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Abstract. The Ukrainian Antarctic expeditions provided new geophysical data for many West Antarctica bottom structures. Gravity, 

magnetic- and electromagnetic surveys near the Antarctic Peninsula enabled to specify the age of the formation of some blocks, 

separate local crustal inhomogeneities of Bransfield Strait and continental margin of Antarctica. The similar results obtained by three 

different methods assure the notable magmatic activity of Bransfield Trough that forms in the conditions of structural transformations 

and rifting processes migrating NE-SW war along Bransfield Strait. It is quite probable that this area is dominated by diffusion 

tension process but not by the expansion of a mid-oceanic ridge in a back of a volcanic arc. 

 

Реферат. Отриманo нові дані про розподіл геофізичних полів для тектонічних структур дна Західної Антарктики, які 

дозволили виділити локальні неоднорідності земної кори протоки Брансфілд. Виявлено великий вплив тектонічних факторів 

на формування неоднорідної осадової товщі. Показано, що розподіл аномальних магнітозбурюючих тіл має такий саме 

характер, як і розташування силлів, визначених методом вертикального електрорезонансного зондування. 

 

Реферат. Получены новые данные о распределении геофизических полей для тектонических структур дна Западной 

Антарктики, которые позволили выделить локальные неоднородности земной коры пролива Брансфилд. Выявлено большое 

влияние тектонических факторов на формирование неоднородной осадочной толщи и основных характеристик глубинных 

разрезов земной коры. Распределение аномальных магнитовозмущающих тел в верхних частях аномальной коры в 

значительной мере отражает наличие силлов и отдельных интрузий, выделенных по данным вертикального 

электрорезонансного зондирования. 

 

 

1. Introduction 

 

The tectonic evolution of Bransfield Strait region is related with the evolution of the ambient areas, in particular 

the Sea of Scotia, southern margins of South America and the Antarctic Plate [1–4]. The structural position of the Strait 

in the complicated of the interaction of different-age formations of this region creates the main features of its deep 

structure. The trans-arc Bransfield Trough with the Bransfield Platform is a Cenozoic basin situated in the back of the 

South-Shetland Isles and the Shetland Trough. The chronology of Bransfield Strait extension is probably associated 

with the model of collision of the ridge-trough type [2, 3]. An argument supporting the assumption of the existence of a 

subduction with trans-arc extension is that the Strait Trough has the same length as the trough of the South Shetland 

Isles. 

It may be assumed that the central part of Bransfield Strait in the present state of geodynamic evolution greatly 

resembles the regional extension areas where whole systems of tectonic disturbances due to features of the interaction 

of plates that favored tectonic processes and highly developed Cenozoic volcanism of different types. Therefore this 

region is interesting not only from viewpoint of studying processes of multiphase expansion in Mesozoic but also as an 

area of young tectonogeodynamic processes of 2,5–4,0 my age accompanied by the formation of many volcanic uplifts 

and ridges composed of tholeiites and alkali basalts. 
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Seismic studies. The deep lithosphere structure of the Strait was studied by use of refracted and overcritical 

reflected waves during expeditions made by the Polish Academy of Sciences in 1979–1991 years (fig. 1). The seismic 

data reflect a complicated geological structure and tectonics, a notable change of the physical properties of the Earth′s 

crust of this region with depth and laterally [5–9]. 
 

Fig. 1. Geophysical studies in Bransfield Strait: 1– geophysical profiles; 2 – position of the central part (core) of 

the block of abnormally high velocity (AHVB) by seismic data [5]; 3 – limit of AHVB expansion (peripheral part) by 

seismic data [5]; 4 – boundary of zones I-II by VERS data; 5 – boundary of zones II-III by VERS data; 6 – disturbance 

zones by seismic data [5]. 

 

Fig.2 shows the crustal layers distribution along Bransfield Strait over the DSS-20 profile. The water mass is 

underlain by young slightly consolidated sediments with seismic wave velocities of 1,9–2,9km/s. The next two horizons 

with velocities of 3,5 km/s and 4,0 km/s include some old and more consolidated sediments and lava flows. The 

sediments are underlain by rocks with velocities of 5,2–5,8 km/s that are typical for acid metamorphic and crystalline 

rocks. They lie on a crystalline basement with velocities of 6,4– 6,9 km/s. 

At depths from 10–15 km to 25 km an abnormally high velocity block (AHVB) with Vp = 7,4km/s in the upper 

part of the body and a high vertical velocity gradient was detected. According to the seismic data, the general structure 

of the AHVB resembles a mushroom with a rather thin (yet not round but stretched along the trough) that joins the 

mantle and a broader bonnet of the peripheral part (fig.2). Considering the AHVB form, it may be assume that this body 

formed due to magmatic activity, the arrival of pyroclastic material from the upper mantle. 

 
 

Fig. 2. Seismic structure of Bransfield Strait along the profile DSS-20 [1]; 1 – boundaries with velocity jump, 

km/s; 2 – isolines of seismic velocities, km/s; 3 – mean formational velocities, km/s; 4 – disturbance zones. The profile 

position is shown on fig.1. 



 

Along the profile DSS-20 two disturbance zones have been detected, one on the PP 100-115km near the NE end of 

the Livingston Island; another -on the PP 250-260 km beside the NE end of the King-George Island (fig.1). The 

information available is insufficient to answer the question of the origin of these zones. It may be associated with 

transform faults beginning at the Drake Plate. 

Magnetometric studies. Numerous magnetometric observations in the Antarctic Peninsula region were enabled by 

the aeromagnetic survey whose results were used to compile a generalized sketched magnetic field map [3, 7, 8]. 

The magnetic data define the trough axial zone as a prolate positive anomaly where the magnetic field anomaly 

values reach +400nT. On both sides of the positive anomaly bands of negative anomalies attaining values above –400 

nT are observed. 

The data obtained by marine Antarctic expeditions in 1997–1998 years [9, 10] made more accurate the results of the 

aeromagnetic measurements. According to these data, the magnetic anomalies have spike forms in the eastern Bransfield 

Strait near the coast of the King-George Island (profile 0704, fig.1) Their intensity exceeds +1200nT (Fig.3). Moreover the 

short-period anomalies are superimposed on the long wavelength magnetic field component cf. 32km long. Long 

wavelength component extreme are marked on PP 18 (–310 nT), 50 (500 nT) and 83 (–500 nT). 

At the Institute of Geophysics NAS of Ukraine an effective program complex of magnetometric observation data 

interpretation [10] was worked out which was used to model the magnetic anomaly sources along the profile. The 

program selected in automated regime the parameters of magnetic bodies that satisfy the observed field. As a result, the 

forms and positions of bodies changed (fig.3). They assumed not vertical (as in the zero approximation model) but 

horizontal orientation, i.e. the general strike of the center of Bransfield Trough to its edge. The depth of the occurrence 

of the centers of all three large bodies appeared to be 4,7, 7,8 and 11,4 km, the depth level of the magnetic bodies 

decreasing regularly from Bransfield Trough center to the periphery, too. The declination angle of the line passing 

through the centers of the bodies is 7°. 

The vertical electric-resonance sounding method studies. The fact that the inhomogeneities are not confined to 

the lower crust but are also seen in the upper layers was established in 2004 by use of a modern instrumentation with 

the vertical electric-resonance sounding (VERS) method [6] along the profiles in Bransfield Strait (fig.1). 

 
Fig. 3. Results of magnetic field modeling along the profile 0704; а – observed magnetic field; b – model anomaly. 

The numbers show the magnetization intensity values for bodies (in A/m). The profile position is shown on fig.1. 

 

An upper crust section to a depth of 6000m set up using VERS results obtained along the Bransfield Strait (profile 

1-1a) is presented (fig.4). 

A clear-cut feature of this section is the essentially different-character of the lateral geoelectrical resistance 

distribution within the layer third from the floor surface (with Vp=5,2–5,8km/s on the seismic sections) that belongs to 

the crystalline basement. The parameters obtained suggest subdivision of the profile into three zones. 

A similar characteristic of the upper consolidated crust subdivided into three zones is marked on the profile 2-2a 

across the Bransfield Strait (fig. 5). Beside the trough edge on the side of the South Shetland Isles the main layer is that 

of the low geoelectrical resistance (zone III), on the side of the Antarctic Peninsula that of the normal geoelectrical 



resistance (zone I), and the central profile part alternates all three types (zone II). In this section the layers lay sub 

horizontally and slightly (1-3°) dipping to both sides. 

The boundaries between the zones separated by the VERS data are shown in fig.1. It appears that the boundary 

between the zones II and III almost completely coincides with that of the core of the abnormally high velocity block by 

seismic data. The boundary between the zones II and I lies near the boundary of the AHVB expansion though it does 

not coincide with it. 

The conclusions that may be drawn from the VERS data are as follows: the normal geoelectrical resistance layer 

represents unaltered rocks  of the upper part  of the  crystalline  basement  

 

Fig. 4. Vertical section along the profile 1-1a in Bransfield Strait by VERS data: 1 – water;     2 – nonconsolidated 

sediments; 3 – compacted sediments; 4 – low geoelectrical resistance blocks; 5 – normal electrical resistance blocks; 6 – 

high geoelectrical resistance blocks. The profile position is shown on fig.1. 
 

Fig. 5. Vertical VERS section along the profile 2-2a through Bransfield Strait. The legend is given in fig.4. The 

profile position is shown on fig.1. 

outside the abnormally high velocity block; the high geoelectrical resistance marks intrusion of magmatic sills over the 

peripheral parts of the AHVB; the low geoelectrical resistance is characteristic of the rocks changed under the effect of 

magmatic (most probably hydrothermal) activity over the AHVB core. As to the possibility of the existence of sills in 

the Bransfield Strait, the upper crust seismic data interpretation shows that lavas and sediments on the sides of the strait 

are internally stratified magmatic activity favors the appearance of dikes and sills within the sediments [7]. The effect of 

the abnormally high velocity block on the upper horizons is doubtless as shown by high upward curvature of seismic 

velocity isolines over the AHVB in the middle crust (fig. 2). 



Conclusions. Combined analysis of geophysical data of Bransfield Strait in West Antarctica has been made. The 

similar results obtained by three different methods suggest a notable magmatic dynamism of Bransfield Trough forming 

in the conditions of structural transformations migrating NE-SW along Bransfield Strait. Seismic results do not confirm 

unambiguously the development of active spreading and the presence of a crust of oceanic type in this part of the Strait. 

It is quite probable that this area is dominated by diffusion tension process but not by the expansion of a mid-oceanic 

ridge in a back of the volcanic arc. 
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