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The fermion Green function and spectral characteristics for the 2D Frchlich model of superconduc-

tivity at static fluctuations in the phase of the order parameter are calculated. The results demonstrate

strongly non-Fermi-liquid properties of the system at finite temperatures and relate with the pseudogap

behavior of high-T_superconductors at relatively small charge carrier densities.
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1. Introduction

The theoretical description of cuprates with high
critical superconducting temperatures remains one
of the most exiting and intriguing questions of
modern solid-state physics. Because of the elec-
tronic and structural complexity of these metal-
oxide compounds there is a lack of theoretical tools
for describing their normal and superconducting
properties, which are evidently different from those
of low-temperature superconductors.

One of the most interesting pecularities of cu-
prates is the presence of a pseudogap in the normal
state of samples with lowered carrier densities n
and temperatures T above the critical value T .
Many theoretical explanations of this phenomenon
have been proposed. Among them are explanations
based on the model of the nearly antiferromagnetic
Fermi liquid [1], consideration of the spin /charge-
density waves [2], and pre-superconducting fluctua-
tions (see, for example, [3—17]). The last charac-
teristic has been studied by many approaches. For
example, a T-matrix approximation was used in [3—
9]. But this approach does not permit a description
of ordered states in 2D models (for example, the
Berezinskii — Kosterlitz— Thouless (BKT) transi-
tion), which are the most suitable for description of
cuprates.
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It is possible to investigate such states by sepa-
rating the order parameter (or, for low-dimensional
degenerate systems, the so-called complex ordering
field) into its modulus p(x) and phase 6(x): ®(x) =
= p(x) exp [iB(x)]. Although states with [@®(x)# 0
are forbidden in 2D systems at finite temperatures (the
Coleman —Mermin — Wagner — Hohenberg (CMWH)
theorem [19]), states with p = [P(x)0# 0 and
® = p éxp [B(x)]C= 0 can exist.

This approach has been used previously for
studying the phase diagram in the 4F model [14,15]
and in the more realistic Fréhlich model of super-
conductivity [16,18]. It was shown that in both
cases the phase diagram consists of three regions:
i) T > T_, where p vanishes, i.e., the normal state,
i) To>T>Tppr (Tyir is the BKT transition
temperature), where p # 0 and for [@“DOthe corre-
lations decay exponentially, and iii) Tppr > T,
where these fluctuations have a power-law decay.

This method was also used in Ref. 17 for the
one-fermion Green function calculation in the two-
dimensional 4F model in order to study the fer-
mionic spectral function. It characterises the den-
sity of states and allows one to check for the
presence of quasiparticle excitations in a system.
(For a description of recent experiments on the
angle-resolved photoemission spectra (ARPES) of



high-T', superconductors, which contain information
about these properties, see [20]). It was shown that
right above the critical temperature the width of the
quasiparticle peaks noticeably broadens, although
the gap in quasiparticle spectrum still remains; this
can be connected with the pseudogap properties of
the underdoped high-T, superconductors.

However, the 4F model does not take into ac-
count many of the properties of real systems, in
particular, the retarded nature of the attractive
interparticle interaction. As was shown in [16,18]
including this property changes the behavior of a
system drastically in comparison with the 4F case.
For example, the width of the region with
Tp > T > Tppr now goes to zero rather quickly at
large charge carrier densities (optimal and over-
doped regions).

The aim of this paper is to generalize the results
obtained in [17] to the case of the more realistic
Frohlich model with the retarded interaction. For
simplicity we consider the dispersionless «optical»
phonon mode w(k) = w, = const. Nevertheless, the
parameter w, should be considered as the effective
weighted value of the frequency of bosons with
arbitrary dispersion law (k). This allows us to
apply the given approach for an efficient study of
any fermion-boson system with fluctuating order
parameter.

2. The model

Let us start with the Frohlich model Hamil-
tonian density in the standard form:

H=yr @ B w8 ) + gow @u ) + A
= U %T’ Mm U%IJG g (o) (o) ph’

€))

where x = r, T denotes the space and imaginary time
variables;  (x) is a fermion field with spin
o =1,l; m is the effective fermion mass; W is the
chemical potential; ¢(x) is the phonon field opera-
tor, and g is the fermion-phonon coupling constant;
we put % =kp=1. Below we shall use also the
Pauli matrices 1, , T, , T5 in the standard form.

In (1) # , is the Hamiltonian of free phonons
with the simplest propagator (in the Matsubara
formalism)

DiQ)=- . >
LS

where ), as was pointed out, is the phonon
frequency and » is an integer. It was also mentioned
in the Introduction that in general this value is the
weighted effective frequency of bosons with a mo-
mentum-dependent dispersion law w(k).

Let us introduce in the Nambu representation
WHx) = (ljJ:'(x) P, (%)) the complex superconducting
order parameter ®(x) = W (x)T_W(x) = ¢, P, where
T =(1, -1, /2.

Then in order to study the order-parameter-fluc-
tuation dependences of the Green function

G(x) = W(x)W ), (3)

it is convenient to use the parametrization

(x) = p(x) exp [18(x)] (4)

with the simultaneous spinor substitution*

WY(x) = exp [iTSG(x)/Z] Y(x),
(5)

W(x) = Y¥(x) exp [~it,0(x),/2] .

As we have said, we shall consider the situation
when p is a spatially homogeneous, or constant,
quantity and the phase 6(x) is a random quantity. In
fact, the spinors Y(x) and Y*(x) are none other than
the neutral fermion operators. In this case the
Green function can be naturally separated into the
charge and spin parts (see also [17]). Namely, in
the momentum representation:

® 2 (6)
Gliw, k) =T J ;ng x

X z Pag(iwm ) p)pBDGB(iwn - iwm k-p).

o=+

Here (liw,, , p) is the Green function of neutral
fermions (see, for example, [16]),

i T+ 1,80k - T,p
w0 L, k) =- (7)
G, W W+ E(k) +p’
with &(k) = k?/2m - p; Da|3 is the correlation func-
tion of the phase fluctuations

1,/T

DygiQ, , @) = J' dtf d*r exp [iQ,T - iqr] x
0 (8
x [éxp [ia6(T, r)/2] exp [~ iB6(0),2]0,

*  Here and below we consider W(x) and Y(x) as Grassman operators and 6(x) as ordinary variables in functional integrals. In the
Hamilton formalism the former obey Fermi statistics, while 8(x) preserves ordinary (commutational) algebra.
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and P, = 1/2([ +1,) are the projectors. The Green
funct1on (7) of the neutral fermions coincides iden-
tically with that obtained in the 4F model, and the
electron-phonon (boson) interaction enters this ex-
pression through p, which goes to zero if the cou-
pling constant g (see (1)) vanishes.

It is important to stress again that in (7)
p =const, i.e., homogeneous. But, of course, the
neutral p does not play the role of a genuine order
parameter in a system, so there is not any contradic-
tion with the CMWH theorem.

3. The Green function

According to the previous Section for calculation
of the Green function (6) it is necessary to know
the phase fluctuation correlator D (8) This quan-
tity can be calculated using a funct1onal inte-

gral [17]

o1/T

O 2
=J- Do(x) exp &Idr1.l-d rX

ik

O

X %6(}51)1)81(361)6(361) + I(x1)6(x1)§§=
g

9

1T 1/

_EXpEi' J-a'r J-dr J-dzr x

0
xJ'erZI(T1 1 Dyt —1, 1 -r) I (T, ,rz)g,

with the corresponding Green function

D (%) = B(x)8(0)0 (10)

of the phase fluctuations and the source of the 6

field
I(c)=-i %5@1 —1)8(r, -0+ ig 5t,) 3(r,) |
(11)

a,B==x.
In the second-derivative order the Green function
(10) has the form:

Dgl(x) == J(u, T, p) 02 = K(u, T, p)(@)°.  (12)
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The coefficients J(u, T, p) and K(u, T, p) have
the physical sense of the superfluid stiffness and
compressibility, respectively. One can readily ob-

tain the following expressions for them (see, for
example, [16,18]):

1 o —=
Jw, T,p) = cViZ+p +
81

+p+2T In[1 +exp (- V2 + p? /T)I0-

T % x+ (u/27)
4m g 4T2 a(p /4T2)D,[ cosh™VaZ ¥ pL74AT>
“2
and
0 AV
K T, p)= " H o+ = tanh ﬁ‘Z}p -
8T[ E -\/Ilz- + p2
o .
1 J- tanh VaZ + p7/4T2§.
8 4T* o(p /4T2) VT
0

Note that in comparison with the 4F case the
functions J and K contain new terms with the
derivative. But formally the general expressions for
Dg(x) in both cases are the same, so let us use below
the formulas obtained for the 4F model in [17].

Thus, in the static case T=0 at T < Tz rand
when the coherence length is larger than the lattice
spacing (as is justified for cuprates) the correlator
has the usual (i.e., power law) form

T

D(r) = Dr D s (13)
g 0 D
(this is the expression for the only nonzero compo-
nents D (r, 0) and D__(r, 0)). In (13) the quantity
7, is

1,2

ro= %E | (14)

g

Note that in Ref. 17 it was assumed that J e (the
Fermi energy) and K [const. Under these assump-
tions 7, is equal to 2ve;/m /T and has the meaning
of the single-particle de Broglie wavelength.
Whereas these approximations for K and J are
justified for the physical regions in 4F model, in the
boson-exchange case at large carrier densities the
asymptotic behavior of J is different (J [const), so
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in this region r;, does not have such a simple
physical interpretation.

At T > T ppr it was proposed to use for D(r) the
expression from the theory of the BKT transi-
tion [21,22]:

T
T 8/ r
D(r) = %E 8/ exp E— 75, (15)
DOD O E.+(T)D
where
1,2
a7 -T O
§N=Cexpf—H . UO
- TBKTE

This expression could be considered as a general
form of D(r) at any temperature if one puts
& (T) =0 for T <Tpp . The constant C can be
estimated as r,/4, the value obtained from the
assumption that &, cannot be much less than the
only natural cutoff r in the theory.

Then substitution of expression (7) for & and
the Fourier transform of expression (15) for D(r)
into formula (6) results in the next representation
for the Green function:

AmE2a
G(iw , k) =- Tox
n 21
| A1 0 u 1 Uy = 10
x U F o, a0 a+1; , O+
@LHL{Z)G 0 1 “ 0
T —r5— o
* W+p2 q—\/anﬂpz%, (17)
where
_ 4@ gt T
r(1 - o) oo ’ 1617
| _1§ i W, E (18)
1 =903 5=, 0
0 Vo +p 0

and F, is the Appell function [23]. The quantities
u, , u, are defined by

2¢2
g2 +1 S 0
u, = me? ;222 —u+i\/(_ni+p2+?/—DE,
+
%2 4 4 - (19)
25 * y e B
u, = mé —u+ivar +p? -VD
2 + ZmEf H n P E
0
138

with

2
2¢2
&+ 1 ————
DEB€D7+2 —u+i\/ZF+p2@+
0 2még; "o
0 0
9 —————
(M w-z+p2). (20)

m&’,

For studying the spectral properties of the sys-
tem in the next Section we’ll need the retarded
Green’s function, which can be obtained from (17)
after the analytical continuation iw, — @ + 0.

For now let us just say that for T < Tp ., this
function has the next structure

a-1 o
Gl K Or%a) 220 A [+ VeF = p2 )1 x

Sl

(1-20) FRa-1) 1
* Ha = s
% (-0 M(t-a)@-z)° 1@
Thus the Green’s function is of the non-Fermi-
liquid theory type; it has a non-pole character and
contains a branch cut. So the Fermi-liquid behavior

of the system is broken by strong phase fluctuations
of the complex ordering field.

1.

4. The spectral density and density of states

The spectral density contains information about
many properties of systems, for examples, such
features as the density of states and the presence of
a gap. For cuprates this quantity was measured in
the ARPES experiments (see [20]). Below we ob-
tain the expressions for the spectral density and
density of states which follow from the retarded
Green function (recall, that it is defined by (17)
with the analytical continuation iw, — w + i0).

Let us first calculate the spectral density [19]
using the expression

w + 10, k). Q1

Alw k) = - Tm G, (
Tt

After substitution of the analitically continuced ex-
pression (17) in (21) one can directly come to [17]:

a
Ao, k)= T@ 020

1
_ %) x
r(1—a)§nr§g sgnmﬁ(oo2 o))

O O k? —5—— .0
x —F c Q=4 X

y 4y O

Eba/22 1 g 2 D g
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o - _ @b
x 8+ Ve? -p?) - Vol - p? - —\/3)2—92)5.
(22)

The chemical potential p is determined by the
equation which fixes the carrier density [16]. How-
ever, in the case of large carrier densities the equal-
ity 4 = &5 is almost exactly fulfilled. Note that the
expression (22) for A(w, k) is not the BCS sum of
two parts with d-function peaks at w =1 E(k)
which correspond to the addition and removal of an
electron, but the sum of two «mixed» terms.

It is possible to check analytically the sum rule
for the spectral density. Namely, as in the 4F
model, we have

Idwﬂumzmw.

r2-a

(23)

Let us estimate the quantity on the right side in
the region T LTy, . For the stiffness at T =
= Tpgy We have J =2/MT e, which gives (see
(18) a=1-1,/32=1atT Ty, . Therefore the
formula (22) for the spectral density is quite good
in the temperature region near T, at large carrier
densities. Since we study the region of large carrier
densities, at temperatures in the pseudogap phase
the condition T LT . is always true, because at
large ny the pseudogap region is narrow and shrinks
asng - o (see, again [16]). This is evidently differ-
ent from the 4F case, where the corresponding
region decreases much more slowly.

The w dependences of the spectral density for
T <Tppr and T > Tppr in the case k <k are
presented in Figs. 1 (the behavior in the case
k > k. is analogous). There are two quasiparticle
peaks at the points w =+ E(k) and an other two at
w = p. The presence of the last two is caused by
the non-pole structure of the Green function. At
k = k. these two kinds of peaks coincide because at
this point one has E(k;) =p. The peaks at the
frequencies w==* E(k) decrease with increasing
temperature, and when T >T (where these
peaks are finite) quickly go to zero. This is in
qualitative agreement with the ARPES experi-
ments [20], which show that the spectral function
broadens on passing to the normal phase.

For w < |p| we have A(w, k) = 0 and therefore the
gap exists at any T. The same conclusion is also
correct for the 4F model. Note again that our results
are obtained by using the static approximation. The
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Fig. 1. The spectral density as a function of w is presented for

the case k > &, at different values of T=T /T, .

empty region must disappear (as well as the qua-
sipeaks at w = % p) if the dynamical fluctuations are
taken into account. Evidently, the filling of the
empty region should be different for T < T . and
T'>Tpgr -

As is seen in Figs. 1, a smooth crossover takes
place as the temperature changes from 7' < T, to
T > Tpgr - This is in agreement with experiments
(for instance, on p) [20] and differs from the BCS
theory. Let us also note that our results are ob-
tained for not very small p. When p - 0 (low
carrier densities) its (i.e., modulus) fluctuations
must be taken into account.

The end of this Section is devoted to a calcula-
tion of the density of states. The desired expression
can be obtained from the formula

w

k2
N(@) =N, I do A, k) (24)
0
where N, =m/2m is the density of states in the
normal phase and W is the bandwidth.

This expression together with (22) results in the
representation
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N(w) =N
(@) =N re-a E%
0 1-a 1
m Vaz ™ ol o
xDA1 g+ W-pu-Vow —p " G20
0 %% D E? +0

which formally also coincides with formulas ob-
tained in [17], although there is different behavior
on account of the different carrier dependences of
the neutral order parameter p in these (4F and
boson-exchange) superconducting models.

At zero temperature and large carrier densities
(u >> p) the formula (25) reproduces the BCS re-
sult

N =N, 9.
Ve

The density of states for different cases are pre-
sented in Figs. 2. As in the case of the spectral
densities, the gap in the density of states exists at
temperatures near and above Tp., , which plays
the role of the critical temperature in a pure 2D
metal. The form of the density of states qualita-
tively coincides with the BCS one. The crucial
difference is in the smooth change of the curves at
the phase transition point.

Let us repeat again that dynamical fluctuations
can be responsible for the filling of gap and that at
small carrier densities the p fluctuations must also
be taken into account.

(26)

5. Conclusion

In this paper the analytical calculation of the
fermion Green function has been generalized to the
case of the Frohlich model of superconductivity,
although some expressions have proved to be similar
to those obtained for the case of a 2D metal with a
nonretarded inter-fermion attractive interaction.
This result could be important for several reasons:
First, as a general result for the theory of fluctua-
tions in boson-exchange quantum solid state sys-
tems. Second, because there is as yet no generally
accepted theory of high-temperature superconduc-
tivity, and now it appears possible that some boson-
exchange model will be appropriate for the descrip-
tion of this phenomenon. Thus an analytical
investigation of the Green function in the boson-ex-
change case could be very important, because it
gives much more information than the numerical
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sgn o B(w’ - p?) X

0?:} VG?j}Z@

00 G+ Va? g2 -
O (25)

studie often employed. For example, it has been
shown that the transverse phase fluctuations result
in non-Fermi-liquid behavior of the system below
(but for T # 0) and above Ty -

Along with this there are many open questions
about the problem studied above. For example, the
role of superconducting fluctuations in the
pseudogap phase formation. Also it is very impor-
tant to take into account the p fluctuations and to
generalize the approach to the dynamical fluctua-
tion case.
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