level-1
Kac—Moody algebras, both with conformal anoma-
lies C = 1, i.e., to two WZW models both of level
1 [9,10]. The Dirac seas (i.e., the possible spinons
with negative energies) are in the intervals
[−Q+, −Q−] and [Q−, Q+] (minima in the distribu-
tions of rapidities at +− θ). This can be interpreted as
symmetrically distributed (around zero) Dirac seas
of «particles» for [−Q+, Q+] and the Dirac sea of
«holes» for [−Q−, Q−]. In fact the valley in the
density distribution for «particles» and the maxi-
mum for «holes» are in one-to-one correspondence
with the maxima and minimum of the dispersion
law for spinons. The second critical field hc in this
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language corresponds to the van Hove singularity
of the empty band of «holes». Naturally, the Fer-
mi velocities of «particles» are positive, vF

+  =
= (2πρ(Q+))−1ε′(u)|u=Q+  , while the Fermi veloci-
ties of «holes» are negative vF

−  = − (2πρ(Q−))−1 ×
× ε′(u)|u=Q− . The finite-size corrections to the en-
ergy for this case are

E
fs

(N+ + N−) = − 
π
6
 (vF

+  + v
F
− ) +

+ 2π


v

F
+ (∆l

+ + ∆
r
+) + v

F
− (∆

l
− + ∆

r
−)



 , (17)

where the dispersion laws of «particles» and
«holes» are linearized about the Fermi points for
each Dirac sea. The conformal dimensions of the
primary operators are (the upper indices denote
Dirac seas; the lower indices denote right and left
Fermi points of each of these two Dirac seas,
cf. [10] for the isotropic spin-1/2 two-chain mo-
del):

2∆
l,r
+−  =

= 




(x−±∆M+− x+±∆M−)

2det x̂
 +−

(z−±∆D+− z+±∆D−)

2det ẑ





2

 + 2nl,r
+−  ,

(18)

where the minus sign between the terms in square
brackets corresponds to the right-movers and the
plus sign to the left-movers. Here ∆M± denote the
differences between the numbers of particles excited
in the Dirac seas of «particles» and «holes» labeled
by the upper indices. ∆D± denote the numbers of
backward scattering excitations, and nl,r

±  are the
numbers of particle—hole excitations for right- and
left-movers of each of the Dirac seas (for «parti-
cles» and «holes»). Please note that ∆M± and ∆D±

are not independent. Their values are restricted
by the following relations: ∆M+ − ∆M− = ∆M and
∆D+ − ∆D− = ∆D, where ∆M and ∆D determine in
a standard way the changes of the total magnetiza-
tion and the total momentum of the system, res-
pectively, due to excitations. Please note that in
Refs. 10, 19 these restrictions were missing; this
resulted in, for example, the invalid statement that
four independent backscattering low-lying excita-
tions are possible. However one can see that only
two of them are really independent. The same is
true for excitations that change the total magnetiza-
tion of the system: there are only two independent
of four possible such excitations. This is a direct
consequence of the fact that only one magnetic field

determines the filling of the two Dirac seas for
«particles» and «holes» or, in other words, two the
two Dirac seas for spinons at ±θ.

The dressed charges xik(Qk) and zik(Qk)
(i, k = +, −) are matrices in this phase. They can be
expressed by using the solution of the integral
equation [18,20]

f(u|Q±) = 













  ∫
−Q

+

Q
+

 − ∫
−Q−

Q
−

  













 K(u − v)f(v|Q±) = K(u − Q±)

,   

(19)

with [18]

z
ik

(Qk) = δ
i,k + (−)k 

1
2
 











∫
Q

i

∞

 − ∫
−∞

−Q
i

  












 dv f(v|Qk) ,   

x
ik

(Qk) = δ
i,k − (−)k ∫

−Q
i

Q
i

 dv f(v|Qk) .

(20)

Note that the dressed charges depend on the value
of the magnetic anisotropy γ via the kernels, while
they depend indirectly on the value of the in-
trachain coupling constant θ, only via the limits of
integration. In the first-order approximation one
can write the solutions as

x
ik

(Qk) ≈ δ
i,k − (−)k ∫

−Qi

Qi

 dv K(v − Qk) + ...

and

z
ik

(Qk) ≈ δ
i,k + (−)k(1/2)











∫
Q

i

∞

 − ∫
−∞

−Q
i

  












 dv K(u − Qk) + ...

The Dirac sea for «holes» disappears, naturally for
h → hc , θ → θc . The slopes of the dressed energies
of «particles» and «holes» at the Fermi points of
the Dirac seas (Fermi velocities) differ in general
from each other. Therefore we have a semidirect
product of two algebras. Hence, in this region the
dressed charges are 2×2 matrices. This means that
the conformal limit of the «easy-plane» two-chain
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spin-1/2 model corresponds to one or two WZW
theories, depending on the values of the intrachain
coupling, magnetic anisotropy, and magnetic field.
At the critical line hc the Dirac sea of «holes»
disappears as well as the components of the dressed
charge matrix x̂ (with square root singularities of
the critical exponents for the correlation functions).
Note that the dressed charge z becomes z = (2x)−1 at
the phase transition line hc . This corresponds to the
disappearence of one of the WZW CFTs. Unfortu-
nately, it is impossible to obtain an analytical
solution to Eqs. (19) in closed form for a finite
interchain coupling θ. Naturally, in the limiting
cases of two independent chains of lengths N± ,
θ → ∞, and a single chain of length N+ + N− ,
θ = 0, the solutions of Eqs. (16), (19), (20) coin-
cide with the well-known solutions (see Ref. 18).
The correlation functions of the uniaxial two-chain
spin-1/2 model decay algebraically in this phase
∝ (x − vF

+ t)−∆
l
+
(x − vF

−t)−∆
l
−
(x + vF

+ t)−∆
r
+
(x + vF

− t)−∆
r
−

with the minimal exponents of the possible quan-
tum numbers of excitations ∆M±, ∆D±, and nl,r

± . We
point out once more that the same magnetic field
plays the role of a chemical potential for the «par-
ticles» and «holes», or for the spinons of both Dirac
seas in the second phase, and hence this choice of
«minimal quantum numbers» is constrained.

We must point out here that there is a crucial
difference between our situation and the case of
dressed charge matrices appearing for systems with
the internal structure of bare particles [18]. There
the two Dirac seas of the ground states are con-
nected with different kinds of excitations, e.g.,
holons and spinons for the repulsive Hubbard
model, or Cooper-like singlet pairs and spinons for
the supersymmetric t−J model. They correspond to
two different kinds of Lagrange multipliers, chemi-
cal potentials, and magnetic fields. Thus the low-
lying excitations of the conformal theories in the
spin and charge sectors of these correlated electron
models are practically independent of each other
(spin—charge separation). Note that the spin and
charge sectors are connected via the off-diagonal
elements of the dressed charge matrix, though. This
is a consequence of the fact that, say, holons or
unbound electrons carry both charge and spin. On
the other hand, two Dirac seas appear for the same
kinds of particles for the models studied in this
paper, which are also connected with the same
magnetic field governing the filling of both Dirac
seas. These seas appear due to two minima in the
bare energy distribution and correspond to nonzero
shift θ in the Bethe ansatz equations. In other
words, the two Dirac seas are determined by the

interchain coupling and appear if the values of the
coupling and external magnetic field are higher
than the threshold values θc and hc , respectively.
We believe that such a threshold behavior does not
depend on the integrability of the model and is a
generic feature for any multi-chain quantum spin
models.

The low-temperature Sommerfeld approximation
shows that, as usual, the low-temperature specific
heat off the critical lines is proportional to T. On
the critical lines the van Hove singularities produce
√T low-temperature behavior of the specific heat,
while at the tricritical point we have T1/4 behavior.

What are the changes due to the different
lengths of the chains N+ ≠ N−? One can see
obviously that the values of the spinon mo-
mentum, energy, and velocity (which was v =
= (π/γ) sin γ tanh (πθ/γ)) become functions of
N+ − N− . For example, the velocity renormalizes as
v → v[1 + (N+ − N−)2 tanh2 (πθ/2γ)/N2]−1. This
introduces dependences of the critical values θc and
hc (as well as of the saturation field hs) on the
difference N+ − N− . Also, the Fermi velocities and
Fermi points for finite-size corrections become de-
pendent on this difference. One can in principle
consider different coupling constants J± for each of
the chains (overall multipliers [21]). This produces
renormalizations similar to the effect of N+ ≠ N− ,
i.e., the velocity, for example, renormalizes as
v → J+ v[1 + (J− /J+)2 tanh2 (πθ/2γ)]−1.

3. Connections to the quantum field theories

The studies presented in the previous section,
being rather standard (note, though, some impor-
tant new features, which were absent in the pre-
vious studies [4,9,10,11,13,19], such as the depend-
ence of the critical values of the interchain coupling
and external magnetic field on the parameter of
magnetic anisotropy and on the difference in the
lengths of the chains; also the important restrictions
on the quantum numbers of low-lying conformal
excitations). However, we will use the results of
that Section for novel studies for a wider classes of
exactly solvable models in Sections 3–5. For in-
stance, in this Section we point out the important
similarities in the behaviors of the two-chain quan-
tum spin model considered in the previous Section
and several models of QFT.

Really, when examinating Eqs. (1), one can see
that these Bethe ansatz equations coincide with the
equations which describe the behavior of the spin
(color) sector of some QFT. N± corresponds to the
numbers of (bare) particles with positive and nega-
tive chiralities. For example, for the chiral-invari-
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ant Gross—Neveu model [14,22] we have to put
γ → 0 (i.e., the SU(2)-symmetric case, equivalent
to the SU(2)-symmetric Thirring model), and
θ = (1 − g2)/2g, where g is the coupling constant of
the chiral invariant Gross—Neveu QFT [14]. As to
the Lagrange multiplier h, it can play the roles of
either an external magnetic field or the chemical
potential, or an external topological field dual to
the topological Noether current in QFT. Here we
point out that in fact in QFT the theorists are
interested in physical particles, which have a finite
mass (gap). In the chiral-invariant Gross—Neveu
model the gap of the staggered oscillations of the
two-chain quantum spin model plays the role of the
physical mass of the particle (spinor) [13,14]. As to
the (gapless) oscillations of the magnetization of
the two-chain spin model, we point out that they
are consequences of the lattice and play the role of
the massless fermion doublers of the lattice
QFT [23]. The results of the previous section mean
that the behavior of the chiral-invariant Gross—
Neveu model (or SU(2)-symmetric Thirring model)
in an external magnetic field depends strongly on
the coupling constant θ (or equivalently on g).
For θ < θc the conformal limit of the QFT cor-
responds to one level-1 WZW model with the
conformal dimension C = 1. However, for θ > θc
(−θc − √θc

2 + 4 < 2g < −θc + √θc
2 + 4) the confor-

mal limit of this QFT in an external magnetic field
corresponds to the semidirect product of two level-1
WZW models with the conformal dimensions
C = 1. Two kinds of conformal points for this QFT
have been mentioned already [24] in a slightly
different context. They were connected with one
WZW theory or two WZW theories, coupled via
a current—current interaction. This is related
to right—left symmetry of the chiral invariant
Gross—Neveu QFT (see also Refs. 32,33 for the
case of the QFT for the principal chiral field).

Note that the condition h > hc in the QFT means
that the magnetic field is larger than the mass of the
physical particle (color spinor). In this sense, in the
region of magnetic field values h < hc the results of
the QFT (see, e.g., [22]) predict zero magnetiza-
tion; however, a different lattice regularization,
similar to the lattice scheme used in the previous
Section, predicts a nonzero magnetization of the
chiral-invariant Gross—Neveu model in this region.
This is an indirect effect of the fermion doublers. In
other words, it is connected with the well-known
mapping of the lattice (e.g., Thirring) model under
regularization onto two continuum QFTs either
both bosonic (the free bosonic and sine-Gordon
QFT [25]), or both fermionic ones (a free one and

the continuum massive Thirring model). There are
necessarily two such theories because of the Niel-
sen—Ninomiya fermion doublers: remember that we
have started from a lattice [23].

For other models of QFT the lattice regulariza-
tion procedure [26–28] has been used. Here θ plays
the role of the cutoff for keeping the mass of the
physical particle finite. For example, for the U(1)-
symmetric Thirring QFT [23,29] one can use the
results of the previuos section with the limit
θ → ∞ taken after the thermodynamic limit
(L, N± , M → ∞ with their ratios fixed, L is the
size of the box). In this case one can obviously
obtain the conformal limit of the theory with
nonzero physical masses of the particles. Naturally,
in the limit θ → ∞ we always exist, in an external
magnetic field, in the phase with two Dirac seas.
Here the latters correspond to the right- and left-
moving particles (with positive and negative chi-
ralities). Actually here our point of view coincides
with that of the field theorists. Recently it was
shown [30] that for the(1+1)-dimensional sine-Gor-
don model the lattice regularization scheme in the
«light-cone» approach gives results similar to ours
for the conformal limit of the model. It was shown
there that at the UV fixed point the conformal
dimensions of the sine-Gordon model are deter-
mined by two U(1) charges of excitations (the
usual one and the chiral charge). The chiral charge
corresponds to the number of excitations transferred
from one Dirac sea to the other, similar to our
results (note that the above-mentioned lattice-regu-
larized sine-Gordon case corresponds in our notation
to θ → ∞, where the integral equations for the
particles with the positive and negative chiralities
are totally decoupled). We point out here, that
such behavior is not unexpected, because the sine-
Gordon QFT belongs to the same class of models
studied in our paper, i.e., its Bethe ansatz descrip-
tion features a shift of rapidities in the Bethe ansatz
equations in the lattice-regularized theory [30].

4. Higher spin (chirality) generalizations

For the higher spin generalizations of the Bethe
ansatz theory presented in Section 2 we can write
the BAE in the form

∏ 

±

e
n

±

N± (uα ± θ) = e
iπM

  ∏ 

β=1,β ≠ α

M

 e2(uα − uβ) , (21)

where n± = 2S± are the values of the spins in each
chain or the colors of the bare particles in QFT. The
eigenvalue of the transfer matrix can be written as

Commensurate-incommensurate phase transitions for multichain quantum spin models

Fizika Nizkikh Temperatur, 2000, v. 26, No 2 189



Λ(λ) = ∏ 

α=1

M sinh (λ − uα + iγ/2)

sinh (uα − λ + iγ/2)
 +

+ e
iπM

 ∏ 

±





sinh (λ ± θ)

sinh (iγn± /2 − λ+−θ)




N
±

 ×

× ∏ 

α=1

M sinh (uα − λ + 3iγ/2)

sinh (λ − uα − iγ/2)
 . (22)

Similar new phases with one or two kinds of
Dirac seas for similar kinds of low-lying excitations
also exist for a number of models in which n± ≠ 1,
e.g., for the higher-spin (S > 1/2) two-chain mo-
dels with equal spins in each chain, SU(n + 1)

CIGN QFT [31]: there n+ = n− = n ≠ 1; for the
principal chiral field models (nonlinear σ model)
for CP-symmetric [32] (there n+ = n− → ∞) and
CP-asymmetric cases [33] (there n+ ≠ n− , (n+ +
+ n−) → ∞, (n+ − n−) fixed, i.e., the symmetry
SU(2) × SU(2) ∝ O(4)); and for the O(3)-symmet-
ric nonlinear σ model [34] as well as for spin-
(S+ ≡ 2n+) — spin-(S− ≡ 2n−) two-chain models
(quantum two-chain ferrimagnet). Note that for
spins S ≠ 1/2 the procedure of the construction of
the Hamiltonian is more complicated, because it
corresponds to the two-chain uniaxial generaliza-
tion of the Takhtajan-Babujian model; see, e.g.,
Ref. 35. For the simplest case of isotropic exchange
interactions between the spins and between the
chains the Hamiltonian has the form

H = ∑ 
n




θ2(HS

+
,S

+
,n

1
,n

1
+1 + HS

−
,S

−
,n

2
,n

2
+1) + 2(H

S
+
,S

−
,n

1
,n

2

 + H
S

−
,S

+
,n

1
,n

2
+1) +

+ 


(HS

+
,S

+
,n

1
,n

1
+1 + H

S
−
,S

−
,n

2
,n

2
+1), (H

S
+
,S

−
,n

1
,n

2

 + H
S

−
,S

+
,n

1
,n

2
+1) 




 +

 + 2iθ 


(H

S
+
,S

+
,n

1
,n

1
+1 + HS

−
,S

−
,n

2
,n

2
+1), (H

S
+
,S

−
,n

1
,n

2

 + H
S

−
,S

+
,n

1
,n

2
+1) 




 



 , (23)

where [...]{[...]} denote the (anti)commutator,

H
S

1
,S

2
,n,n+1 =

=   ∑ 

j=|S
1
−S

2
|+1

S
1
+S

2

         ∑ 

k=|S
1
−S

2
|+1

j

    
k

k2 + θ2
    ∏ 

l=|S
1
−S

2
|

S
1
+S

2

   
x − x

l

x
j
 − x

l

,

(24)

x = S1,n S2,n+1 and 2xj = j(j + 1) − S1(S1 + 1) −
− S2(S2 + 1). The summation over n runs to N±
in each chain. One can obviously see that for
S± = 1/2 the Hamiltonian (23) recovers the iso-
tropic antiferromagnetic spin-1/2 Hamiltonian (4)
investigated in Section 2. For a single spin chain,
θ = 0, N+ = N− the Hamiltonian coincides with the
known Hamiltonian of alternating spin chains [36–
38]. The Bethe-ansatz studies of the model for n±
can be performed in complete analogy with the
above-mentioned case n± = 1, keeping in mind, of
course, the main difference: for the SU(2)-symmet-
ric or uniaxial higher-spin models the ground state
corresponds to the filling up of the Dirac seas for
spin strings of lengths n± [35]. The well-known
fusion scheme can be used for the case of a flavor-
degenerate situation of the chiral invariant Gross—
Neveu QFT, in the absence of flavor fields [39].

Note that, except for the O(3)-symmetric case,
γ = 0 everywhere in the above-mentioned models of
QFT. This corresponds to rational solutions of the
Yang—Baxter equation for the two-particle scat-
tering matrices. For the two spin chains the two-
chain quantum ferrimagnet model corresponds to
two Takhtajian—Babujian chains with different
values of the site spins, coupled due to nonzero θ.
The total quasimomentum and the energy of the
system in the framework of the lattice (local) regu-
larization scheme for some QFT can be written
as [23]

− 2a
t
 E = ∑ 

±

 ∑ 

α=1

M
∂

∂uα

 N± ln e
n

±
(uα ± θ) ,

iaP = ∑ 

±

 ∑ 

α=1

M

N± ln e
n

±
(uα ± θ) ,

(25)

where a and at denote the space and time lattice
constants, respectively, and their ratio fixes the
velocity of light («light-cone» approach). The CP-
symmetric (chiral invariant) case corresponds to the
situation in which n+ = n− = n. The Dirac seas are
related to the dressed (quasi)particles with negative
energies (strings of length n±). The behavior of the
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dispersion law for excited particles in the CP-sym-
metric case (n+ = n− = n and N+ = N−) is similar
to Eq. (12): for instance, for the chiral-invariant
Gross—Neveu QFT and principal chiral field model
the right-hand side of Eq. (12) must be simply
multiplied by sin (πr/n+1)/sin (π/n + 1), and the
parameter θ in Eq. (12) has to be replaced by
(n + 1)θ/2, r = 1, ..., n is the rank of a fundamental
representation of the SU(n + 1) algebra. All the
previously mentioned characteristic features from
the case n± = 1 persist. The differences are in the
levels of the Kac—Moody algebras in the conformal
limit: the conformal anomalies are C = 3n/(n + 2).
Now the conformal field theory is a semidirect
product of a Gaussian (C = 1) [40] and a Z(n)
parafermion models [41]: the operators identified
from the scaling behavior of states consisting of
Dirac sea strings only (found from finite-size correc-
tions) are found to be composite operators formed
by the product of a Gaussian-type operator and the
operator in the parafermionic sector. To find the
nonzero contributions from parafermions (constant
shifts) one can consider the states with strings
of other lengths than the Dirac sea present [42].
For the scaling dimensions these shifts are
(2r − r2)/(2n + 4), r = 1, 2, ...

From now on we concentrate on the n+ ≠ n−
situation. For the two-chain spin system the situ-
ation corresponds to the quantum ferrimagnet. Here
we point out that due to the zigzag-like interactions
in the system and spin frustration the ferrimagnets
of this class are in the singlet ground state (compen-
sated phase) for h = 0, unlike the standard classical
ferrimagnets in uncompensated phases. The integral
equations that determine the physical vacuum of the
systems are similar to Eqs. (5) and (6). They reveal
one or several minima of the corresponding distribu-
tions of dressed energies and densities with possible
negative energy states, i.e., one or several Dirac
seas:

ετ(u) +∫dv Kττ′(u − v)ετ′(v) = h 
Nτ
N

 nτ + ∑ 

±

N±
N

 ετ,±
0  ,

ρτ(u) + ∫ dv Kττ′(u − v)ρτ′(v) = ∑ 
±

N±
N

 ρτ,±
0  .

(26)

The index τ enumerates two possible Dirac seas and
appears because n+ ≠ n− , and the ± enumerate two
possible minima due to the nonzero shift θ. The
index τ was naturally absent for the CP-symmetric
case n+ = n− . Note that for quantum two-chain
ferrimagnets the investigated gapless phases in the
ground state in an external magnetic field are simi-

lar to the spin-compensated and uncompensated
phases. Thus the phase transition between those
phases is similar in nature to the well-known spin-
flop phase transition in the classical theory of mag-
netism. Note, though, that the spin-flop transition
is of the first order («easy-axis» magnetic anisot-
ropy), while the transition under study is a second-
order one ( «easy-plane» anisotropy). The Fourier
transform of the kernel is given by

2 coth (ω/2) ×

× [diag(e−n
+
|ω/2|cosh (n+ω/2), e−n

−
|ω/2|

 cosh (n− ω/2)) −

σ̂
x
 (e−(n

+
−n

−
)|ω/2|

 − e
−(n

+
+n

−
)|ω/2|

)] , (27)

where diag (a, b) is 2×2 diagonal matrix and σ̂x is
the usual Pauli matrix. Note that after taking the
limit (n+ + n−) → ∞, which is the case of the CP-
asymmetric case of the QFT for the principal chiral
field, i.e., with the Wess—Zumino term [33], the
inverse kernel coincides formally (up to a constant
multiplier) with the one for the case n+ = n− = 1.
This indicates a global O(4) (O(3)) symmetry of
the principal chiral field [33]. There may also be
two different behaviors, corresponding to one or
several Dirac seas for n+ ≠ 1 or n− ≠ 1. Naturally, in
the conformal limit the associated WZW CFTs have
different conformal anomalies determined by n± :
C± = 3n±/(n± + 2). For the determination of the
Gaussian parts of the conformal dimensions of pri-
mary operators, Eqs. (18) can be used. One has
to add the input from the parafermionic sectors
too [41,42]. The elements of the dressed charge
matrices are the solutions of the following system of
integral equations:

ξτ,τ′(u) + ∑ 

±
∫ dv Kτ′(u − v)ξτ,±(v) = δτ,τ′ ,    (28)

in which the summation over ± is due to the two
possible Dirac seas (two minima in the distribution
of rapidities) at ±θ. For different values of the
spins, n+ ≠ n− , a transition between two different
phases is induced by increasing an external mag-
netic field to some critical value, even in the ab-
sence of the shift θ [37,38]. This differs from the
CP-symmetric case n+ = n− , where the phase tran-
sition is only connected with the nonzero value of
the intrachain coupling parameter θ. For the CP-
symmetric case, one or two Dirac seas of the same
type of excitations exist due to the nonzero θ. But
in the CP-asymmetric case the existence of two
Dirac seas can be related to two kinds of different
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low-lying excitations (particles). They are strings
of lengths n+ and n− , respectively. In this situation
the dispersion laws may be independent (not only
factorized as for the previous CP-symmetric cases).
The (new) phase transition at hc reveals the van
Hove singularity of the empty Dirac sea for the
longer strings. The spin saturation field hs is con-
nected with the empty Dirac sea of strings of the
smaller length.

5. Multi-chain quantum spin models

It is worthwhile to mention that phase transi-
tions in an external magnetic field, similar to the
ones studied in this paper for uniaxial spin chains
and QFT, have been already studied in 1D quantum
alternating single spin chains [37,38], spin-1/2 iso-
tropic two-chain models [9,10], and correlated elec-
tron models with the finite concentration of mag-
netic impurities [43]. The Bethe ansatz equations
for those models are similar to the ones studied in
the present paper, Eqs. (1), (21). Note that the
energies for spin models are defined (as usual for
the lattice models) as the first logarithmic deriva-
tives of the transfer matrices. The factorization of
the dispersion law for the lowest excitations (spi-
non) reveals essentially two kinds of magnetic oscil-
lations: excitations of the magnetization and oscil-
lations of the staggered magnetization, i.e., the
manifestation of essentially two magnetic sublat-
tices. Naturally, the existence of the latters persists
in the continuum limit of such systems, too (cf.,
for instance, the standard theory of antiferromag-
netism). Two nonferromagnetic phases also reveal
themselves in finite-size corrections to the energies
of these quantum spin models. There, instead of a
scalar dressed charge for the phase with one Dirac

sea for spinons, 2×2 dressed charge matrices appear
in the second phase, with two Dirac seas for spin
strings of different lengths in an alternating spin
chain [37,38] or for spinons of the same kind in
zigzag-like coupled spin chains (see [9,10] for the
isotropic two-chain spin-1/2 model).

The symmetry-breaking terms [the difference
(n+ − n−) = 2(S1 − S2), or nonzero θ] in BAE are
actually the reason for the emergence of several
gapless phases (or two Dirac seas) in the ground
state in an external magnetic field. It is also inter-
esting to note that a homogenuous shift of rapidities
can be removed for one Dirac sea in the case of
periodic boundary conditions by an appropriate uni-
tary (gauge) transformation (shift of variables),
e.g., uα → uα ± θ. But in the case of open boundary
conditions, the BAE take the form (for reasons of
simplicity we write the free boundary situation
only, without the external boundary potential):

∏ 

±

e
n

±

2N(uα ± θ) = ∏ 

±

∏ 

β

e2(uα ± uβ) . (29)

It is clear that for the open chain one cannot remove
the shift θ of the rapidities uα from one Dirac sea by
a special choice of the gauge. From this point of
view the latter case is close to the CP-asymmetric
situation in QFT.

One can see from the structure of the Hamilto-
nians that for the two-chain spin models the pa-
rameter θ characterizes the intrachain coupling for
each chain (or the next-nearest-neighbor interaction
in a single spin chain picture). It is obvious to
introduce the series of {θj}j=1

J  (for each chain) and
to construct the Hamiltonian of the exactly integ-
rable multichain (J is the number of chains) spin
model. For the simplest case of all S = 1/2 isotropic
antiferromagnetic chains the Hamiltonian reads [4]:

Ĥ
J
 = A ∑ 

n










 






 ∏ 
i,k

(θ
i
 − θ

k
)






 P̂

S
n,r

S
n+1,r

 +

+ ∑ 
p < q

Πi,k(θ
i
 − θ

k
)

(θ
p
 − θ

q
)

 

P̂S

n,q
S

n+1,p
 , P̂

S
n,q

S
n+1,q

 + P̂
S

n,p
S

n+1,p



 + ... + 










 ∑
j=1

J

 P̂
S

n,j
S

n,j+1

 − P̂
S

n,J
S

n,J+1
 + P̂S

n,J
S

n+1,1










 









 ,   (30)

where A is the normalization constant (which de-
pends on θj); P̂Sa Sb

 ∝ (1/2)Î ⊗ Î + 2Sa ⊗ Sb is the
permutation operator; and [.,.] denotes a commuta-
tor. Note that in the case of J ≠ 2 the integrable
model corresponds to the pair couplings not only
between the nearest-neighbor spins but also to the

next-nearest three-spin, etc., couplings. All those
terms are only essential in quantum mechanics,
because in classical physics they are total time
derivatives [11] and do not change the equations of
motion. The Bethe ansatz equations have the form
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∏ 

j=1

J

e1
N

j(u
m
 + θ

j
 − θ1) = e

iπM
 ∏ 

k

M

e2(um − u
k
) ,

(31)

where M is the total number of down spins and Nj
is the number of sites in the jth chain. The pre-
viously studied situation J = 2 corresponds to the
shift of the variables um → um + θ with
θ2 − θ1 = − 2θ. Now θj − θ1 determines the values of
the intrachain couplings in chain j.

The analysis of the low-temperature thermody-
namics of the multichain spin system is analogous to
the situation of J = 2 studied in Sections 2–4. From
the structure of the Bethe ansatz equations in the
thermodynamic limit Nj , M → ∞, with their ratios
fixed, one can see that for the J-chain model (for
different θj) there can exist, generally speaking, J
phase transitions of the second order in the ground
state in an external magnetic field. These are none
other than the commensurate—incommensurate
phase transitions for the quantum multichain spin
model with different couplings between the chains.
The values of the critical fields hc1

 , ..., hcJ−1
 and

the value of the magnetic field of the transition to
the ferromagnetic state hs depend on the set of θj ,
i.e., on the intrachain couplings (and also on the
values of the magnetic anisotropy constants, which
can be taken different for each chain; this does not
destroy the integrability). The ferromagnetic state
is gapped, while all other phases are gapless in the
integrable multichain spin quantum model. There
are also J − 1 tricritical points at which the lines of
the phase transitions hcj join the line of the spin-
saturation phase transition. Naturally, the phase
that corresponds to the lowest value of the magnetic
field, say h < hc1

 for special values of θj (the
condition is similar to θ < θc for J = 2), has in the
conformal limit one scalar dressed charge. Hence, in
the conformal limit our multichain spin model be-
haves as the level-1 WZW CFT. In the next phase
the multichain quantum spin model behaves as the
semidirect product of two WZW CFTs, hence their
dressed charges are 2×2 matrices, and so on, until
the last gapless phase, which corresponds to the
semidirect product of J WZW CFTs with J × J
dressed charge matrices. Note that J in this ap-
proach also denotes the number of possible Dirac
seas (each of them is connected with the same
magnetic field, so the excitations in each of them
are not independent), and thus, with one-half of the
number of Fermi points. In the limit J → ∞ (i.e.,
quasi-2D spin system) one obtains the (2D) Fermi
surface instead of the set of 1D Fermi points (the
latter become distributed more closely to each other

with the growth of J). In this limit the differences
between θj tend to zero, and that is why the
differences between θcj

 , hcj
 , and also between hcj

and hs disappear, too. Therefore in this limit only
hs survives. This means that for the quasi-2D limit
of such an integrable model of J coupled quantum
spin chains for J → ∞ we expect only two phases in
the ground state in an external magnetic field: the
ferromagnetic gapped one and the gapless phase,
which in the conformal limit corresponds to one
WZW CFT (with a single scalar dressed charge).
The phase transition between these two phases in
the ground state in an external magnetic field is of
the second order.

6. Behavior of the nonintegrable multichain
spin systems

So far we have studied only integrable mul-
tichain quantum spin models. We have shown that
the commensurate—incommensurate phase transi-
tions of the second order have to reveal themselves
in an external magnetic on account of the intrachain
interactions (or the next-nearest interactions in a
single quantum spin chain picture). We have shown
that the emergence of these phase transitions does
not depend on the value of the site spins; they
emerge in the presence of «easy-plane» magnetic
anisotropy, which keeps the system in the critical
(gapless) region. It is not clear, however, which
features of the behavior of the integrable models
with the «fine-tuned» parameters have to exist for
more realistic multichain models, and what are the
qualitative differences that are expected to exist
between the integrable multichain models and real
multichain spin systems.

We have to add one more thing to clarify the
situation: we study (quasi)-1D spin quantum mo-
dels, for which one can use the Lieb—Schultz—Mat-
tis theorem (and its generalizations) [8,44]. How-
ever, it is obvious that due to the frustration of the
interactions between neighboring spins and the
presence of additional terms in the Hamiltonians
which violate the time-reversal and parity symme-
tries in the systems (spin chiralities or spin cur-
rents), for all of the spin models studied in this
paper one cannot satisfy the conditions of the theo-
rem. Hence it cannot be applied (at least not
directly). That is why for all the models studied
there are no spin gaps (except for the trivial one for
the spin-polarized ground state). (Here we are not
talking about the gaps connected with the magnetic
anisotropy but rather about the Haldane-like spin
gaps [45] which appear even for the isotropic
spin—spin interaction, and about fractional mag-
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netization plateaus [8]). As we argued before [11],
it is the presence of the chiral spin terms (or the
operators of the nonzero spin currents) in the
Hamiltonian (which are total time derivatives and
do not change the classical equations of motion but
rather affect the topological properties, like the
choice of the θ-vacuum in Haldane’s approach) is
the reason why the low-lying spin excitations (and
particles for lattice QFT) for our class of models are
gapless and our low-energy theories are conformal.
It has to be mentioned that recent results of the
perturbative RG analysis of the zigzag spin-1/2
chain without three-spin terms shows the tendency
of the RG currents to flow to the state with the
parity and time-reversal violation [46]. By the way,
one can obviously see that the XY limit of the
two-chain spin model does not correspond to the
free fermion point of the exactly solvable model,
and this coincides with the results of Ref. 46. Note,
though, that in the latter it was erroneously con-
cluded that the time-reversal and parity symmetries
were violated by the two-chain zigzag spin Hamil-
tonian with only two-spin couplings (i.e., the near-
est- and next-nearest-neighbor interactions in the
single chain picture), without spin current terms in
the Hamiltonian. Hence the symmetry of the state
considered was lower than the symmetry of the
Hamiltonian there.

Naturally, the relevant perturbations to our inte-
grable models will immedeately produce spin gaps.
As usual, the algebraic (power-law) decay of the
correlation functions in the ground state of the
models considered in this paper determines the
quantum criticality. This means that, starting from
the (conformal) exact solutions obtained in this
paper, one can argue that the response of the more
realistic spin systems to perturbations can be evalu-
ated by using perturbative methods, e.g., in a renor-
malization group framework. For example, let us
study the effect of relevant perturbations to the
Hamiltonians considered, Ĥr = Ĥ + δĤ1 , where
one can choose as Ĥr , e.g., the standard Heisenberg
or uniaxial Hamiltonians for several coupled quan-
tum spin chains, and as Ĥ the Hamiltonians of spin
chains considered exactly in this paper for some
values of θ, where the three-spin terms are relevant.
The correction to the ground state energy and the
excitation gap (mass of the particle in QFT) for the
quantum critical system are ∆E ∝ − δ(d+z)/y and
m ∝ δ1/y, respectively, where d is the dimension of
the system, and z is the dynamical critical expo-
nent. For the conformally invariant systems studied
here one has d = z = 1. The application of the stan-
dard scaling relations yields y + x = 2(= z + d),

where x is the scaling dimension, i.e., x =
= 2∆l + 2∆r , found in the previous sections (for the
phases with the dressed charge matrices the summa-
tion over upper indices is meant). Hence the gap for
the low-lying excitations (the mass of the physical
particles in QFT) for the perturbed systems will be
m ∝ δ1/2(1−∆

l
−∆

r
). Note that because of scaling, the

behavior of the critical exponents (which are re-
lated to the exponents we introduced for the inte-
grable multichain spin models) in the vicinities of
the lines of phase transitions has to be universal,
and this can be checked experimentally. We expect
that the spin gap has to exist for values of the
isotropic zigzag interchain coupling higher than or
of the order of 0.5 for the two-chain spin-1/2
system [9], where the three-spin couplings are rele-
vant and the emergence of the spin gap is known
exactly [47].

Very recently, density matrix renormalization
group numerical studies of the two-chain zigzag
spin-1/2 model (without chiral three-spin terms in
the Hamiltonian) were performed in Ref. 48. These
numerical studies strongly support the picture pro-
posed here (see also Ref. 9): the magnetization as a
function of the magnetic field in the ground state
reveals (i) one second-order phase transition (to the
spin-saturation phase) for weak intrachain coup-
ling; (ii) one more second-order phase transition
between the magnetic (gapless) phases in the inter-
mediate region of intrachain coupling, and (iii) in
addition to those second-order phase transitions,
one to the gapped phase with zero magnetization
(plateau) at an intrachain coupling value of 0.5.

We should also mention that it is not the chiral
spin terms (as implied in Ref. 10) but the in-
trachain coupling that is responsible for the com-
mensurate-incommensurate phase transitions be-
tween the gapless phases in this class of models. As
to the aforementioned spin currents, their «fine-
tuned» values produce the cancellation of the spin
gap for zero magnetic field [9]. We should also note
that to our mind some features of the phase diagram
obtained in Ref. 19 are artefacts of the small num-
ber of sites involved into the numerical calcu-
lations. In Fig. 5 of Ref. 19 in the regions
0.52 < κ < 0.6 (corresponding to intrachain coup-
lings, normalized to the value of the interchain
interaction, in the range [0.54–0.75]) we can obvi-
ously see that when increasing the value of the
magnetic field one goes from the gapped phase with
zero magnetization into the gapless one with two
Dirac seas of low-lying excitations, then reaches the
gapless phase with one Dirac sea, then returns to
the gapless phase with two Dirac seas, and finally
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reaches the spin-saturated phase. To our mind this
return to the already passed phase is nonphysical.
One can clearly see that the region of values of the
intrachain couplings in which these strange returns
happen is reduced in size when going from 16 sites
in the numerical calculations to 20 sites. This con-
firms that presently achieved sizes of the quantum
systems for numerical calculations can produce even
qualitatively invalid results, and analytical calcula-
tions are necessary, too.

We point out that despite the fact that the
relevant perturbations in general produce a gap for
the low-lying excitations, one can apply the results
of this paper to real gapless multichain spin sys-
tems, too. For example, it was recently observed
that even for the two-leg ladder system
SrCa12Cu24O41 the spin gap collapses under pres-
sure [49].

7. Concluding remarks

In this paper, motivated by recent progress in the
experimental measurements for multichain spin sys-
tems, we have theoretically studied the behavior in
an external field of a wide class of multichain
quantum spin models and quantum field theories.
First, we have investigated the external field beha-
vior of the exactly integrable two-chain spin-1/2
model and have shown that the inclusion of the
magnetic anisotropy of the «easy-plane» type, for
which the system stays in the quantum critical
region, does not qualitatively change the behavior
in an external magnetic field. However, we have
shown that the magnetic anisotropy changes the
critical values of the magnetic fields and intrachain
couplings at which the phase transitions occur, and
affects the critical exponents. We have shown that
the external-field-induced phase transitions we dis-
cussed are the commensurate—incommensurate phase
transitions due to the next-nearest-neighbor two-
spin interactions, which are present in these mul-
tichain models with zigzag-like couplings. We have
pointed out that the low-lying excitations of the
conformal limit of our class of multichain spin
models are not independent in the incommensurate
phase, because they are governed by the same mag-
netic field. We have shown that these two-chain
quantum spin models share the most important
features of the behavior in an external field with the
wide class of (1+1) quantum field theories.

We have introduced higher-spin versions of the
two-chain exactly solvable spin models, e.g., we
have investigated the important class of 1D two-
chain quantum ferrimagnets with different spin val-
ues at the sites of each chain. Here we have shown

that the phase transitions in an external magnetic
field in this exactly solvable two-chain quantum
ferrimagnet are similar in nature to the phase tran-
sitions between the spin-compensated and un-
compensated phases in ordinary classical 3D ferri-
magnets.

We have also studied the behavior of the mul-
tichain exactly solvable spin models in an external
magnetic field and shown how the additional phase
transitions arising due to the increasing number of
chains vanish in the quasi-2D limit. Hence, to the
best of our knowledge, we have proposed the first
exact scenario of the transition from 1D to 2D
quantum spin models in the presence of an external
magnetic field. We have argued that the commensu-
rate—incommensurate phase transitions in the mul-
tichain quantum spin models have to disappear in
the limit of an infinite number of chains.

Finally, we have shown how the relevant devia-
tions from integrability, i. e., the presence of three-
spin (spin chiral) terms in the Hamiltonians which
separately break the parity and time-reversal sym-
metries, give rise to gaps in spectra of the low-lying
excitations of the multichain quantum spin systems,
and we have calculated the critical scaling expo-
nents for these gaps. We pointed out the qualitative
agreement of our exact analytical calculations with
recent numerical simulations for zigzag spin models.
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