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Simulation of stochastic vortex tangle*
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We present the results of simulation of the chaotic dynamics of quantized vortices in the bulk
of superfluid He II. Evolution of vortex lines is calculated on the base of the Biot—Savart law.
The dissipative effects appeared from the interaction with the normal component, or/and from re-
laxation of the order parameter are taken into account. Chaotic dynamics appears in the system via
a random forcing, e.i. we use the Langevin approach to the problem. In the present paper we re-
quire the correlator of the random force to satisfy the fluctuation-dissipation relation, which im-
plies that thermodynamic equilibrium should be reached. In the paper we describe the numerical
methods for integration of stochastic differential equation (including a new algorithm for
reconnection processes), and we present the results of calculation of some characteristics of a vor-
tex tangle such as the total length, distribution of loops in the space of their length, and the en-
ergy spectrum.

PACS: 47.32.Cc, 67.40.Vs, 05.40.–a

1. Introduction

Quantized vortices appearing in quantum fluids in-
fluence many properties of the systems. In general, the
set of these vortices represents a chaotic vortex tangle
(VT) consisting of separated vortex loops (closed vor-
tex lines). To describe the influence of VT, it is neces-
sary to know the statistical description of VT at vari-
ous moments of time evolution because at different
processes quantized vortices reveal the different pro-
perties: thermodynamical equilibrium and nonequi-
librium (turbulent). For example quasi-equilibrium
features are essential in the process of fast quenching.
In turn, in experiments with thermal flows and/or
counterflows in He II a set of the vortices shows very
nonequilibrium (turbulent type) properties. The sta-
tistical descriptions of these two cases are strongly dif-
ferent. Thus the distribution of vortex loops on their
length n l dN l /dl( ) ( )� is governed by the formula [1]
n l l( ) � �5 2 in the case of the thermal equilibrium,
while in turbulent helium we have [2] n l l( ) � �4 3.
There exist many works devoted to numerical investi-
gations of vortex tangles and to turbulent state of he-
lium, e.g. [3–10]. Let’s note that the mentioned calcu-

lations have been done in the local approximation
framework. Originally simple vortex structures (VS)
with time turn into a very strongly tangled system. If
a self-crossing of the filaments happens in this system,
the reconnection of vortex line occurs and thus the
vortex loops divide or confluence. Reconnections
change the topology of vortex structures and affect
the evolution of a VT. In the papers mentioned above,
reconnection was simulated from the condition of the
equality between the local and nonlocal contributions
to the velocity of a vortex filament point, i.e., vnl �
� � �� � � �/ v c R/a / Rl2 40� ln( ) , where � � �2R/ c[
�ln( )]R/a0 is the minimal distance between the pair
of vortices, � is the quantum of circulation, R is the ra-
dius of curvature at the given point, c is the constant
(�1), and a0 is the cutting parameter concerning with
the radius of the vortex core. Thus, in those works
only the distance between the points of a vortex line
was chosen as the criterion for reconnection. In our
opinion, this is slightly incorrect approach, because
the elements of filaments can go away from each other
and the crossing may not occur. In contrast to the
mentioned above papers, we consider the entire
Biot—Savart equation. Moreover, we take into ac-
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count possible random disturbances in the system of
vortices. The disturbances are simulated by addition
of a new term to the Biot—Savart equation. The de-
tails see below. This statement is conventional for the
description of dynamical systems with stochastical
perturbations. Moreover, in this work the following
condition of reconnections is proposed: if the elements
of a VT have intersected during the temporal step of
the calculation, the reconnection occurs.

2. The problem statement and the dynamical
equation

We consider the dynamics of vortex loops in
three-dimensional infinite space. The induced velocity
of helium at a point r is defined by the Biot—Savart
law:
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The formulae for the velocity of vortex line points,
while without dissipation, takes the form [3]:
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where S( , )� t is the radius-vector of the vortex line
points, � is a parameter, in this case the arclength, S�
is the arclength derivative, S
 and S� are the lengths
of two adjacent line elements that hold the point s be-
tween, and the prime denotes differentiation with re-
spect to the arclength � . The second term of Eq. (1)
is the local part of the velocity the first term is the
nonlocal part obtained by integration on the rest of
the vortex line and on all of the other loops. Taking
into account the frictional force of vortices and the
normal component of helium and the rapidly fluctuat-
ing random term (Langevin’s force), we obtain the
equation for the dynamics of a point of the vortex
line:

� � [ ( � )]S S S v Sn� 
 �� � �0 0�

� � �� �� � 
� �S S v Sn[ ( � )] ( , )0 A t , (2)

where

� � �A t( , )� 0, � � �A t A ti j( , ) ( , )1 1 2 2� �

� � � � � � � �D t t D n t n tij ij� � � � � �� � �( ) ( ) ( ) ( ) ( ) ,1 2 1 2 1 2

i j, are the spatial components; t t1 2, are the arbitrary
time moments; � �1 2, define any points on the vortex
line; D is the intensity of the Langevin’s force; � �, �
are the friction coefficients; n t( ) is the Gaussian white

noise with n t( ) � 0, n t n t t t( ) ( ) ( )� � � �� . Let’s as-
sume further that the difference between the normal
and the superfluid velocities of helium equals to zero
v n � 0 and neglect the term with ��. This statement
correspond to absence of a heat flow. Thus, finally we
obtain the dynamical equation for a vortex line:

� � � ( ) ( )S S S S� � �� 
0 0� � � n t . (3)

In the integral form Eq. (3) is as follows:
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the standard Wiener process. In our model the initial
conditions is six completely symmetrical rings with
orientation making the total impulse of the system
equal to zero.

3. The numerical algorithm and the description
of reconnections

The Eq. (4) was solved by the Euler method:

S S hB t hn n n n
 � 
 
1 ( ) ( )� � � �, ,

where Sn is the approximate solution of the equation
in a mesh point on time tn ; h is the integration step on
time in a mesh point tn ;� ��n is the consistency of in-
dependent between itselves normal random vectors
with independent between itselves components in the
aggregate �n j, ( , , )j � 1 2 3 , having zero expectation
value and the dispersion is 1. The component of vec-
tor �n was calculated by formula: � �n j, ln� � �2 1
� cos ( )2 2�� , where �1 and �2 is random numbers
from the interval (0,1) obtained by a pseudoran-
dom-number generator. The Euler method is the first
order on the mean-square approximation in the time
step. The functions S S S� ��, , �

0 were calculated as in
paper [3]. To keep the calculation procedure coher-
ent, points on the vortex line were added and re-
moved was carry out as in the work [10].

The first step in the modeling of a reconnection
process is selection of point pairs that are the candi-
dates for reconnection. After the pairs was defined, it
was assumed that the line segments between each of
the pairs were moving with a constant velocity (ac-
cording V Vi j, ) during the time step, as illustrated in
Fig. 1.

From the compatibility of equations
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it was determine the meeting of these line segments dur-
ing the time step. Here ( , ,x y zi i i , x y zi i i
 
 
1 1 1, , );
( , ,x y zj j j , x y zj j j
 
 
1 1 1, , ) are the coordinates of
the first and the second pairs of points, accordingly;
V V V V V Vx i y i z i x j y j z j, , , , , ,, , ; , , are the projections of
the velocities of the points and the line segments on

the coordinate axis. If the line segments had met, the
reconnection occurs. Thus, if originally the points be-
long to the same loop, a pair of new loops was gene-
rated. Otherwise the confluence of the loops occurs.

4. The results

The initial radii of rings were R � � �2 10 5 m. The
initial condition was chosen in a way that the total im-
pulse of the system was equal to zero. The rings were
situated symmetrically at equal distance in pairs
around the coordinate origin. The distance between
them was d � �10 5 m. The parameters in Eq. (2) are
� � 0 0098. , D � � �4 10 5 m/s.
Simulation was performed with a constant temporal

step h � � �5 10 8 s and initial steps along the vortex
line was �l0

72 10� � �� m. The steps �l along the vor-
tex line was controlled later by the procedure of in-
serting and removing of points, so that �l /0 2 �
� �� �l l2 0. It follows from Eq. (4) that small (or
those with a high curvature) loops move very rapidly
and their dissipation (decrease in the size) is very
high due to the friction. Therefore, small loops were
removed during our calculations. Kinks appearing on
vortex lines were removed also. For our case, the
loops were cancelled if there were less than 5 points.
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Fig. 1. The elements of vortex lines must to reconnect.

Fig. 2. The vortices at different times t, s: 4.30 � �10 5 (a), 9.792 � �10 4 (b), 1.0892 � �10 3 (c), 1.1444 � �10 3 (d). The con-
figurations are plotted in a three-dimensional view.



Vortex configurations at various time moments are
presented in Fig. 2. One can see a vortex structure
with drastic evolution in time. After numerous time
steps the system evolved into separated vortex tan-
gles. It was noted that during the evolution, the vor-
tex tangles arose and then vanished in different
places. It resembles us the favor intermittency phe-
nomenon in classical turbulence.

From the simulation, several quantities were calcu-
lated and plotted as functions of time (see Fig. 3).
One can see the phases of evolution for vortex struc-
tures. At the beginning, the total length, averaged
curvature, and the vortex lines density increase at a
steady volume. After a certain value of the density has
been archived, many of small loops developers and the
VT begin to decay. Later, one can observe a tendency
to a fluctuating steady state. However, after the time
t � 9.792 � �10 4 s, the volume suddenly begin to de-
crease. It is conform to disappearance of detached
loops (see Fig. 2,c,d). Then again the fluctuating
steady state is reached.

We made also calculations for some statistical
characteristics of a VS. The distribution of the loop
number vs. its length and the VC energy spectrum
were calculated. Figure 4 shows the distribution of

vortex loops on their length at the time region
t � 1.1443 s. Decreasing of the loops amount is de-
scribed by the following function: n l dl( ) ~ l–0.93. The
same dependence was observed both for different
times and for each vortex tangle within the vortex
structure. It is difficult to extract physically meaning-
ful results from this data. On the one hand, the equi-
librium has been reached. On the other hand, the dis-
tribution of vortex loops disagrees with the results
obtained for thermal equilibrium and turbulent sta-
tionary state.

The average kinetic energy of flow induced by a
vortex loop can be evaluated as follows [11]:
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where d k d dk k k k�  !� 2 sin is the elementary vol-
ume, k is the wave vector, and � s is the superfluid
density. For the isotropic case, the spectral density is
expressed as follows:
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where k is the wave number. It is seen that there exist
different regions of wave number k: small with re-
spect to ( )V /1 3, high with respect to 1/ L, and inter-
mediate values. In the region of small wave numbers,
E k k( ) � 2, and for high numbers, E k k( ) � �1.
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Fig. 3. Plots of the total lines l, the volume V, filed with vortices, and the vortex lines density L as functions of time.

Fig. 4. The distribution of the vortex loops on their
length at the time region t � 1.1443 s.



Figure 5 shows our numerical results of the VC
spectral density for the time t � � �11445 10 3. s . In the
region of small wave numbers, simulation data fits the
approximation E k k( ) � 2. In the region of high wave
numbers, it is difficult to extract a regularity from
this data, since the spectral density and the numerical
error are of the same scale. In the intermediate region,
the energy decreases according to the formula:
E k( ) � k–2.9.

5. Conclusion

The obtained numerical results demonstrate that
initially smooth vortex rings transform into a highly
chaotic vortex tangle. In spite of that total length

fluctuates about a constant value, we think that the
thermal equilibrium state has not been reached yet.
For instance, the spectral density of the energy agrees
with the equipartition law only for a small k-zone.
The vortex loop distribution on their length also dif-
fers from the one expected for a thermal equilibrium.
This state is closer to the turbulent case observed by
other authors. During evolution the vortex tangles
arise and disappear in different places. It resembles
the favor intermittency phenomenon in classical tur-
bulence. Our preliminary simulation demonstrates
that the Langevin approach applied in this paper is a
very promising method for study of chaotic vortex
structures.
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Fig. 5. The energy spectrum of the vortex tangle at
t �1.1445 � �10 3 s.


