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The energy balance of strongly interacting surface electrons on liquid helium under cyclotron-resonance exci-
tation is theoretically studied. The Coulomb interaction is shown to induce temperature bistability of the electron 
system, if the magnetic field and electron density are high enough. Surprisingly, bistability appears already for 
quite low average kinetic energies, when nearly all electrons occupy the ground surface subband. The electron 
temperature Te, as the function of the magnetic field B, exhibits hysteresis and bistability jumps in a certain 
range of the microwave power. Above the threshold microwave field, the line shape Te(B) is shown to be sensi-
tive to details of the ripplon dispersion at large wave numbers. 

PACS: 73.40.–c Electronic transport in interface structures; 
73.20.–r Electron states at surfaces and interfaces; 
73.25.+i Surface conductivity and carrier phenomena; 
78.70.Gq Microwave and radio-frequency interactions. 
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1. Introduction

Cyclotron resonance (CR) has proved to be a valuable 
research tool for studying properties of a 2D electron sys-
tem formed on the free surface of liquid helium. In early 
studies [1], the 2D nature of electron states on liquid heli-
um was demonstrated by tilting the magnetic field, and 
observing the shift of the resonance frequency caused by 
the change of the zB  component. A broad experimental 
investigation of the CR line shape [2,3] provided important 
information about the effective mass of surface electrons 
(SEs) and their coupling with capillary wave quanta 
(ripplons). At a high excitation power, a fraction of 3D 
electrons evaporated from the ground surface subband is 
formed. The semi-classical theory [4] of this effect is in a 
qualitative agreement with the experiment. 

SEs on liquid helium represent a highly correlated 2D 
electron system: the average interaction potential energy 

CU  of an electron is much larger than the average kinetic 
energy: .CU T>>  Therefore, full understanding and theo-
retical description of experimentally observed linewidth 
data [2,3] required an analysis of quantum transport phe-
nomena for strongly interacting electrons. In the absence of 
Coulomb interaction, electron scattering caused by 

ripplons and vapor atoms is quasi-elastic. In the self-
consistent Born approximation (SCBA), the rate of such 
scattering processes is enhanced [5] by the factor /c nω Γ  
(here = /c eB mcω  is the cyclotron frequency, and nΓ  is 
the collision broadening of Landau levels), as compared to 
the semi-classical result, because electron states are squeezed 
into extremely narrow Landau levels: < .n cTΓ << ω  Qua-
litatively, this factor can be considered also as a number 
of multiple scattering events c Bω τ  within the lifetime 

/ .B nτ Γ   The many-electron treatment of the quantum 
magnetotransport of SEs is based on the idea [6,7] that 
under a high magnetic field an internal electric filed, acting 
on an electron displaced from an equilibrium position due 
to fluctuations, can be considered as a quasi-uniform field. 
This fluctuational electric field fE  drives the cyclotron 
orbit center away from a scatterer which reduces scattering 
by vapor atoms and ripplons. This reduction can be ex-
plained differently considering the moving reference 
frame, where the cyclotron orbit is at rest. In this reference 
frame, electron scattering becomes inelastic because of the 
Doppler correction to the energy exchange at a collision 

f f BeE lqu   (here fu  is the drift velocity and Bl  is the 
magnetic length, 2 = / ).Bl c eB  Then, intra-level scattering
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is suppressed, when the energy exchange ( )f BeE l≈  ex-
ceeds the collision broadening of Landau levels. In the 
many-electron transport theory [8,9], both the collision 
broadening of Landau levels and the quasi-uniform 
fluctuational electric field were incorporated using the dy-
namic structure factor of the 2D Coulomb liquid. 

Strong suppression of SE scattering induced by internal 
forces was observed in magnetoconductivity measurements 
for electron interaction with vapor atoms [10,11], and 
ripplons [12]. The decrease of the CR linewidth caused by 
Coulomb interaction is accompanied by a transformation of 
the CR line shape (from the initial Gaussian to a Lorentzian) 
in accordance with the many-electron theory [13]. 

The typical fluctuational electric field (0) 3/43 e sfE T n  

(here eT  is the effective electron temperature, and sn  is 
the SE density) increases, when the 2D electron system is 
heated by the CR. This means that in a certain range of 

,sn  where the many-electron effect is important, major 
relaxation rates of SEs could be decreasing functions of 

.eT  For such a behavior of relaxation rates, the energy bal-
ance of the electron system comes into question. Still, by 
now, heating of strongly interacting SEs by the quantum 
CR was not theoretically investigated. 

In this work, we report results of theoretical study of the 
energy balance equation of SEs on liquid helium in the 
quantum regime of CR excitation, when the CR linewidth 
and the energy relaxation rate are affected by the many-
electron effect. The results obtained here indicate that 
strong Coulomb interaction, increasing with ,sn  can in-
duce temperature bistability of SEs populating the ground 
surface subband, if the amplitude of the microwave (MW) 
field ( )0

mwE  is strong enough. We found also that in the 
bistability regime, even a small increase in the MW power 
can drastically change the line shape ( )eT B  which should 
affect the dc magnetoconductivity of SEs. 

2. Basic relations 

2.1. CR line shape 

Consider the 2D electron system on liquid helium at 
low temperatures (T ~ 0.2 K). The magnetic field directed 
normally to the surface is assumed to be high (B > 1 T), so 
that, in the absence of MW irradiation, nearly all electrons 
occupy the ground Landau level with = 0n  (the Landau 
spectrum is defined as = ( 1/2),n c nε ω +  with 

= 0,1,...).n  In this regime, the linewidth of the CR is de-
termined by electron interaction with ripplons whose inter-
action Hamiltonian has the form similar to that of usual 
electron–phonon interaction  

 ( )†
,= e ,i

r r q qV V Q b b −
− +∑ qr

q q
q

 (1) 

where †bq  and bq  are creation and destruction operators 

of ripplons, ,r qV  is the electron–ripplon coupling, 
2

,= /2 ,q r qQ q ρω  the surface areal is set to unity, and ,r qω  

is the ripplon dispersion. For wave-vectors 7 1< 3 10 cm ,q −⋅  

the 3/2
, / ,r q qω α ρ  where α  and ρ  are the surface ten-

sion and mass density of liquid helium, respectively. Under 
a high magnetic field, momentum conservation usually 
restricts 1.Bq l−  

The average MW absorption is proportional to the real 
part of the electron conductivity Re ( ).xxσ ω  In the vicinity 
of the resonance, the memory function method yields [9]  
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( )r
qN  is the distribution function of ripplons, and ( , )S q ω  

is the dynamic structure factor (DSF) of the electron liquid. 
Because electron–electron collisions are quite frequent for 
SEs on liquid helium, we have used the electron tempera-
ture eT  approximation to describe electron distribution. In 
the limiting case 0,ω→  Eq. (3) describes also the effec-
tive collision frequency of the dc conductivity (0)xxσ  
which has a strong dependence on the electron temperature 

(0) 1/ .xx eTσ ∝  In this case, the correct form of (0)xxσ  
requires the inclusion of the nonresonant term whose de-
nominator has cω+ω  instead of .cω−ω  In Eq. (2), this 
term was neglected. 

For nondegenerate electrons, the single-electron theory 
yields  

 2
,

|| ,

2( , ) = ( )n n q
n n

S q I x
Z ′

′
Ω ×

π ∑


  

 /e ( ) ( ) ,Te n ng g d−ε
′× ε ε + Ω ε∫   (4) 

where ( ) = Im ( )n ng Gε − ε  represents the Landau level 
density of states, ( )nG ε  is the single-electron Green's 
function, 2 2= /2,q Bx q l  

2
2
, min ( , )

min ( , )!( ) = e ( ) ,
max ( , )!

x n nn n q
n n q q qn n

n nI x x L x
n n

− ′−′−
′ ′

′  
 ′  

 (5) 

and ( )m
nL x  are the associated Laguerre polynomials. The 

cumulant expansion method [14] gives the Gaussian shape  

 
2

2
2( )2( ) = exp n

n
n n

g
 ε − επ

ε − 
Γ Γ  

  (6) 

which is very useful for obtaining the analytical form of 
the DSF. 
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For SEs with strong Coulomb interaction, the correct 
form of the DSF was found considering an ensemble of 
electrons with orbit centers moving fast due to the quasi-
uniform fluctuational electric field [9] 

2
,

,
|| ,,

( )2( , ) = exp ( ) ,n n q n
n n

n n en n

I x
S q P

Z T
′

′
′′

 επ
Ω − − Ω γ  

∑  (7) 

where 
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2 2 2
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2
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′
Γ + Γ Γ
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 (9) 

and (0)= 2 .C BfeE lΓ  As compared to the single-electron 

treatment, the fluctuational electric field induces an addi-
tional broadening of the DSF of the electron liquid which 
depends on ,q  ,sn  and electron temperature: / .q Cx Γ   

There is also an additional frequency shift 2 /4q C ex TΓ   

which is independent of .eT  
The Eqs. (2)–(9) describe well the transformation of the 

CR line shape of SEs caused by internal forces in different 
experiments [2,3,13]. We shall use these equations to ob-
tain the temperature dependence of MW absorption. Under 
magnetic field, it is convenient to introduce the dimension-
less coupling function [15]  

 
2 2

1,1 , 2 2( ) = ,
2
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q r q q c

B

xl eE lV x V x u
l

⊥ 
≡ +  Λ Λβ 

 (10) 

where 2= ( 1)/4( 1),eΛ − +     is the dielectric constant of 
liquid helium, β  is the parameter of the SE wave function 

3/2
1( ) = 2 exp ( ),f z z zβ −β  and  

 3/2
1 1 1 1( ) = ln .

1 (1 )
c

xu x
x xx

 + −
− +   − −  

 (11) 

In the following we shall consider the regime .C cΓ << ω  
Then, neglecting exponentially small terms, one can obtain 
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where ||Z  is the partition function. 

The dependence eff , 1( ) 1/ n n+ν ω ∝ γ  reflects the singu-
lar nature of the quantum magnetotransport in 2D sys-
tems. In the single-electron theory, it yields the enhance-
ment factor / .c n≈ ω Γ  The Coulomb broadening, 
entering the definition of , 1n n+γ  in Eq. (9), describes the 
reduction of electron scattering caused by the fluctua-
tional electric field. Thus, Eq. (12) indicates that at the 
resonance eff ( )cν ω  decreases with eT  because of the 
Coulomb broadening in , 1,n n+γ  while Re ( )xx cσ ω  and 
MW absorption increase with .eT  

2.2. Energy relaxation rates 

The amount of energy taken by SEs from the MW field 
should be balanced by the amount transferred to ripplons. 
The average probability of electron scattering with the 
momentum exchange q  caused by one-ripplon creation 
(+) and destruction (–) can be also expressed in terms of 
the DSF [16] 

2 2
,( ) ( )

,2= ( 1/2 1/2) ( , ),r q q r
q y H r q

V Q
N S q q V±ν + ± − ωq 



 (13) 

where HV  is the Hall velocity in the external dc electric field. 
This representation is similar to that of the theory of thermal 
neutron (or x-ray) scattering by solids, where the scattering 
cross section of a particle flux is expressed in terms of the 
DSF of the target. The many-electron form of the DSF given 
in Eq. (7) follows also from Eq. (13), if we use averaging over 
the drift velocities in the fluctuational electric field [8,9]. For 
energy relaxation, we can set 0,HV →  assuming that 

( , )S q Ω  is the DSF of interacting electrons. 
Using quantities ( ) ,±νq  the amount of energy transferred 

to ripplons due to one-ripplon scattering by an electron per 
unit time can be defined as  

 ( ) ( )
1 ,= .r r qw + − ω ν − ν ∑ q q

q


   

Equilibrium properties of ( ),S q Ω  allow us to obtain  

 2 2 ( )
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


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/ /, ,e 1 .
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 

 (14) 

The energy exchange ,r qω  is usually much lower than T. 
Therefore, 1rw  can be represented as 1 1= ( ) ,r e rw T T− ν  
where 1rν  is the energy relaxation rate. Neglecting expo-
nentially small terms (we consider ),C cΓ << ω  1rν  can 
be found as 
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One can see that 1( )e rT T− ν  eventually becomes a de-
creasing function of eT  because of the Coulomb contribu-
tion into ,n nγ  and the singular nature of one-ripplon scat-
tering of SEs under a high magnetic field. 

In one-ripplon scattering processes, the energy ex-
change ,r qω  is small because the ripplon wave vector is 
restricted by the inverse magnetic length: 1.Bq l−  High 
energy ripplons can take part in two-ripplon scattering 
events, when an electron creates a couple of short wave-
length ripplons [17–19] with the total momentum = ′+s q q  
restricted by the condition 1 .Bs l q− <<  This can lead to a 
much higher energy relaxation rate. Recently, this theoreti-
cal prediction was confirmed experimentally [20]. 

In the presence of a high magnetic field, the energy ex-
change ,( 2 )r qω   of a couple of short wavelength 
ripplons is much larger than the Landau level broadening 

,nΓ  and, therefore, such two-ripplon processes can not 
take place for electron scattering within the Landau level. 
They can substantially contribute to energy relaxation, 
when the system is heated, and electron scattering between 
different Landau levels becomes important ( ).e cT ω  

Two-ripplon scattering processes noted above are de-
scribed by the following Hamiltonian 

 ( )†
2

,
=r q q qH W Q Q b b′ −

′
+ ×∑ q q

q q
  

 ( )† ( )e .ib b ′− +
′− ′× + q q r

q q  (16) 

The coupling function qW  is usually interpolated employ-
ing the unit step-function [19] 

 (lon) (sh)( ) ( )q q qW W q q W q q∗ ∗θ − + θ −  (17) 

joining two asymptotes  

[ ]
2

2(lon) 2 (sh) 1
0 1
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ˆ
, = (0) ,

2
z

q q
e

pW q W V f
m

− 
′  

 
   (18) 

where 7 11.65 10 cm ,q −∗ ⋅  0V  is the repulsion barrier at 

the interface, 1 8
0= / 2 2 10 cmem V− −⋅   is the pene-

tration length of the SE wave function 1( )f z  into the liq-
uid phase, 1(0)f ′  is the derivative at the interface, ˆ zp  is 
the electron momentum in the perpendicular direction, and 

1,1(...)  means averaging over the ground surface-state wave 

function 1( ).f z  Since 1 ,Bs l q− <<  the absolute value 
.q q′

  We shall consider mostly high magnetic fields, 
when the wavevector defined by energy conservation 

,[2 = ( ) ]r q cn n′ω − ω  is larger than .q∗  

For the interaction Hamiltonian of Eq. (16), the aver-
age amount of energy lost by an electron per unit time 
due to two-ripplon scattering can be found using the Born 
approximation 

 2 4
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Under the condition s q<<  used above, summation over 

s  can be done analytically 2 2
, ( ) = 1/2n n s BI x l′ π∑

s
 (the sur-

face areal is set to unity), and Eq. (19) can be reduced to 
simple sums  
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 (20) 

where kq  is the solution of the equation ,2 =r q ckω ω  
(here = ).k n n′−  The Eq. (20) indicates that two-ripplon 
scattering under magnetic field is not singular: a finite re-
sult is found in the limiting case 0.nΓ →  This means that 
the influence of the fluctuational electric field on two-
ripplon scattering can be neglected if .C cΓ << ω  

The result of Eq. (20) depends strongly on the ripplon 
dispersion in the short wavelength range. Experimental 
data [21] and theoretical analysis [22–24] indicate that the 
ripplon dispersion curve should remain below the roton 
threshold 8.6 K∆   because of interaction with bulk 
rotons. It is obvious that in this case, q′ω  decreases fast at 
large q  which should increase the energy loss of Eq. (20). 
In our calculations, we shall use mostly two extreme mod-
els of ripplon dispersion at large wave vectors: 1) the pure 
capillary dispersion with 3/2( ) = / ;r q qω α ρ  2) the simple 
analytical interpolation  

 
2 2

( )
( ) = , =

( )
r

r
r

qq
q

∆
∆

∆

ω ω ∆
ω ω

ω +ω




 (21) 

which is quite close to experimental data [21]. For the se-
cond model, the solution kq  is found as 

 
1/3 2/3

2 1/3
( )

= 1 .
4 2(1 ( /2 ) )

c c
k

c

k k
q

k ∆∆

 ω ωρ  θ −  α ω  − ω ω  
 (22) 

In the limit /2 1,ck ∆ω ω <<  Eq. (22) transforms into the solu-

tion 1/3 2/3= ( /4 ) ( )k cq kρ α ω  valid for the pure ripplon dis-
persion (the first model). Under the condition 2 / ,c k∆ω ω →  
the .kq →∞  In this case, we shall restrict q  by the posi-
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tion of the roton minimum: 8 1
0 1.9 10 cm .q q −≤ ⋅  Alter-

natively, one could assume that at 0>q q  the ripplon dis-
persion curve follows (slightly below) the roton dispersion 
curve. The 2 ( )rw B  calculated for these two alternatives is 
shown in Fig. 1 by solid 0( )kq q≤ ) and dotted ( kq  can be 
larger than 0 )q  curves, respectively. Dashed curves repre-
sent 2rw  for the pure capillary dispersion (the first model). 
Thus, at high eT  the second dispersion model results in 
sharp maxima of 2rw  whose positions are defined by the 
condition 02 ( )/ integer.r cqω ω →  

Different contributions to the average energy transferred 
to ripplons by an electron per unit time are shown in Fig. 2, 
as the functions of the electron temperature. In the single-
electron treatment (S-E), the contribution from one-ripplon 
scattering 1rw  increases strongly with .eT  In the many-
electron theory (M-E), the same quantity becomes a decreas-
ing function at > 0.7 K.eT  The two-ripplon contribution 

2rw  is very small at low temperatures < 1.5 KeT  because 
excited Landau levels are nearly empty. At high tempera-
tures > 1.5 K,eT  2rw  dominates and the total energy loss 
of SEs becomes an increasing function of .eT  

The energy gain of SEs from the MW field should be 
balanced by the energy loss caused by one-ripplon and 
two-ripplon scattering processes. This yields the energy 
balance equation  

 
(0) 22

eff mw
1r 2r2 2

eff

( )( )
= ( ) ,

4 ( ) ( )
e

e c

Ee T T w
m

ν ω
− ν +

ω−ω + ν ω
   (23) 

where (0)
mwE  is the amplitude of the MW field. This equa-

tion defines the electron temperature as the function of 
(0)
mwE  and B . Since 2rw  becomes important only when 

,e cT ω  to reach temperature bistability one have to use 
a high enough magnetic field. 

3. Results and discussion 

The dependence (0)
mw( )eT E  defined by the energy bal-

ance equation can be found trivially by inverting the obvi-
ous relationship (0)

mw ( )eE T  which directly follows from 
Eq. (23). Under the CR condition ( = )cω ω )which occurs 
at a high magnetic field (B = 5 T), the dependence 

(0)
mw( )eT E  is shown in Fig. 3. The results obtained for the 

ripplon dispersion model 1 and the dispersion model 2 are 
shown by dashed and solid curves, respectively. In the case 
of the single-electron theory, the curves marked with S-E 
show no bistability which means that at low SE densities 
one can use quite strong MW fields (0)

mw( 0.06 V/cm)E   
without a substantial increase in population of excited sur-
face subbands. For the many-electron theory, the (0)

mw( )eT E  
curves depend strongly on electron density. For two values 
of sn  chosen in Fig. 3, the many electron curves demon-
strate temperature bistability. The bistability range increas-
es with electron density. In is important that both the low-
temperature and high-temperature branches of the 
bistability regime are below 2 K which means that nearly 
all SEs occupy the ground surface subband. The difference 
between two ripplon dispersion models discussed above 
becomes important only for the high temperature branch. 

At a lower magnetic field (B = 2 T), the evolution of the 
(0)
mw( )eT E  curve with an increase in electron density is 

Fig. 1. 2 /r Bw k T  vs B calculated for T = 0.2 K and four electron 
temperatures: =eT  0.5, 1.0, 1.5, and 2 K. Dashed lines are ob-
tained using the pure capillary dispersion, solid lines are for the 
model dispersion ( )r qω  of Eq. (21) ending at 0= ,q q  dotted 
lines are calculated for the model ( )r qω  which follows the roton 
dispersion at 0> ,q q  as described in the text. 

Fig. 2. Different contributions into w  vs eT  calculated for 
T = 0.2 K, B = 5 T, and =sn  50⋅106 cm–2: one-ripplon scattering 
of the single-electron theory (dashed), one-ripplon scattering of 
the many-electron theory (solid), two-ripplon scattering for the 
ripplon dispersion of Eq. (21) (dash-dotted). 
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shown in Fig. 4. In this case, bistability vanishes, still the 
increase of eT  with (0)

mwE  becomes sharper for higher den-
sities. This explains the fast increase of the electron tem-
perature and evaporation of SEs from the ground surface 
subband into 3D states observed experimentally at low 
magnetic fields and high densities [2,3,25]. 

To obtain the electron temperature as a function of the 
magnetic field, numerical solution of Eq. (23) is necessary. 

The evolution of the line shape ( )eT B  with a gradual in-

crease in (0)
mwE  for (0)

mw th 0.011796 V/cmE E≤   is shown 
in Fig. 5 (here thE  is the threshold field for the bistability 
jump to the high-temperature branch). The top of the curve 

( )eT B  becomes sharper, when (0)
mwE  approaches thE . The 

line shape of ( )eT B  drastically changes when (0)
mwE  be-

comes larger than th ,E  as shown in Fig. 6. Slightly above 

the threshold field (0)
mw( = 0.012 V/cm)E  the dependence 

( )eT B  has two bistability jumps to the high-temperature 
branch and two bistability jumps back to the low-
temperature branch. Therefore, the shape of ( )eT B  de-
pends on the history of past changes of B (the direction of 
a sweep of B) and demonstrates a hysteresis. A line shape 

( ),eT B  corresponding to monotonic changes of B (upward 
or downward), is not symmetrical with respect to the posi-
tion of the CR. 

It is interesting that even a small increase in the MW 
field (from 0.012 to 0.015 V/cm) eliminates temperature 
bistability of the line shape ( ),eT B  as shown in Fig. 6. 
This behavior is cased by the term 2( )cω−ω  in the de-
nominator of the left side of Eq. (23). A substantial in-
crease in it starts inverting the dependence of Re xxσ  on 

effν  which results in a stable solution of the energy bal-
ance equation. 

The roton threshold of the ripplon dispersion ∆ω  
should affect the dependence ( ),eT B  when the MW fre-
quency is close to 2 /k∆ω  and (0)

mw th> .E E  This conclu-
sion follows from solid and dotted lines of Fig. 1 which 
have sharp maxima at certain values of the magnetic field. 

Fig. 3. eT  vs (0)
mwE  calculated for T = 0.2 K, B = 5 T, and differ-

ent electron densities: the single-electron theory (S-E), and the 
many-electron theory for 6= 5 10sn ⋅  and 6 250 10 cm .−⋅  The 
dashed lines are calculated for the pure capillary spectrum. The 
solid lines are found for the ripplon dispersion model of Eq. (21). 

Fig. 4. eT  vs (0)
mwE  calculated for T = 0.2 K, B = 2 T, and different 

electron densities: the single-electron theory (S-E), and the many-
electron theory for 6= 1 10 ,sn ⋅  65 10 ,⋅  and 6 250 10 cm .−⋅  The 
dashed lines are calculated for the pure capillary spectrum. The solid 
lines are found for the ripplon dispersion model of Eq. (21). 

Fig. 5. eT  vs B calculated for the ripplon dispersion model of 
Eq. (21), T = 0.2 K, 6 2= 50 10 cmsn −⋅ , and different (0)

mwE  be-
low the threshold field th.E  The lowest line corresponds to 

(0)
mw = 0.005 V/cm.E  
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The final result depends strongly on the ripplon dispersion 
at 0> .q q  If the ripplon dispersion 0( )r qω  ends at 0=q q  
or just remains below ∆ω  at 0>q q  as well, then the ab-
rupt reduction in 2rw  at 0( ) > 2 ( )c rk B qω ω  or at 

( ) > 2ck B ∆ω ω  leads to an additional sharp maximum of 
the line shape ( ).eT B  This additional maximum is substan-
tially reduced, if we assume that at 0>q q  the ripplon dis-
persion follows the roton dispersion 2( rw  changes accord-
ing to dotted lines of Fig. 1). 

The dependence ( )eT B  obtained here should display it-
self in dc magnetoconductivity measurements conducted 
under CR excitation, because (dc) 2

eff (0)/ 1/ .xx c eTσ ∝ ν ω ∝  It 

is obvious that (dc) ,xxσ  as a function of B, should also have 

bistability jumps, when (0)
mwE  slightly exceeds the thresh-

old value th .E  Recent studies [26] indicate that photon-
assisted scattering by ripplons results in a sign-changing 
correction to (dc)

xxσ  whose strength increases in the vicinity 
of the CR condition. Therefore, at the minimum of the line 

( )(dc)
xx Bσ  determined by 1/ ( ),eT B  the sign-changing cor-

rection can induce an additional wavy structure, depending 
on sn  due to the fluctuational electric field. The accurate 
evaluation of dc conductivity changes under CR excitation 
caused by photon-assisted scattering of hot electrons re-
quires an additional study, and will be given elsewhere. 

4. Conclusions 

Under CR excitation, heating of SEs on liquid helium is 
shown to increase fast with electron density due to the 
Coulombic effect. This conclusion follows from the singu-
lar nature of the quantum magnetotransport in 2D systems. 
The internal electric field of fluctuational origin suppresses 

energy relaxation of SEs caused by one-ripplon scattering 
and increases MW absorption at the CR. Therefore, at high 
magnetic fields, Coulomb interaction induces temperature 
bistability of electrons, occupying the ground surface 
subband. The line shape of electron temperature, as a func-
tion of the magnetic field, transforms drastically, when the 
MW field passes over the threshold value. In a narrow 
range of the MW field amplitude, this line shape acquires a 
hysteresis with bistability jumps. At high electron tempera-
tures (about 2 K or higher), the energy relaxation rate of 
SEs is sensitive to details of the ripplon dispersion at large 
wave numbers near the roton threshold. This can be used 
for an alternative experimental investigation of the disper-
sion of short wavelength ripplons. 
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