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The Landau–Lifshitz (LL) equation, originally proposed at the macrospin level, is increasingly used in Atom-
istic Spin Dynamic (ASD) models. These models are based on a spin Hamiltonian featuring atomic spins of 
fixed length, with the exchange introduced using the Heisenberg formalism. ASD models are proving a powerful 
approach to the fundamental understanding of ultrafast magnetization dynamics, including the prediction of the 
thermally induced magnetization switching phenomenon in which the magnetization is reversed using an ultra-
fast laser pulse in the absence of an externally applied field. This paper outlines the ASD model approach and 
considers the role and limitations of the LL equation in this context. 

PACS: 75. Magnetic properties and materials; 
75.10.Hk Classical spin models; 
75.78.–n Magnetization dynamics. 
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1. Introduction

Atomistic spin models have a long history, going back 
to the pioneering work of Binder [1] and co-workers in the 
1970s. Typically these studies concentrated on the static 
properties of spin systems, particularly using Monte-Carlo 
methods to investigate the order/disorder phase transition 
and finite size effects in magnetic nanoparticles. The atom-
istic approach proved a powerful tool in the study of purely 
thermodynamic aspects of magnetic spin systems. 

However, the use of atomistic models for simulating 
magnetization dynamics was, until recently, rather limited 
and generally based on Monte-Carlo simulations of escape 
over energy barriers. Such an approach is hampered by the 
fact that the timesteps are generally not quantified. Time 
quantification was attempted by Nowak et al. [2] but this is 
successful only in the strong damping regime where the 
precession can be neglected. The study of dynamic phenom-
ena however was intrinsically limited until the development 
of dynamic [3,4] and stochastic atomistic spin models [5–7]. 

In general the model of choice for magnetization rever-
sal studies is micromagnetics. The history of micromag- 
netics starts with a 1935 paper of Landau and Lifshitz on 
the structure of a wall between two antiparallel domains, 

and several papers by Brown around 1940. A detailed 
treatment of micromagnetism is given by Brown in his 
1963 book [8]. For many years micromagnetics was lim-
ited to the use of standard energy minimization approaches 
to determine domain structures and classical nucleation 
theory to investigate magnetization reversal mechanisms in 
systems with ideal geometry. Arguably, the current interest 
in micromagnetics arises from the availability, from about 
the mid-1980s onward, of large-scale computing power 
which enabled the study of more realistic problems which 
were more amenable to comparison with experimental data. 
One important realization during this period was the fact 
that, although micromagnetics can predict the nucleation 
fields for the magnetic system, due to the coexistence of 
different energy minima, multiple magnetization reversal 
paths are possible. Thus micromagnetics does not neces-
sarily predict the correct state of the system after magneti-
zation reversal. Consequently, a lot of work has gone into 
the development of dynamic approaches which use simula-
tions based on the Landau–Lifshitz equation of motion. 
This is probably the technique in most common use today. 

Dynamic calculations using micromagnetics have be-
come ubiquitous, finding applications in fundamental in-
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vestigations of reversal dynamics of magnetic materials. In 
addition micromagnetic models are vital to many in-
dustries, including the development of new generations of 
magnetic recording heads and media and permanent mag-
nets. However, limitations of the micromagnetic approach 
are becoming increasingly apparent. Firstly, as magnetic 
materials become increasingly structured at the nanoscale 
to investigate new physical phenomena and create new 
functionalities, the continuum nature of micromagnetics 
reaches the limits of validity. Secondly, although thermal 
activation can be introduced into the micromagnetic for-
malism, its applicability is strictly limited to low tempera-
tures; it is known that micromagnetic models greatly over-
estimate the Curie temperature [9,10]. This is a serious 
limitation in the investigation of ultrafast magnetization 
dynamics, where temperatures up to and beyond Tc can be 
achieved on the picosecond timescale. The natural evolu-
tion is toward dynamical approaches with atomistic resolu-
tion; such models are gaining increasing traction in deal-
ing with the physics of ultrafast magnetization processes 
and practical problems such as providing an understand-
ing of heat assisted magnetic recording (HAMR) [11,12]. 
Remarkably, the key to atomistic spin dynamic (ASD) 
models is the use of the LL equation at the atomic level. 
Here we outline the basis of ASD models, review some 
recent simulations of ultrafast spin dynamics and consid-
er the physical justification for the use of the LL equation 
at the atomistic level. 

2. Atomistic spin dynamic models 

The physical basis of the atomistic spin model is the lo-
calization of unpaired electrons to atomic sites, leading to 
an effective local atomistic magnetic moment, which is 
treated as a classical spin of fixed length. Ab initio calcu-
lations of the electron density [13] show that in reality, 
even in itinerant ferromagnets, the spin polarization is well 
localized to the atomic sites. Essentially this suggests that 
the bonding electrons are unpolarised, and after taking into 
account the bonding charge the remaining d electrons form 
a well-defined effective localized moment on the atomic 
sites. Nonetheless the assumption of classical spins leads to 
a fundamental discrepancy with experiments which will be 
discussed later. 

The basis of ASD models, reviewed by Evans et al. 
[14] is a classical spin Hamilonian based on the Heisen-
berg exchange formalism. The spin Hamiltonian   typi-
cally has the form: 

 exc ani app ,= + +     (1) 

with the terms on the RHS representing respectively the 
exchange, anisotropy and Zeeman terms. The exchange 
term is usually isotropic in spin space and the anisotropy 
term includes energies which are angular dependent. These 
can arise from crystalline anisotropies or magnetostriction 

and strains. The exchange term can also be anisotropic in 
some situations as will be discussed later. 

The exchange energy for a system of interacting atomic 
moments is given by the expression 

 exc ij i j
i j

J
≠

= − ⋅∑ S S  (2) 

where ijJ  is the exchange interaction between atomic sites 
i and j, iS  is a unit vector denoting the local spin moment 
direction and jS  is the spin moment direction of neighbor-
ing atoms. The unit vectors are taken from the actual atom-
ic moment iµ  and given by /i i s= µS µ  where sµ  is the 
saturation magnitude of the atomic moment. Due to the 
strong distance dependence of the exchange interaction the 
sum in Eq. (2) is often truncated to include nearest neigh-
bors only. This significantly reduces the computational 
effort while being a good approximation for many materi-
als of interest. In reality the exchange interaction can ex-
tend to several atomic spacings [15,16], representing hun-
dreds of pairwise interactions. 

In the simplest case the exchange interaction ijJ  is iso-
tropic, meaning that the exchange energy of two spins de-
pends only on their relative orientation. In more complex 
materials, the exchange interaction forms a tensor with 
components: 

 ,
xx xy xz

ij yx yy yz

zx zy zz

J J J

J J J

J J J

 
 

=  
 
  

  (3) 

which is capable of describing anisotropic exchange inter-
actions, such as two-ion anisotropy [15] and the Dzyalo-
shinskii–Moriya interaction (off-diagonal components of 
the exchange tensor). In the case of tensorial exchange, the 
exchange energy is given by the product: 

 exc .T
i ij j

i j≠
= −∑ S S    (4) 

We now proceed to consider two important factors in the 
use of ASD, firstly the process of determining, from first 
principles, the parameters of the spin Hamiltonian and sec-
ondly the introduction of spin dynamics, and the implica-
tions of the use of the LL equation at the atomistic level. 

2.1. Ab-initio calculation of spin Hamiltonian parameters: 
Multiscale approaches 

The material parameters central to the spin Hamiltonian 
are the exchange interactions, anisotropy energies, and the 
magnitude of the spin moment. These can generally be 
found using two routes: (i) experimental measurements, 
either in a mean-field sense from macroscopic quantities 
such as the Curie point, or microscopically using neutron 
scattering, (ii) with a multiscale approach using ab initio 
density functional theory (DFT) calculations to parameterise 
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the spin model. The ab initio approach is often preferable 
as it removes extrinsic factors from the parameters such as 
nonuniformity of an experimental sample and also pro-
vides a resolution (for example many exchange neigh-
bours) which is hard to obtain experimentally even with 
neutron scattering. Difficulties can arises such as in mag-
netic materials involving rare-earths, where the treatment 
of the 4f electrons is problematic in DFT. In this case an 
experimental parameterization becomes the most practical 
route, as was done by Ostler et al. [17] for amorphous 
GdFeCo alloys and Evans et al. [18] for Nd2Fe14B alloys. 

Contemporary ab initio methods enable the calculation 
of a wide range of material properties including ground 
state magnetic properties. So-called “beyond DFT” meth-
ods allow the calculation of even small energy differences, 
providing access to the magnetic crystalline anisotropy 
constants. Standard software packages such as VASP [19] 
and SIESTA [20] make such calculations accessible to in-
terested researchers. The calculation of pair wise exchange 
interactions in DFT is somewhat complicated by the delo-
calised nature of the basis sets employed. Parameterizing a 
spin Hamiltonian therefore requires mapping many differ-
ent spin configurations onto the atomic Hamiltonian. An 
alternative is to use scattering methods such as Korringa–
Kohn–Rostoker [21,22] or linear muffin tin orbitals 
[23,24]. These methods are built around the atomic sphere 
approximation which gives a natural mapping onto the 
localised Heisenberg formalism in conjunction with the 
magnetic force theorem [25]. 

Connecting the ab-initio and atomistic length scale is an 
important link in the mulultiscale modelling chain allowing 
one to include both dynamics and temperature, which has 
been demonstrated for FePt by Kazantseva et al. [26]. In 
this section we consider the calculation of the temperature 
dependence of static materials properties. Mryasov et al. 
[27] carried out ab-initio calculations of exchange and ani-
sotropy of the L1O phase of FePt; an important candidate 
for HAMR media. The aim was to investigate the ex-
change and anisotropy values of bulk FePt and to map 
them onto a classical spin model in order to investigate 
static and dynamic properties. This process was complicat-
ed by the induced Pt moments arising from the Fe ex-
change field. Such an effect is beyond the Heisenberg 
model of fixed moments, but based on ab-initio calcula-
tions an effective spin Hamiltonian was developed which 
is dependent only on the Fe degrees of freedom. 

(2) (0)FePt 2( ) ( ) .z z z
ij i j i j iij i

i j i
J D S S D S

≠
= − ⋅ + −∑ ∑S S    (5) 

The exchange parameters include the effect of Fe–Pt–Fe 
interactions which contributes to both the isotropic ex-
change ijJ as well as introducing a two-ion anisotropy, 

(2) ,ijD  because of the layered ordering of this intermetallic 
compound. This two-ion term is considerably larger than 

the single ion anisotropy (0).iD  The exchange interactions 
are significant over large distances, making numerical calcu-
lations rather time consuming. Physically it leads to strong 
finite size effects [28] and in particular leads to deviations of 
the finite size scaling exponents from the expectations of the 
nearest neighbour Heisenberg form [29–31]. 

In Ref. 27, the thermodynamic properties of FePt were 
investigated using an atomistic model based on the spin 
Hamiltonian given in Eq. (5). It was shown that the two- 
ion term gives rise to a thermal anisotropy scaling expo-
nent n = 2 (with K(T) ∝ M 

n(T)) consistent with the theory 
of Callen and Callen [32] and in contrast to the single ion 
anisotropy for which the exponent is n = 3. The importance 
of the atomistic approach is that it is able to calculate the 
exact exponent arising from the specific material parame-
ters of FePt. This resulted in n = 2.1, the non-integer value 
reflecting the relative importance of the single- and two- 
site anisotropy terms; a value in good agreement with ex-
periments on FePt nanoparticles [33,34]. 

2.2. Langevin dynamics and the LL equation at the atomic 
level 

The important step forward in the use of atomistic mod-
els is the introduction of Langevin dynamics, allowing 
modelling of the dynamical response of the magnetization 
to temperature changes [35]. The approach is based on the 
introduction of thermal fluctuations for a single particle 
developed by Brown [36]. The theoretical basis is the clas-
sical theory of Brownian motion which accounts for the 
departure from thermal equilibrium due to the energy in-
terchange between a particle and its heat bath, with the 
Landau–Lifshitz equation augmented by white-noise 
fields, effectively producing the stochastic (Langevin) 
equation of the problem. The approach is to determine lo-
cal fluctuating fields using the fluctuation dissipation theo-
rem and to require the equilibrium distribution function of 
the orientations of the magnetization to coincide with the 
Boltzmann distribution. 

In order to yield the Boltzmann equilibrium distribu-
tion, the stochastic LL equation should be interpreted as a 
Stratonovich vector stochastic differential equation [37]. 
This is integrated by a suitable choice of the numerical in-
tegration scheme, most usually that of Heun. Care must be 
taken that the spin moments remain of unit length and for a 
nonconservative scheme such as Heun, an explicit renor-
malization of the length at each timestep is required for the 
Stratonovich solution [38]. The integration of the stochas-
tic LL equation is discussed in detail in Ref. 14. 

Consequently, the basis of ASD for a set of coupled 
spins is the integration of the stochastic Landau–Lifshitz 
equation for each localized magnetic moment :iS  

 [ ] [ [ ]].i i i i i i= −γ × − γα × ×S S H S S H  (6) 
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Here   ( )  /i i it d d= −H Sξ  is the local effective field 
which includes Zeeman, exchange, anisotropy and mag- 
netostatic contribution, augmented with a stochastic term 

( )i tξ  (which appears like a field). It is defined through the 
correlators: 

 
2

( ) 0, ( ) ( ) ( ) .B
i i j ij

s

k Tt t t t tη ν ην
α′ ′ξ = ξ ξ = δ − δ δ
γµ

 (7) 

Here T is the temperature of the heat bath, γ  is the gy- 
romagnetic ratio, sµ  is the magnetic moment, α  is the 
parameter describing the coupling strength to the heat bath, 
η  and ν  are Cartesian components. The basis of this 
equation is the separation of timescales, assuming that the 
bath (phonon or electron system) is much faster than the 
spin system. Consequently, the fluctuation-dissipation the-
orem can be applied to derive the equilibrium white noise 
properties of Eq. (7). In Section 4 we consider the applica-
bility of the Langevin dynamic approach using the LL 
equation. However, prior to this we give some examples of 
the success of ASD models in developing an understanding 
of the thermodynamic aspects of ultrafast magnetization 
processes, including the prediction of a novel “linear” re-
versal mechanism. 

3. Atomistic models of ultrafast spin dynamics 

Advanced models are required in order to understand 
ultrafast magnetization processes. Interest in this area has 
developed rapidly since the experimental demonstration 
[39] that the magnetization of Ni can be reduced by laser 
heating on a timescale of l ps. Experimentally the meas-
urements are made using a pump-probe process. A high 
energy femtosecond laser is used to heat the material 
(pump), and the magnetic response is measured using 
magneto-optical Kerr effect (MOKE) with a low energy 
probe beam split off from the pump. This experiment gives 
time resolved measurements of the magnetic response fol-
lowing pulsed laser heating. Such experiments are extremely 
challenging in terms of understanding the physics of ultra-
fast magnetization processes and damping mechanisms. 

A more recent development was the experimental 
demonstration by Stanciu et al. [40], of optically induced 
magnetization reversal in the amorphous ferrimagnet 
GdFeCo. Using circularly polarised ultrafast laser pulses, 
Stanciu et al. showed magnetization reversal to be de-
pendent on the chirality of the laser pulse. This was inter-
preted as arising from a large, laser-generated, opto- mag-
netic field (estimated as large as 20 T) possibly originating 
from the inverse Faraday effect, the reversal was explained 
[41] using atomistic and Landau–Lifshitz–Bloch (LLB) 
macrospin simulations (for a review of the LLB equation 
see [42]) as arising from this large optomagnetic field to-
gether with a purely thermodynamic contribution which 
initiates switching via the so-called linear reversal mecha-
nism [43]. Linear reversal is an important prediction of the 

atomistic model and property of the LLB equation. Essen-
tially it involves a collapse of the magnetization to zero 
and subsequently a switched polarisation in a reversing 
field. Linear reversal sets in at a critical temperature T* 
related to the ratio of the longitudinal and transverse sus-
ceptibilities [43]. Importantly, this leads to ultrafast mag-
netization reversal since the timescale is governed by the 
longitudinal relaxation time which is of the order of hun-
dreds of femtoseconds. 

Originally optomagnetic switching was only observed in 
various ferrimagnetic structures but it can, in principle, oc-
cur in ferromagnets as well. The experimental work by 
Lambert et al. [44] found that thin films of ferromagnetic 
Co/Pt layers and granular FePt showed magnetization 
switching after repeated excitation by a circularly polarised 
femtosecond laser. Figure 1 shows an atomistic model simu-
lation of the response of the magnetization of FePt to the 
field and temperature pulses associated with a femtosecond 
laser pulse. The calculations used the spin Hamiltonian of 
Mryasov et al. [27] given in Eq. (5) with a optomagnetic 

Fig. 1. (Color online) The temporal evolution of the magnetization 
in FePt after a femtosecond laser pulse simulated using the atomis-
tic model described in Sec. 2. The model uses the Hamiltonian 
expressed in Eq. 5 with a damping, α = 0.1, and µs = 3.23 µB The 
system starts at room temperature before excitation by a 100 fs 
laser pulse incident at t = 0 ps with fluences of (a) 6 mJ/cm2 
(b) 12 mJ/cm2 and (c) 18 mJ/cm2. A reversing optomagnetic field 
also occurs with the laser pulse; it has a square pulse shape from 
t = 0 ps to t = 1 ps with a magnitude of 30 T. 
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field of 30 T that lasts for 1 ps after laser excitation. The 
dynamic response is calculated using Langevin dynamics 
driven by the electron temperature evolved using a 2-
temperature model [45]. The reversal depends critically on 
the laser power, as shown in Fig. 1. At low laser power, 
Fig. 1(a), demagnetization is not complete and the reversal 
proceeds via the usual precessional route, albeit over an 
energy barrier reduced due to the quenching of the anisot-
ropy. Complete reversal proceeds over many picoseconds. 
At elevated temperatures, Fig. 1(b), switching of the total 
magnetization proceeds by a process involving no macro-
scopic precession; the linear reversal mode. Importantly, 
switching via the linear reversal mode occurs on a time-
scale of the longitudinal relaxation time of the magnetiza-
tion (~hundreds of fs). At higher laser power, Fig. 1(c), 
reversal occurs but the magnetization is destroyed by the 
elevated temperature. Vahaplar et al. [41] show that opti-
cally induced switching proceeds above a critical tempera-
ture which is sufficient to excite linear reversal but not so 
large as to demagnetize the system. 

It was shown by Vahaplar et al. [41] that extremely 
high optically-induced fields (tens of Tesla) needed to be 
invoked to trigger the all-optical reversal. The possible 
origin of such fields remains a matter of debate. However, 
it can be shown that the fields may arise from interatomic 
exchange forces. This interpretation begins with the obser-
vation by Radu et al. [46] that the RE and TM sublattices 
demagnetize at different rates, even though strongly coupled 
through intersublattice exchange forces. The measurements 
were made using XMCD (x-ray magnetic circular 
dichroism) to provide the element specific magnetization 
dynamics. The experimental observations were supported 
by atomistic model calculations, which verified both the 
differential sublattice dynamics and the existence of an 
intriguing transient ferromagnetic-like state (TFMLS) 
which is created by the reversal of the TM spins into the 
RE spin direction. The TFMLS exists for around 500 fs 
and is associated with the magnetization reversal process. 
Further investigation led to the astonishing prediction by 
Ostler et al. [47], using atomistic model calculations that 
switching occurred in the absence of any external sym-
metry breaking field. In Ref. 47 this remarkable prediction 
was verified experimentally. Interestingly, thermally in-
duced magnetization switching (TIMS) allows a re-
interpretation of optically-induced magnetization reversal. 
Rather than invoking large fields of opto-magnetic origin, 
Khorsand et al. [48] gave experimental evidence in favour 
of TIMS as the main switching mechanism in GdFeCo and 
attribute the helicity dependence of the laser excitation on 
the dichroic effect, i.e. the dependence of the absorption of 
energy from the laser pulse on the chirality of the laser light. 

The phenomenon of TIMS has been further investigated 
theoretically using macrospin models [49,50] and atomistic 
approaches [51]. Importantly, Refs. 50 and 51 show that 
TIMS arises from angular momentum transfer between the 

RE and TM sublattices mediated by the establishment of a 
two-magnon bound state. The study in Ref. 51 involved 
detailed calculations of the magnon band structure, which 
has two branches with properties which strongly depend on 
the material composition. Calculations showed that transfer 
of energy between the modes, resulting from laser excita-
tion, was the physical origin of the TIMS phenomenon. 
Further, the calculations demonstrated a window for TIMS 
within a certain range of alloy concentrations. Specifically, 
for low RE concentration essentially a uniform FM mode 
is excited. With increasing RE concentration, the optical 
mode becomes accessible, leading to TIMS. At higher RE 
concentrations there develops a large band gap which pre-
cludes the angular momentum transfer between sublattices, 
at which point TIMS cannot be excited. This prediction is 
in good agreement with experiment. 

The results of Ref. 51 allow the definition of design 
rules for TIMS. Specifically, 

1. The existence of two sublattices with differential de-
magnetization dynamics. 

2. Antiferromagnetic coupling between the sublattices. 
3. Reversal of the dominant magnetic sublattice which 

stabilises the switched magnetization direction during the 
cooling phase following the laser pulse. 

This gives rise to the expectation that synthetic ferri- 
magnetic (SFIM) structures consisting of two ferromagnetic 
layers separated by an element such as Ru or Ir, to establish 
AF coupling between the layers, would exhibit TIMS. This 
has been demonstrated numerically by Evans et al. [52] in 
bilayers of Fe and FePt coupled by an exchange separation 
layer assumed to promote AF coupling between the FM 
layers. Importantly, this extends the TIMS phenomenon 
beyond its initial prediction and discovery in amorphous 
ferrimagnets [47] to designed materials with high anisotropy 
and the avoidance of RE components. This is of importance 
both in terms of fundamental understanding of ultrafast 
magnetization processes and of applications in information 
storage. In the latter context we note that Evans et al. [53] 
demonstrated the requirement for large write fields in the 
magnetic recording process; not simply to ensure magnetiza-
tion reversal, but also that there is no back-switching of the 
magnetization, which would lead to a limiting source of 
noise. Ostler et al. [47] show that extremely large fields ~ 
tens of Tesla are necessary to oppose the formation of the 
TFMLS. This is consistent with the physical origin of TIMS 
in the excitation of the two-magnon bound state, which natu-
rally introduces fields arising from the exchange interaction. 

Clearly, TIMS is an important prediction using a model 
based on LL dynamics at the atomistic level and shows the 
LL equation to be a remarkable piece of insight which 
finds application at time- and length-scales significantly 
beyond its original conception. In the following we consid-
er the underlying physics of the LL equation at the atomis-
tic level, distinguishing between the origin of the preces-
sion and damping terms. 
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4. Analysis of the atomistic Langevin dynamic 
approach using the LL equation 

The precession term in the LL equation derives directly 
from the equation of motion 

 ˆ  [ , ] ,di M M H
dt

=  (8) 

with ˆ ,( )tH M B= − ⋅  which leads directly to the Larmor 
precession term. The damping term is more difficult to 
justify at the atomistic level. Pragmatically one can make 
the case that some term coupling the spin to the heat bath 
is necessary to ensure eventual thermal equilibrium with 
the heat bath. In this spirit, the LL damping term is the 
simplest form capable of including this key physical re-
quirement. Some work has been carried out to investigate 
spin dynamics at the quantum level. In particular, Cappelle 
and Gyorffy [54] have investigated magnetization dynam-
ics using time dependent density functional theory. They 
construct a gradient-dependent density functional which is 
then used to derive the phenomenological LL form of 
damping directly from first principles. The LL equation 
and its damping term can also be derived from the quan-
tum mechanics using the density matrix formalism [55], an 
approach recently revisited by Weiser [56]. The coupling 
of the spin to the heat bath is expected to be material de-
pendent; essentially it represents the relevant energy trans-
fer channel which might arise from interaction between the 
spin and conduction electron or spin/lattice interactions 
and should be studied at the quantum level. 

The introduction of thermal fluctuations into the atom-
istic model formalism is achieved via the Langevin dynam-
ic approach. As mentioned previously, the assumption is 
made that the instantaneous random fields, by which the 
thermal fluctuations are introduced, are uncorrelated in 
time and space, giving rise to white noise. The basis of this 
formalism is the separation of timescales, assuming that 
the bath (phonon or electron system) is much faster than 
the spin system. In this case, the bath degrees of freedom 
can be averaged out and replaced by a stochastic field with 
white noise correlation functions. In a sense this is perhaps 
the most questionable part of the application of the atomis-
tic model in ultrafast magnetism, which involves phenom-
ena on the timescale of tens of femtoseconds, where spatial 
and temporal noise correlations might be expected. 

Investigation of this phenomenon is the province of 
models simulating the thermal behavior of the heat bath 
and coupling this to the spin system. In this case only the 
precession term of the LL equation is retained, with the 
damping included via a term based on the underlying 
mechanism coupling the spin to the heat bath. This was 
treated in a generic way by Atxitia et al. [57] using an ap-
proach developed by Miyazaki and Seki [58] and gener-
alising this to multi-spin systems. The noise takes the form 
of an Ornstein–Uhlenbeck process [59] introducing a char-

acteristic correlation time .cτ  The spin is coupled locally 
to the bath which is connected to a thermostat as follows 

( ) ,i i i i= γ × +  S S H η      1 ( ) ,i i i i
c

= − τ −χ +
τ

S Rη  (9) 

with the fluctuation–dissipation theorem for the bath varia-
ble: ;( ) 0i t =R  (2( ) ( / ) ( ).)i j B c ijt t k T t t′ ′= χ τ δ δ −R R  
The parameter χ  describes the coupling of the bath varia-
ble to the spin. The precession term in the first equation of 
the set (9) has the same form as in the Eq. (6). However, 
the damping is now described by the second equation in 
this set. In the second equation in Eqs. (9) the bath variable 
adjusts to the direction of the spin due to the interaction 
with it. In the limit 0cτ →  the stochastic LL equation (6) 
is recovered. This also provides a relation between the 
damping and the coupling constants as ,cα = γχτ  giving a 
more precise physical sense to the LL damping constant at 
the atomistic level. 

In this approach, the phenomenological LL damping 
parameter is substituted by two unknown parameters: the 
correlation time cτ  and the coupling constant .χ  Several 
processes may be important in determining these constants, 
for example, the spin-orbit coupling, momentum relaxa-
tion, scattering rate and dephasing time of conduction elec-
trons. As in the LL approach, these parameters will be ma-
terial specific and their physical origins should be clarified 
on the basis of first-principles approaches. The effect of the 
correlation time on the ultrafast demagnetization process 
was investigated in Ref. 57. For a correlation time cτ  < 1 fs 
the correlated approach gives the same results as the stand-
ard Langevin dynamics with white noise. However, in the 
range cτ   10–100 fs the correlations were found to give a 
dramatic increase of the longitudinal relaxation time. The 
effect is less pronounced at higher temperature since in this 
case the temperature contributes to the loss of correlations. 
Calculations based on the Langevin dynamics approach 
generally give reasonable values for the longitudinal relax-
ation time in comparison with experiment, which suggests 
that experimental correlation times are on the order of 10 fs 
or less; greater values would have an appreciable effect on 
the observed rates of demagnetization. 

The interactions of the spins with the lattice system also 
provides an energy channel for the fluctuation and dissipa-
tion. In conventional atomistic models the lattice is fixed 
and so transfer to and from the lattice is handled pheno-
menologically by the fluctuation and damping terms in the 
stochastic LL equation. By introducing the motion of the 
atoms to the model the energy transfer can be modelled 
directly without the need for the phenomenological terms. 
Recently models such as this have been developed to in-
vestigate a variety of systems where the spin-lattice effects 
are important. Ma et al. [60] have extensively developed a 
spin-lattice model of Fe that utilises the dependence of the 
exchange on the atomic separation as the coupling between 
the spins and lattice. However in this case both the spins 
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and lattice use a Langevin thermostat to maintain a con-
stant temperature. Through this model both systems act as 
a thermal reservoir from which instantaneous spin and lat-
tice temperatures can be extracted which can then be dy-
namically linked to the electron temperature thus repre-
senting a dynamic three temperature model [61]. Using this 
model, termed spin-lattice-electron dynamics (SLED) by 
Ma et al., experimental ultrafast laser induced magnetiza-
tion dynamics can be reproduced. 

Whilst the exchange interaction can couple the spins 
and lattice further coupling terms have also been inves-
tigated. Karakurt et al. [62] implemented a spin-lattice 
model where the exchange is constant but introduce a spe-
cific coupling term of the form: 

 .c i ijC= − ⋅S r  (10) 

Where ij j i= −r r r  is the separation of the atoms and C is 
a parameter to control the strength of the coupling. Using 
this Karakurt et al. demonstrated that this coupling causes 
a damping of the uniform precession mode. Beaujouan et 
al. [63] propose a different type of coupling based on a 
two site anisotropy which takes the form of pseudo-
dipole interaction. 

 ) ( )( ) .ˆ ˆ(
3

i j
c ij ij i ij jK

⋅
= − ⋅

 
−  ⋅

 

S S
r r S r S  (11) 

In this case the coupling strength, K, depends on the sep-
aration of the atoms and requires specific parametrisation 
from ab initio. As discussed in the literature this form of 
coupling arises from the spin-orbit interaction of the elec-
trons and thus is more physically justifiable but is still not 
exact. With this Beaujouan et al. are able to show that en-
ergy can be transferred between the systems and an equilib-
rium temperature is obtained. It is clear that by incorporating 
lattice dynamics into the ASD model various effects which 
are treated phenomenologically are present. However these 
still require a high level of empirical parametrisation for 
both the atomic bonding and the spin-lattice coupling. 

Finally, we consider briefly one further aspect of the use of 
fixed spin models such as the LL equation, specifically the 
classical nature of the spin. This leads to a disparity between 
the simulated and experimental temperature dependent mag-
netization curves [64]. At the macroscopic level the tempera-
ture dependent magnetization is well fitted by the phenome-
nological equation proposed by Kuz’min [64]. However, the 
Kuz’min equation merely describes the form of the curve with 
little relation to the microscopic interactions within the mate-
rial which determine fundamental properties such as the Curie 
temperature. Ideally one would perform 3D quantum Monte 
Carlo simulations [65], but, although this is possible for small 
numbers of atoms, for larger ensembles the multiscale ap-
proach using atomistic models parameterized with ab-initio 
information remains the only feasible approach to connect the 
quantum and thermodynamic worlds. Evans et al. [66] have 

proposed a scaling approach which maps classical to quantum 
spin models. The scaling recognises that, although the classi-
cal treatment finds the correct magnon energies, the distinc-
tion between classical and quantum models results from the 
particular statistical properties of each approach. While quan-
tum systems obey Bose–Einstein statistics, leading to the 
Bloch T3/2 law at low temperatures, the classical Boltzmann 
statistics gives rise to a finite slope of the magnetization at low 
temperatures. In Ref. 66 the existence of a simple relation 
between classical and quantum temperature-dependent mag-
netization at low temperatures is demonstrated. The tempera-
ture-dependent magnetization is represented in the simplest 
form arising from a straightforward interpolation of the Bloch 
law and critical behavior given by the Curie–Bloch equation 

 ( ) (1 )m α βτ = −τ  (12) 

where α  is an empirical constant and 1/3β=  is the critical 
exponent. Evans et al. [66] then use the classical spin 
model simulations to determine the critical exponent β  
and then find α by fitting the classical model predictions to 
experimental data. This leads to a mapping from a “simula-
tion temperature” to the real temperature. It was shown 
that this approach gives excellent agreement with experi-
ment [39] for the demagnetization of Ni following an ultra-
fast laser pulse. 

5. Conclusion 

The use of the LL equation in ASD models of magnetic 
materials has been described. The introduction of the LL 
equation, in its stochastic form, is the basis of a powerful 
approach to ultrafast spin dynamics. In particular, ASD sim-
ulations demonstrate the important thermodynamic contribu-
tion to laser-induced ultrafast processes. The models demon-
strate a new, so-called linear reversal mechanism which is 
the path to ultrafast reversal. Also predicted is the phenome-
non of TIMS, which is currently under extensive investiga-
tion and holds the promise of application in future devices 
requiring fast switching. The success of the LL equation in 
this framework is remarkable. While further investigations 
of the energy transfer mechanisms at the quantum level 
should be carried out to improve the physical understanding 
of damping, ASD methods based on the LL equations are 
likely to have an important role in understanding the physics 
of magnetic phenomena, not only at short timescales and 
elevated temperatures, but also on lengthscales where the 
micromagnetic formalism is not appropriate. 
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