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We investigate nonlocal coherent transport in ballistic four-terminal Josephson structures (in which

bulk superconductors (terminals) are connected through a clean normal layer, e.g., a two-dimensional

electron gas). Coherent anisotropic superposition of macroscopic wave functions of the superconductors

in the normal region produces phase slip lines (2D analogs to phase slip centers) and time-reversal

symmetry breaking 2D vortex states in it, as well as such effects as phase dragging and magnetic flux

transfer. The tunneling density of local Andreev states in the normal layer is shown to contain peaks at

the positions controlled by the phase differences between the terminals. We have obtain the general

dependence of these effects on the controlling supercurrent /phase differences between the terminals of

the ballistic mesoscopic four-terminal SQUID.

PACS: 74.80.Fp, 85.25.Cp, 85.25.Dq

1. Introduction

Multiterminal Josephson junctions [1,2] gene-
ralize the usual (two-terminal) Josephson junc-
tions [3] to the case of weak coupling between
several massive superconducting banks (terminals).
Compared with two-terminal junctions, such sys-
tems have additional degrees of freedom and the
corresponding set of control parameters, preset
transport currents, and (or) applied magnetic
fluxes. As a result, the current- or voltage-biased
and the magnetic flux-driven regimes can be com-
bined in one multiterminal microstructure.

One of the implementations of multiterminal
coupling is a system of short, dirty microbridges
going from a common center to separate massive
superconductors. The theory of this kind of multi-
terminals was derived in [4,5] within the pheno-
menological Ginzburg—Landau scheme (Aslamazov
and Larkin model [6]). This approach is valid for
temperatures 7" near the critical temperature 7', and
for the local case, when the characteristic spa-
tial scale is larger then the coherence length
& Umvy /T, . The stationary states and the dy-
namical behavior of the microbridge-type multiter-
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minals have been studied for different microstruc-
tures, four-terminal SQUID controlled by the
transport current, weakly coupled superconducting
rings (see review of theoretical and experimental
results in [7,8]).

The Josephson effect in mesoscopic weak links
with direct conductivity (S—~N=§ junctions, ballis-
tic point contacts) exhibits specific features [9,10]
which are absent in conventional dirty micro-
constrictions near 7', [6]. As in normal metal me-
soscopic structures [11], the electrodynamics of su-
percurrents in mesoscopic Josephson junctions is
nonlocal. The supercurrent density depends on the
spatial distribution of the superconducting order
parameter at all points of the mesoscopic weak-link
region. The coherent current flow is carried by the
Andreev states [12] formed inside the weak link. A
nonlocal nature of mesoscopic supercurrents was
demonstrated by Heida et al. [13], investiga-
ting mesoscopic S—2DEG-S (superconductor—two
dimensional electron gas—superconductor) Joseph-
son junctions. They measured 2@, periodicity of
the critical current instead of the standard @,



(b, = he/2e is the magnetic flux quantum). A
theory of this effect was developed in Refs. 14,15.

The present-day level of nanofabrication techno-
logy has made it possible to realize multiterminal
mesoscopic Josephson junctions, similar to the 2-ter-
minal junction studied in [13]. A microscopic the-
ory of the mesoscopic ballistic Josephson multiter-
minals was derived in Ref. 16. It is valid for
arbitrary temperatures 0 < 7' < T'_and describes the
nonlocal coherent current states in the system. The
effects of nonlocal coupling, such as phase dragging
and magnetic flux transfer, were obtained in
Ref. 17.

In the present paper we continue the study of
quantum interference effects in mesoscopic multi-
terminals, which are related to the nonlocality of
weak coupling. The paper consists of two parts. In
first part (Article I) the effects of nonlocal coupling
in mesoscopic multiterminal structures are studied.
The general properties of Josephson multiterminals
are described in Sec. 2. Section 3 gives the results
concerning the current distribution and density of
states inside weak link. In Sec. 3 we study proper-
ties of four-terminal SQUID which are specific to
the mesoscopic case. In the second part (Article 11)
a superconducting phase qubit based on a me-
soscopic multiterminal junction is proposed and
investigated.

2. Mesoscopic four-terminal junction

System description

In a mesoscopic 4-terminal junction, bulk super-
conductors (terminals) are weakly coupled to each
other through a clean two-dimensional normal
metal layer (2D electron gas), as is shown in Fig. 1.
The pairs of terminals can be incorporated in bulk
superconducting rings or in circuits with preset
transport currents. In Fig. 2 we show two such
configurations. The first one (Fig. 2,a) presents
two superconducting rings, each interrupted by a
Josephson junction, which are at the same time
weakly coupled to each other. The second configu-
ration (Fig. 2,b), combines a current (or voltage)
biased junction and a flux driven junction in the
ring. We call this configuration the four-terminal
SQUID controlled by the transport current.

The state of the ith terminal S, (i =1, .., 4) is
determined by the phase ¢, of the complex off-di-
agonal potential A exp (i¢;). The superconducting
banks induce an order parameter W in the normal
metal region (shaded area in Fig. 1). Inside this
mesoscopic, fully phase coherent weak link, the
supercurrent density j(p) at point p depends nonlo-
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Fig. 1. Mesoscopic four-terminal Josephson junction with «pa-
rallel> implementation of the supercurrents. The four bulk su-
perconducting regions, S,...S, , are weakly coupled through the
thin layer of normal metal (2DEG), represented by the shaded
area.

cally on the values of the induced order parameter
W at all points p'. In turn, the order parameter
W(p) depends on the phases ¢, . The total current
I, flowing into the ith terminal depends on the
phases ¢]. of all the banks and has the form [16]:

m, gb 9,0 o= (4620
I =— p Zy sin Dtan = T o

(D

In the case of two terminals Eq. (1) reduces to
the formula for ballistic point contacts [10] with
Yy, equal to the Sharvin conductance.

O X

a 6

Fig. 2. Superconducting microstructures based on mesoscopic
four-terminal Josephson junctions (a). Two weakly coupled su-
perconducting rings (b). Mesoscopic four-terminal SQUID.
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Expression (1) corresponds to the case of a small
junction, when the linear dimensions of the N-layer
are smaller than the coherence length § DEUF N
(for the case of arbitrary junction dimensions see
Ref. 16). We are focusing here on the small junc-
tion case because the effects of nonlocality are most
pronounced in this situation. The geometry depen-
dent coefficients y;; denote the coupling between
the partial Josephson currents in ballistic two-ter-
minal §;=5; weak links.

Equation (1) is simplified when 7" = 0, or when
T'=T, . Inthe T =0 limit, it becomes

MO o D60 0 89,

I, = . Zyi].sm %—2 |151gnD05 D[—I—2 o
7=

2)

Near T, , on the other hand, the order parameter is
small, Ay — 0, and one can write

my(T)
Ii = 4eT yl] sin (¢1 - ¢]) - (3)
¢ J

=1

Equations (2) and (3) are qualitatively similar,
differing in the magnitude of critical currents
and in the shape of the current-phase relations
(sin (¢,/2) sign [cos (¢/2)] and sin ¢). For definite-
ness, in the following we will consider the case
T DTC, keeping in mind that the results hold
qualitatively at low temperatures as well.

For the Josephson coupling energy of the junc-

tion, E 7 which is related to the supercurrents I,

(3) through I; = (2¢/R)0E; /8%, , we have
i ()
E, ) =5, Tchzkyjk [1 = cos (¢; — 9,
] <

(4

Expression (1) for supercurrents /; looks similar
to Buttiker’s multiprobe formula [18]

I=e Z T = 1), (5)
i

which relates the currents to the voltage drops
between terminals in a mesoscopic normal metal
multiterminal system. The similarity reflects the
above-mentioned nonlocality of mesoscopic trans-
port on a scale of &, U fivy. /T (in the ballistic limit
we are considering). The essential difference be-
tween (1) and (5) is that, unlike the Josephson
currents of (1), the normal currents of (5) can flow
only out of equilibrium; while the current-phase
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relation in (1) is periodic, the current—bias depen-
dence of (5) certainly is not.

Circuit implementations of four-terminal
junction. Nonlocal weak coupling

The current—phase relations (3) determine the
behavior of the system in the presence of the trans-
port currents and /or the diamagnetic currents in-
duced by the magnetic fluxes through the closed
superconducting rings. It is necessary to distinguish
two types of circuit implementation of the
mesoscopic 4-terminal junction [17]. The first one,
is the «crossed» or «transverse» implementation,
when the total current in one circuit goes in and out
through one pair of opposite banks in Fig. 1, and in
the second circuit — through the other pair. In the
«parallel> implementation, shown in Fig. 1, the
currents I and J flow through pairs of adjacent
banks. In this case, nonlocal coupling of currents
inside the mesoscopic N-layer results in the peculiar
effect of «dragging» of the phase difference be-
tween one pair of terminals by the phase difference
between another pair of terminals [17]. In the fol-
lowing, we consider the «parallel> implementation
and study the manifestations of the phase dragging
effect.

The coefficients y;; in (3), (4) depend on the
geometry of the Weai< link (the shape of the N-
layer) and on the transparency of S—N interfaces.
In general we have y;; = Yji and y; = 0. For the case
of parallel implementation, the elements y,, and
Y34 are related to the critical currents of the indivi-
dual subjunctions §=S, and S3=S, , respectively.
The matrix

- Hi3 YiaH
ycoupl = (6)
@’23 V24@

describes the coupling between these two junctions.
The properties of the system (in particular, the
existence of phase dragging) qualitatively depends
on whether det (\A/coupl) is equal to zero or not (see
Appendix). In the case of a conventional non-
mesoscopic 4-terminal Josephson junction the coef-
ficients Yij factorize, Yij D(1/R1-)(1/R]-), where R,
are the normal resistances of the dirty micro-
bridges [7]. This yields det (\Alcoupl) =0, which we
call local coupling. On the other hand, in a
mesoscopic system, even in the completely symmet-
ric case of an @ x @ square N-layer and ideal trans-
parency (D =1) of the N=S; interfaces, the coeffi-

cients y;; are given by [17]:
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with det (\A/wupp #0. In a more general case than
the completely symmetric one (Eq. (7)), we can
write Yij in the form

— " —y @ 490
y34 - Ky12 ’ ycoupl - yO %] p% ®

This corresponds to a square N-layer with different
transparencies for junctions §,=S, and S;=S;
and /or with different widths of the superconductor
banks connected to the normal layer. In our numeri-
cal calculations we will use the simple form (7),
ie, K=1,p=V2, g=1.

Current-phase relations. The phase dragging
effect

Let us introduce the new variables:
b,-6,20, 0,-6,=0,

1 1
S +e)=a, 3@, +9=p, O

a-B=x, a+p=y.

Without loss of generality, we can choose the phase

y equal to zero (5 Q= 0). For the circuit implemen-
7

tation shown in Fig. 1, we have

I=l,=-1,,J=1,=-1,. (10)

In terms of the phase differences (9) the currents I
and J have the form

I=sinB+
+%p+q) sin§0059+(p—q) cosgsinggcosx,
0 2 2 2 2q
(11)
J=Ksing+
+%p+q) sin9005§+(p—q) cos(—psinggcosx.
0 2 2 2 25

12)

All the y's (8) are normalized by y;,, and the
currents I, J are measured in units of

I, = Ty, ,0X(T) /4eT, .
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Fig. 3. Phase diagram for the phase difference X in the (8, @)

plane. Solid line separates the regions with x =0 and x =10
The dashed region is absent in the case of local coupling.

From the current conservation (Eq.(10)), it fol-
lows that the phase X in Eqs. (11) and (12) can
take only two values, 0 or T Minimization of E 7
(4) with respect to X also gives X =0 or T, depen-
ding on the equilibrium values of O and @ (see
Appendix):

cos X = sign %p+q) cos? cosg -(p-9) sin P singg.
0 2 2 2727

(13)

The current—phase relations (11) and (12) with
the condition (13) are invariant under the transfor-
mation 8 - 0 + 21w, and @ - @ + 21k. The 271 peri-
odicity of observable quantities is sustained by the
<hidden» variable phase X. In Fig. 3 the phase
diagram for X in the (6, @) plane is presented. The
solid line separates the regions with X =0 and
X =T When the state of the system (8, ¢) crosses
this line, a jump in X occurs. Corresponding jumps
take place in current—phase relations (11) and (12).
The current I(8) (11) is shown in Fig. 4 for several
values of the phase ¢. Note that the function /()
has jumps, which for @# 0, are not located at
0 = £ 1, as they would be in conventional 4-termi-
nal junctions. The jump in X means the slippage of
the phase 8 (or @). In the case of two-terminal
or conventional 4-terminal junction the phase-slip
events occur at phase difference equal to T2z + 1),
n=0,%+1, %2, ... In one-dimensional structures
slippage of the phase occurs at phase-slip centers
(PSC), i.e., points where the order parameter
equals zero. In our case of a 2D mesoscopic 4-termi-
nal weak link, the analog of the PSC are phase-slip
lines in the normal metal region. They appear when
the state (8, @ of the system belongs to the dashed
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Fig. 4. Current—phase relations I for different values of @.

region in Fig. 3. This region, which is absent in the
local coupling case (it actually coincides with the
lines ® =1, @ =10, we call the «frustrated» region
for phases 8 and @. For states inside this region, the
distribution of the supercurrent in the weak link
contains 2D vortex states (see below).

Nonlocal weak coupling leads to the phase drag-
ging effect [17]. One notices that if p # g then
putting © = 0 in (11) results in a nonzero value of
the current I:

I=(@p-9q) sin 2 sign Ecos QE. (14)
2778 %

This current is absent in conventional 4-termi-
nal junctions or mesoscopic four-terminal junc-
tions with crossed implementation at which p =¢
(i.e., det (ycoupl) =0).

Similarly, if we set 7 =0 in (11), we find a
nonzero solution for 6, which again vanishes when
p = q. This solution (= 8,) is a function of @ and is
plotted versus @ in Fig. 5. The influence of the
phase of one side of the mesoscopic 4-terminal
junction on the phase of the other side is what we
call the phase dragging effect. This effect is one of
the important characteristics of the junction with
parallel implementation.

In general the current—phase relations are asym-
metric, I(— 6) # — I(0), unlike in conventional cases.
In another words, the presence of a phase difference
@ on the terminals §,=S3 breaks the time reversal
symmetry for the Josephson junction §=S, . It also
follows from expression (11) that I(8) is not only a
function of |@, as in conventional junctions, but also
depends on the sign of @. The phase dragging has an
analog in the normal metal mesoscopic multitermi-
nals described by formula (5); the normal current
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Fig. 5. The dragged phase 6, between terminals S,-S, , at zero
transport current [, as a function of the phase difference @ be-
tween the other pair of terminals S-S, .

flowing through one pair of terminals induces a
voltage difference between the other ones [18].

3. Current distribution and local density of
states inside the mesoscopic weak link

The coupling through the normal layer deter-
mines the behavior of the Josephson weak links
S-S, and §,=S5 . On the other hand, the proper-
ties of the normal layer itself depend on the phase
differences 6 and @ across the junctions. The phases
0 and @ can be controlled by external magnetic
fluxes through the rings (Fig. 2,a). In this section
we present the results of numerical calculations for
the current density distribution j(p) and density of
local Andreev levels N(€) inside the mesoscopic
4-terminal weak link. The expressions for j(p) and
N(e) as functionals of {¢, , ¢, , ¢5, ¢, were ob-
tained in Ref. 16 by solving the Eilenberger equa-
tions [19].

Figure 6 illustrates the effect of phase dragging.
Two sets of phases (6=-042, ¢@=m and
(6=0.42, =T correspond to zero value of the
current I (11) (see Fig. 4) and opposite directions
of the current J (12). In the absence of the current
from terminal S, to terminal S, , a phase difference
across the junction §,=S, exists.

When the phases 8 and @ lie in the «frustrated»
region of the diagram Fig. 3 (dashed area), the
current distribution j(p) contains 2D vortex states.
They are shown in Fig. 7 for states (6 =1-10.2,
@=m-0.2)and (B=1+0.2, =1+ 0.2). In both
cases, the order parameter W(p) vanishes along the
diagonal x =y, and its phase drops by T when
crossing this 2D phase-slip line.
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Fig. 6. Distribution of the current density inside the normal
layer for phase @ = 7w and two values of the phase 6 at which
the current I = 0 (Fig. 4).

The Andreev scattering processes on the §;-N
interfaces lead to the appearance of energy levels
with energies € inside the gap 4, le| < 4, , in the
normal metal. The local density of electron states in
the normal layer is given by the formula

Y 0=¢0=m-0.2 y 0=0 =m+0.2
107 -+ =TI 0y 1.0 o ms s vibd & & #
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Fig. 7. The vortex-like distributions of the current inside the
weak link when 6 and @ are inside the frustrated region.
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Fig. 8. Density of states, N(€), averaged over the normal region
for different values of 6 and .

Ale, p) = N(0) ORe g(@ == ie, p, v,) [ . (15)

(9(w, p, vp) is the Eilenberger Green’s function).
We have studied the dependence of the density of
states, averaged over area of the N-layer, N(€), on
the phases 8 and @. This tunneling density of states
can be measured by a scanning tunneling micro-
scope. It contains the spikes with intensity and
position on the energy axes controlled by the phases
® and @. The results are shown in Fig. 8 (the
o-function singularities in N(€) are smeared by in-
troducing a small damping I = 0.014)).

4. Mesoscopic four-terminal SQUID

In this section we consider the four-terminal
SQUID configuration (Fig. 2,b). The conventional
4-terminal SQUID has been studied in detail in
Ref. 5, wherein the steady-state domain and dy-
namical properties of the system were calculated.
Here we are interested in the specific features of the
mesoscopic case reflected in the current—phase rela-
tions (11), (12). As we have seen in the previous
Section, the nonlocal coupling (p # ¢) leads to the
phase dragging effect. This dragged phase can in-
duce in the ring a transferred magnetic flux which
depends on the transport current. Conversely the
magnetic flux state in the ring influences the beha-
vior of the Josephson junction in the current circuit.

When the terminals 3 and 4 are short-circuited
by a superconducting ring with self-inductance L,
the phase @ is related to the observable quantity,
the magnetic flux @ threading the ring
@ = (2e/h)P. The current J circulating in the ring is
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given by J = (®¢ — @) /L, where ®° is the external
magnetic flux threading the ring. From (11) and
(12) we have
I =sinBQ+
+ %p + q) sing cos9 +(p-9) cosg singgcos X,
0 2 2 2 2
(16)

-

=sin ® +

1
= %Pﬂl) sin% Cosg +(@(p-q) Cos% singgcosx ,
KO g
17)

where the fluxes ®, ®° are measured in units %/ 2e,
and £ = (2e/R)LI K is the dimensionless self-induc-
tance. The parameter K = s, /Y,, is the ratio of the
critical currents of the subjunctions 3—4 and 1-2.
The limiting cases of K - o and K - 0 correspond
to the autonomous SQUID and the current-biased
Josephson junction, respectively.

The transport current I and the external flux ®°
are the external control parameters. The corres-
ponding Gibbs potential for the 4-terminal SQUID
takes the form

K(® - 9>

U(®,8; I,d°) =
2L

- 10 -cos®—Kcos P -

-2 %p+q) cosg cos9 -(p-9) sing sin 9Ecos)( .
0 2 2 2 2D
(18)

The last three terms in Eq. (18) are the Josephson
coupling energy (4) in terms of the variables 8, ®,
and X. The minimization of U with respect to x
gives the expression (13) for cos X, with @ replaced
by ®. At given values of the control parameters I
and @, the relations (16) and (17) (together with
Eq. (13)) determine the set of possible states of the
system {6, ®}, among which we should choose those
that correspond to the local minima of the potential
U, Eq. (18).

Let us consider the effect of the magnetic flux
state of the ring on the behavior of the current-
driven junction. The critical current of the junc-
tion, I, , depends on the applied magnetic flux ®°.
In the simplest case of small self-inductance
£ << 1, we can neglect the difference between ®
and @° in expression (16). The maximal value of
the supercurrent I (16) (with ® replaced by ®°) as
a function of ®¢ I (@), is shown in Fig. 9. This

max
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Fig. 9. The steady-state domain for a mesoscopic four-terminal
SQUID in the plane (I, ®°) of the control parameters (solid
line). The dashed line corresponds to conventional four-termi-
nal SQUIDs.

curve determines the boundary of the steady-state
domain in the (I, ®°) plane. The function /_, (®°)
is 2Tt periodic, but due to the terms proportional to
p—q in Eq. (16), it is not invariant under the
transformation ®¢ - — ®°. The symmetry is re-
stored if we simultaneously change ®° to — ®° and
I to — I. Note that in the conventional case (p = q)
the boundary of the steady-state domain I, (®°) is
symmetric with respect to the axes (I, ®°) (dashed
line in Fig. 9). Thus the critical current I, in the
transport current circuit, for a given direction of the
current, depends on the sign of the magnetic flux in
the ring. For finite values of self-inductance £,

306 - -6 ---0---—--— - ——-—- —— o-

25} =

2.0t -7

1.0r,/

0.5}

0 02 04 06 08 10
L

Fig. 10. The critical current, I_, between the superconductors
S, and S, , as a function of £ for ®°* =0 and T
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equations (16) and (17) must be treated self-consis-
tently. The critical current I, as function of L is
shown in Fig. 10 for two values of external flux,
®° =0 and P =1L

Outside the steady-state domain, the stationary
solutions for (8, ®) are absent and system goes to
the nonstationary resistive regime. The simple ge-
neralization of Eqs. (16), (17) in the framework of
the heavily damped resistively shunted junction
(RSJ) model [3] leads to equations (see [7]):

do ,
a—[—sme
®[
—%p+q)sm—cos—+(p q)cos 2|]cos)(,
(19)
o _of-o
it~ 7 sin

1
— %p sm — cos 9, (p-9) COSCD singgcos X,

(20)

ax _
dt

= —sin X %p +q) cos% cosg -p-9 sin% singH
O U

(21)
They can also be presented in the form
: ou : ou . 10U
e:__l (D:__J X:___l (22)
90 0P 2 oy

where the potential U is defined in Eq. (18). The
voltages between different terminals are related to
the time derivatives of the phase differences

Vo =0, Vg =@, 5 (Vg Vy)=x. (23)
The time and the voltage are measured in the units
of e/I, and 510/262, respectively. Note that, in
spite of the equilibrium state, the dynamical vari-
able X relates to an observable quantity. Its time
derivative determines the voltage between the ring
and the transport circuit. The features of the dy-
namical behavior of the mesoscopic 4-terminal
SQUID are again affected by the terms propor-
tional to (p — g), i.e., by nonlocal coupling. The
current—voltage characteristics in the transport
channel, V(I) (the time averaged voltage V,, (23)),
can be obtained by numerical solution of the cou-
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Fig. 11. The flux induced inside the ring as a function of the
transport current I. £ =1, ®° =0,

pled system of nonlinear differential equations
(20)—(22). As well as the critical current I, the
voltage V(I) in an applied magnetic flux ®° depends
on the sign of ®°, ie., on the direction of the
external magnetic field. A full dynamical descrip-
tion of the mesoscopic four-terminal SQUID re-
quires a more rigorous approach than the RSJ model
and will be the subject of a separate investigation.

In accordance with the stationary (16), (17) or
dynamical equations (19)—(21) for 6 and @ the
opposite effect for the influence of transport current
circuit on the flux states in the ring takes place. In
particular, a current I produces a flux ® in the ring
even in stationary case and in the absence of exter-
nal flux ®¢. This effect is proportional to (p — q)
and is absent in the conventional case. In Fig. 11
we plot the magnetic flux ® induced in the ring as
a function of the transport current I in the case
d¢ = 0.

A special interest is the existence of bistable
states in the system described by the potential (18).
We emphasize that, in contrast to the wusual
SQUID, bistable states occur for any inductance £,
even for £ < 1 [5]. We will analyze the dependence
of these states on the control parameters I and ®¢ in
Article II, when the design of the four-terminal
qubit will be studied.

3. Conclusions

We have demonstrated that in ballistic four-ter-
minal Josephson junctions the coherent anisotropic
superposition of the macroscopic wave functions of
the superconductors in the normal region produces
the formation of phase slip lines (2D analogs to
phase slip centers) and time-reversal symmetry
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breaking 2D vortex states in it, as well as such
effects as phase dragging and magnetic flux trans-
fer. We have calculated the phase-dependent tun-
neling density of Andreev states in this region as
well.

The degree to which the nonlocality of the
mesoscopic transport is manifested depends on the
characteristics of the system and is most pronounced
in the ballistic case [20]. The ballistic four-terminal
junctions considered here demonstrate several spe-
cific effects absent in the diffusive limit [4-6]:
phase dragging, time-reversal symmetry breaking
(I(8) # I(- 8)), Eq. (14)), and the vortex forma-
tion. The latter can mimic the behavior of S—N—-§
junctions with unconventional superconductors
[21]. It has indeed the same origin in the direction-
dependent phase of the superconducting order pa-
rameter induced in the normal part of the system,
though not due to the intrinsic phase difference
between different directions in a superconductor.
This actually allows us more freedom in controlling
the behavior of the junction, which will be ex-
ploited in the qubit design based on such a junction
in the following paper. The time-reversal symmetry
breaking can be also used for direction-sensitive
detection of weak magnetic fluxes.

It will be instructive to investigate the role
played by finite elastic scattering in the system and
look for the analogs of zero bound states, found at
surfaces /interfaces of unconventional superconduc-
tors (for a review see [22]). This, as well as the
vortex dynamics in the system, will be the subject
of our further research.

We thanks R. de. Bruyn Ouboter for his stimu-
lating interest in this work. One of the authors,
A.N. O., would like to acknowledge D-Wave Sys-
tems Inc. (Vancouver) for hospitality and support
of this research.

Appendix

Junction with arbitrary Y's

The Josephson energy of the mesoscopic four-
terminal junction, normalized to

(7 2e)T0(T) /4eT
is expressed by

E ==Y cosB—y34cos(p+E (A1)

J coupl ’

with the coupling energy Ecoupl given by
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coupl y cos E—(p +XD y14COS %’2—(\0 +XD_
M- B+ O
T Vyzcos G+ XD Yoy €05 55— * XO=
0O O O
- (A cosx + B siny) , (A.2)
where

D + o0 B - @O
A= (y13 + V24) CcOoS 52—54- (y14 + y23) COs %2—%)

(A3)
. B +oe0 _ ®-eO
B =(y;5~V,,) sin %2—54- (V4 = Vo) sin 512—8

Minimizing with respect to X, we find the minimum
to be

N PV - A
:—\/1—42+Bz, )(20051%_72__25.
A%+ B*

(A.4)

coupl

After some manipulations we find

~ Vg + Vit

x cos @+ 2(Y,3Y,5 + V14V24) €0s 8+ 2(Y; 3V + Yy 4Vo3) X

V§4 +2(Y)3Yy4 * Yagloy) ¥

coupl

) sin O sin o2 .
(A.5)

The last term in the bracket in (A.5) vanishes when
det (\A/coupl) = 0. In that case the current I(6, @) will
be zero at 6=0. On the other hand, if
det (yCou P # 0, then I(8, @) # 0 when 8 = 0. This is
a 51gnature of the phase dragging effect.

In a four-terminal junction with microbridges
near T, one has 7 U 1/R; R . In that case the last

term in (A.5) W1ll vanish and Ecoupl factorizes:

X cos B cos @ — 2(y13y24 - y14y23

q.ml 1, 4eos’ @20
coupl TR RO RR, O
! 20 1772 0
2 1,/2
cmt 1o, 4 cos” (/20 (A6)
ks B8 RRy f
In particular, when R1 = R, and R; = R, we find
4 0 800 ¢O
coupl — R R, Ry EFOS ZD[FOS 2%’ (A7)
843



which is what one obtains from Ginzburg—Landau
calculation.

In a mesoscopic four-terminal junction with pa-
rallel implementation on the other hand, we have
Vi3 = Yoy and Y, = Vo3 . This leads to B =0 and
therefore

E ——|A|, cos X = sign (4) ,

coupl ~

(A.8)

which gives X =0 or T Notice that in the general
case of (A.4), X can take values other than 0 and TU
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