Магниторазведенные ферромагнитные полупроводники как материалы спиновой электроники

Г.В. Лашкарев, М.В. Радченко, В.А. Карпина, В.И. Сичковский

Институт проблем материаловедения НАН Украины ул. Кржижановского, 3, г. Киев, 03680, Украина E-mail: georgl@isp.kiev.ua

Статья поступила в редакцию 2 августа 2006 г.

Приведен краткий обзор работ по исследованию некоторых магниторазведенных полупроводников. Представлены экспериментальные результаты изучения ферромагнитного состояния в материалах, наиболее перспективных для использования в спиновой электронике.

Приведено короткий огляд робіт з дослідження деяких магниіторозчинених напівпровідників. Подано експериментальні результати вивчення феромагнітного стану в матеріалах, які найбільш перспективні для використання в спіновій електроніці.

РАСS: 75.50. Рр Магнитные полупроводники.

Ключевые слова: магниторазведенные полупроводники, ферромагнитные полупроводники, спиновая электроника.

Под магниторазведенными полупроводниками (МРП) понимают твердые растворы (ТР) переходных материалов с недостроенной *d*-оболочкой в полупроводниковых соединениях как в диамагнитной матрице. Содержание *d*-металлов (*d*M) в МРП составляет от нескольких процентов до нескольких десятков процентов. Определяющим является характер взаимодействия между магнитными ионами (МИ). При отсутствии такого взаимодействия МРП представляет собой парамагнетик. При уменьшении расстояния между МИ и/или изменении концентрации свободных носителей между МИ может возникать обменное взаимодействие. Ферромагнитное (ФМ) обменное взаимодействие может при определенных условиях приводить к ферромагнитному упорядочению (ФМУ), т.е. ферромагнетизму МРП.

Первые работы, посвященные МРП $Ge_{1-x}Mn_x$ Те и $Sn_{1-x}Mn_x$ Те с ФМ обменным взаимодействием между ионами Мп, появились в 1966–1968 г.г. [1,2]. Большой вклад в исследование этих материалов, которые в те годы называли полумагнитными полупроводниками, внес Р. Галонзка (Польша), который обнаружил обменное расщепление уровней Ландау при

исследованиях эффекта Шубникова-де Гааза в Hg_{1-x}Mn_xSe и Hg_{1-x}Mn_xTe [3].

В 1978 году появились работы С.М. Рябченко, А.В. Комарова и Н.И. Витриковского (Украина) [4], наблюдавших в кристаллах полупроводников A^2B^6 (A–Zn, Cd, B–Se, Te), легированных марганцем, гигантское расщепление экситонных спектров. Эти эффекты связывали с обменным взаимодействием носителей, входящих в свободный экситон, с магнитными ионами. Величина расщепления намного превышала обычное зеемановское расщепление в полях 10–20 кЭ, соответствуя действию эффективного поля напряженностью в сотни килоэрстед. В упомянутых МРП ферромагнитное упорядочение не было обнаружено.

Впоследствии к указанным TP стали применять термин магниторазведенные полупроводники (diluted magnetic semiconductors).

Значителен вклад сотрудников Черновицкого отделения Института проблем материаловедения им. И.Н. Францевича (В.В. Слынько, Е.И. Слынько, К.Д. Товстюк, З.Д. Ковалюк и др.), работавших в 80-е годы в Черновицком университете, которые впервые обнаружили наличие магнитоупорядоченных кластеров Fe в InSe и CdTe, а также осуществивших управление процессом кластеризации и диссоциации [5–8].

Первое наблюдение при низких температурах слабого ΦM в твердых растворах $Ge_{1-x}Mn_xTe$ и $Sn_{1-x}Mn_xTe$, по-видимому, было выполнено М. Инуэ с соавторами в 1976 г. [9]. Однако в те годы оно осталось незамеченным. Ограниченные возможности изменения концентрации носителей тока в этих МРП не позволили сделать вывод об определяющем влиянии косвенного обменного взаимодействия через носители тока на $\Phi M Y$ магнитных ионов.

Насколько нам известно, роль косвенного обмена между МИ через дырки по механизму Рудермана — Киттеля — Касуя — Йосиды (РККИ) в ТР Pb_{1-x-y}Sn_yMn_xTe впервые была показана в работах Г.В. Лашкарева, А.В. Бродового, М.В. Радченко, К.Д. Товстюка и др. в 1984 г. [10]. Независимо такой же вывод сделали Т. Стори, Р. Галонзка и др. в 1986 г. [11].

Интерес к ферромагнитным МРП связан с развитием нового направления полупроводниковой электроники — спиновой электроники (СЭ). Суть ее заключается в объединении функций зарядовой и спиновой степеней свободы. Такая комбинация должна привести к повышению функциональных возможностей существующих устройств. Основной задачей СЭ является электрическое или оптическое управление магнитными состояниями, а также магнитное управление электрическими сигналами, что позволяет, в принципе, комбинировать операции обработки и сохранения информации в одном устройстве.

К ферромагнитным МРП как материалам СЭ предъявляют следующие требования:

температура Кюри должна быть ~ 500 К;

достаточно высокие подвижности носителей тока;

 возможность применения групповой технологии микроэлектроники;

 устойчивость технологии получения ферромагнитных материалов с малым разбросом характеристик;

стабильность характеристик во времени;

возможность создания эпитаксиальных структур;

— технологическая и физико-химическая совместимость с полупроводниками, используемыми при изготовлении интегральных схем (Si, GaAs).

Наибольший интерес для спиновой электроники представляют МРП, имеющие ФМ порядок, который свойственен всему объему МРП, а не отдельным ФМ включениям. Последние слабо влияют на такие свойства ФМ МРП, как магнитооптические характеристики и аномальный эффект Холла. Поэтому из многочисленных МРП рассмотрим ФМ системы полупроводник – *d*-металл.

Основными недостатками таких ФМ МРП являются:

 низкая растворимость *d*M в полупроводниковой матрице, недостаточная в ряде случаев для формирования ФМ порядка;

— тенденция к образованию включений второй фазы с участием *d*M;

 - ФМ указанных включений, который в некоторых случаях имитирует ФМ состояния системы полупроводник – *d*M;

 низкая подвижность носителей тока, связанная с рассеянием на МИ;

 неоднородное распределение МИ в матрице, приводящее в некоторых случаях к пространственной локализации носителей тока и прыжковому механизму проводимости.

Системы A^4B^6 -Мп

Соединения A⁴B⁶ кристаллизуются в кубической гранецентрированной решетке типа NaCl (пространственная группа O_h⁵). Элементарная ячейка содержит два атома. Координационное число для каждого из них равно шести. Большое различие между величинами статической и высокочастотной диэлектрической проницаемостями указывает на преимущественно ионный характер связи. Соединение PbSnMnTe имеет дырочный тип проводимости с большой концентрацией дырок $(10^{20} - 10^{21} \text{ см}^{-3})$, которая обязана вакансиям в катионной подрешетке кристалла. Используя отклонение от стехиометрического состава кристалла, а также изотермический отжиг, можно контролировать концентрацию дырок, которая практически не зависит от температуры вплоть до температур порядка милликельвинов.

В кристаллах PbSnMnTe наблюдается ферромагнитный переход, обусловленный косвенным обменным взаимодействием магнитных ионов Mn^{2+} через дырочный газ (РККИ механизм) [10,11]. Этот механизм эффективен для материалов с высокой концентрацией носителей тока. Вследствие своего осцилляционного характера РККИ механизм может приводить к ФМ или антиферромагнитному состоянию. В зависимости от концентрации МИ и носителей может реализоваться состояние спинового стекла. Для PbSnMnTe максимальная достигнутая температура Кюри составляет 35 К [12].

При низких температурах возникает ряд эффектов, вызванных взаимодействием носителей тока с магнитной примесью. Эти эффекты были обнаружены с помощью исследования термоэлектрических свойств [13,14]. 1. Вклад в термоэдс, возникающий вследствие s-d-обменного взаимодействия между свободными носителями тока и магнитной примесью. Для температур $T >> T_{\rm K}$ ($T_{\rm K}$ — температура Кондо) обменная термоэдс $\alpha_{\rm exch}$ не зависит от температуры, а для $T << T_{\rm K} \alpha_{\rm exch} \propto T$.

2. Добавочный член в термоэдс, возникающий в магнитном поле при рассеянии носителей тока на магнитной примеси с магнитным моментом $\mu_{\rm eff}$ и имеющий максимум при условии $\mu_{\rm eff} H \approx k_B T$.

3. Добавочный магнитный вклад α_{FM} , имеющий максимальное значение при температуре перехода в ферромагнитное состояние.

Системы А³В⁵-Мп

Особое внимание привлекает МРП Ga1-rMnrAs в связи с перспективой получения высокой температуры ФМУ [15]. Ga_{1-r}Mn_rAs кристаллизуется в структуре цинковой обманки. Метод получения низкотемпературная молекулярно-лучевая эпитаксия [16]. При небольших концентрациях Mn (до 6 ат. %) GaMnAs – сильно компенсированный полупроводник р-типа, обнаруживающий высокую концентрацию точечных дефектов. Эпитаксиальные пленки $Ga_{1-x}Mn_xAs$ имеют концентрацию дырок ~ 10^{20} см⁻³ и подвижность ~ $10 \text{ см}^2/\text{ B} \cdot \text{с.}$ В решетке GaAs ионы Mn замещают атомы Ga, образуя акцепторную зону [17]. Ниже температуры Кюри GaMnAs обнаруживает ферромагнитное упорядочение, обязанное косвенному обменному взаимодействию ионов Mn через свободные носители. Максимальная температура Кюри, достигнутая в настоящее время, составляет 175 К [18].

Системы А³В⁶-Мп, Fe

Слоистые кристаллы III-VI характеризуются высокой анизотропией химической связи: сильной ионно-ковалентной в плоскости атомных слоев и слабой ван-дер-ваальсовой между слоями. В случае InSe такая анизотропия приводит к двумерной электронной проводимости (2*D*) при температурах ниже критической. InSe является единственным кристаллом группы III-VI, в котором регистрируется значительная электронная и дырочная проводимости. При этом носители тока, имеющие среднюю холловскую концентрацию в кристалле ~ 10^{12} – 10^{13} см⁻³ [19], концентрируются в 2D-областях ионно-ковалентных слоев вблизи ван-дер-ваальсовой щели, создавая поверхностную концентрацию ~ 10^{11} см⁻², что обеспечивает возможность наблюдения эффекта Шубникова – де Гааза [20]. Переходом от трехмерной (3D) к двумерной проводимости можно управлять с помощью легирования, интеркалирования, давления и освещения кристалла [19,20].

Наличие сильной анизотропии химической связи и 2D-проводимости влияет на магнитные взаимодействия введенных в кристалл МИ как между собой, так и через другие ионы кристалла, а также на косвенное обменное взаимодействие между магнитными ионами через двумерный электронный газ.

Исследования кристаллов $A^{III}B^{VI}$ (A–In, Ga; B–S, Se), легированных dM (Mn, Fe), выявили наличие нетривиальных магнитных свойств этих полупроводников. В работе [21] в неотожженных образцах InSe, содержащих 1,25 ат. %. Mn, обнаружены две магнитные подсистемы, в которых внутри ионно-ковалентных слоев L и в межслоевом ван-дер-ваальсовом пространстве I находятся ионы Mn. Это подтверждается наличием в спектре ЭПР двух линий — узкой L и широкой I (рис. 1). В интервале температур 140–300 К между ионами Mn осуществляется ферромагнитное взаимодействие, при 77 К $\leq T \leq$ 140 К антиферромагнитное. При T < 77 К возникает трехмерный ФМ порядок, что подтверждается наличием петель магнитного гистерезиса (рис. 2).

В работе [22] в кристаллах InSe с содержанием Mn 1 и 10 ат. % наблюдали температурный гистерезис намагничивания в интервале температур 90–290 К. Ниже и выше области гистерезиса парамагнитный сигнал подчинялся закону Кюри – Вейсса (рис. 3). InS с 2 ат. % Mn [23] демонстрирует поведение типа Кюри – Вейсса, а ниже 20 К, по мнению авторов, система находится в состоянии спинового стекла. InS с 2 ат. % Mn не обнаруживает ферромагнитного состояния [24], а ниже 10 К имеет черты спинового стекла. В GaSe с 5 ат. % Mn наблюдался широкий пик намагничивания в интервале 100–200 К, ампли-

Рис. 1. Спектры ЭПР в образцах $In_{1-x}Mn_x$ Se (x = 0,0125) при T = 293 K: 1 — до отжига, 2 — после отжига [4].

Рис. 2. Рэлеевские петли гистерезиса, полученные при разных температурах для образца $\ln_{1-x}Mn_x$ Se (x = 0,0125) [5].

туда которого уменышалась с повышением магнитного поля, что авторы работы [25] связывают с короткодействующим антиферромагнитным упорядочением (рис. 4). В интервале 77–325 К GaS с 6,6 ат. % Мп подчиняется закону Кюри — Вейсса, но при T = 10,9 К характеризуется резким максимумом намагниченности, который авторы [26] объясняют состоянием спинового стекла (рис. 5). Авторы работы [27] обнаружили ФМ поведение GaSe с 5 ат. % Fe при 300 и 400 К. Ниже 5 К намагниченность становится постоянной и объясняется ванфлековским парамагнетизмом.

Рис. 3. Температурные зависимости намагничивания для образца $In_{1-x}Mn_x$ Se при различных *x* [6].

Рис. 4. Температурные зависимости намагничивания для образца $Ga_{1-x}Mn_xSe$ (x = 0,05) в различных магнитных полях [9].

Системы ZnO-dM

Теоретический подход

Согласно общим представлениям, ферромагнетизм в МРП возникает при взаимодействии локальных магнитных моментов переходных ионов через свободные носители в материале. Прямое же взаимодействие между магнитными ионами является антиферромагнитным. Таким образом, температура

Рис. 5. Температурная зависимость намагничивания для образца $Ga_{1-x}Mn_xS$ (x = 0,066) [10].

Кюри T_C для полупроводника с определенной концентрацией магнитной примеси и носителей тока определяется конкурирующими взаимодействиями: антиферромагнитным парным и ферромагнитным косвенным через свободные носители тока.

Работа Т. Дитла и др. [28], в которой с использованием модели среднего поля Зенера оценена Т_С для различных полупроводников, стала основополагающей для исследования широкозонных полупроводников, в особенности ZnO, для которого предсказана температура Кюри выше комнатной (см. рис. 6). Согласно модели Зенера, более короткие длины связи между атомами в таких широкозонных полупроводниках, как ZnO, приводят к сильной связи между дырками (на анионах) и спинами (локализованными на магнитных катионах). Модель также учитывает анизотропию обменного взаимодействия, возникающую в результате спин-орбитальной связи в материале. Рисунок 6 отражает рассчитанные значения T_C для ряда полупроводников p-типа с концентрацией дырок 3,5 $\cdot 10^{20}~{\rm cm}^{-3},$ содержащих 5 ат. % марганца в катионной подрешетке. Согласно этой же модели, ферромагнетизм в *n*-типе полупроводников предсказан при низких температурах и при наличии мелких доноров.

Сато и Йошида, применив метод Коринга—Кона—Ростокера (ККР), также подтвердили ферромагнитное состояние в *p*-типе ZnO:Mn. Для переходных металлов Ti, V, Cr, Fe, Co и Ni предсказано ферромагнитное состояние без дополнительного легирования (рис. 7) [29]. Расчеты методом ККР в приближении когерентного потенциала позволили тем же авторам сделать заключение о стабилизации

Рис. 6. Рассчитанные значения температур Кюри T_C для полупроводников *p*-типа, содержащих 5 ат. % Мп и $3,5 \cdot 10^{20}$ дырок в 1 см³ [28].

Рис. 7. Магнитные состояния в системах ZnO:M [29].

ферромагнитного упорядочения в ZnO, легированном Fe, Co и Ni, при введении дополнительных электронов (рис. 8) [30].

В работе [31] рассматривается модель непрямого обмена через мелкие доноры (модель связанных магнитных поляронов). Авторы [31] предполагают, что ферромагнитный обмен происходит с участием мелких доноров, т.е. обусловлен образованием связанных магнитных поляронов, которые, перекрываясь, создают примесную зону с расщеплением по спину (рис. 9). Для реализации высоких температур Кюри требуется гибридизация и перенос заряда из примесной зоны на незанятые 3d-состояния на уровне Ферми. Рассматривая 3*d*-серию металлов от Ті до Си, можно видеть, что 3d-уровни, расщепленные по спину, опускаются по направлению к потолку кислородной 2*p*-зоны. Следовательно, существует две области, в которых ожидается высокая T_C: одна расположена в начале серии, где $3d^{+}$ -состояния пересекают уровень Ферми в примесной зоне, другая — в конце серии, где $3d^{*}$ -состояния пересекают уровень Ферми в примесной зоне. Авторы работы [31] также провели осаждение пленок ZnO с различными магнитными ионами 3d-серии и наблюдали ферромагнитное состояние при комнатной температуре (рис. 10). Из рис. 10 следует, что наибольший магнитный момент реализуется в пленках, где состояния d^{\uparrow} или d^{\downarrow} находятся на уровне Ферми, который погружен в примесную зону. Модель не исключает и наблюдение ферромагнетизма в d^0 -системе, например Sc в ZnO.

В настоящее время появилась теоретическая концепция ферромагнетизма в системе ZnO:Cu. В зависимости от пространственного размещения атомов меди можно получить либо ферромагнитное, либо антиферромагнитное состояние [32].

Таким образом, согласно теоретическим расчетам, ферромагнитное состояние в оксиде цинка мо-

Рис. 8. Стабилизация ферромагнитного состояния электронами в системах ZnO:Fe,Co,Ni и дырками в системе ZnO:Mn [30].

жет быть реализовано при введения различных переходных металлов как в *n*-типе, так и в *p*-типе ZnO. Однако большие концентрации магнитной примеси приводят к доминирующему антиферромагнитному обмену. Следует отметить, что кристаллическая структура ZnO (вюрцит) способствует формированию антиферромагнитного взаимодействия. Не исключено и формирование преципитатов вводимой примеси переходного металла, которые

Рис. 9. Зонная структура оксида с 3d-примесью и донорной примесной зоной, расщепленной по спину. Положение 3d-уровня (в примесной зоне), приводящее к высоким $T_C(a)$, (a); положения 3d-уровня, приводящее к низким $T_C(b)$ [31].

могут быть ответственны за наблюдаемый ферромагнетизм ZnO:M в случае ферромагнетизма металла (Fe, Co, Ni) или включений соединений, проявляющих эти свойства (Fe₃O₄).

Обзор экспериментальных результатов

При исследовании ферромагнетизма в оксиде цинка принципиально важен вопрос о происхождении наблюдаемого ΦM : действительно ли он возникает как свойство твердого раствора $Zn_{1-x}M_xO$ или же он присущ другим фазам, образующимся в ZnO

Рис. 10. Магнитный момент пленок ZnO, содержащих 5 ат. % легирующей примеси [31].

при легировании. Чтобы выявить механизм, ответственный за ферромагнитное состояние, нужно тщательно анализировать измеренные магнитные, магнитооптические характеристики и результаты фазового и элементного анализа, такие как рентгеновская дифрактометрия, магнитная силовая микроскопия, рентгеновская фотоэмиссионная спектроскопия, масс-спектроскопия вторичных ионов и энергорассеивающий рентгеновский анализ. В большинстве опубликованных работ такой полный анализ отсутствует, поэтому довольно трудно интерпретировать и сопоставлять полученные результаты.

Большинство авторов в поисках высокотемпературного ферромагнетизма сосредотачивают свое внимание на легировании такими элементами, как Mn, Со и Fe. В некоторых случаях используют двойное легирование (магнитным переходным металлом и немагнитной донорной примесью) для усиления ферромагнитного обмена через примесные электроны. Такое солегирование позволяет независимо контролировать магнитные и электронные свойства материала. В таблице 1 представлены результаты реализованного ферромагнитного состояния.

Система ZnO:Мп

Рассмотрим ферромагнетизм в системах ZnO:Mn, ZnO:Mn,Sn, ZnO:Co, а также ZnO:Cu, ZnO:Fe,Cu, ZnO:Fe. Многими авторами Mn²⁺ рассматривается как наиболее подходящая примесь для создания разбавленных магнитных полупроводников на основе ZnO. В самом деле, 3*d*-орбиталь Mn наполовину заполнена и обладает максимальным магнитным моментом (спин S = 5/2, орбитальный момент L = 0). Кроме того, Mn в полупроводниках II–VI электрически нейтрален и имеет относительно большой предел растворимости (равновесный предел растворимости в ZnO равен 13 ат. %).

Как видно из табл. 1, ферромагнитное состояние с высокими Т_С реализовано в керамических образцах, пленках и монокристаллах ZnO:Mn. Следует подчеркнуть, что высокие температуры Кюри были получены при небольших концентрациях магнитной примеси (2-3 ат. %). В керамических образцах ферромагнетизм был найден не только при комнатной температуре, но и при более высоких температурах (~500°С). Однако следует отметить, что керамические образцы могут представлять собой и многофазную систему. Как отмечают авторы работы [33], при температуре спекания ~700°С образуется фаза ZnMn₂O₄. Кроме того, ферромагнетизм обнаружен только в образцах, спеченных в аргоне, а не на воздухе. Величина магнитного момента при низкой температуре составляет 0,3 µ_В/ион, что гораздо меньше теоретического значения ~ 5 μ_B /ион.

Существенный интерес представляют работы [35,36,38], авторам которых удалось реализовать ферромагнитное состояние в пленках ZnO:Mn при комнатной температуре. На рис. 11 представлена намагниченность для пленки ZnO:Mn, полученной методом импульсного лазерного осаждения. Авторы работы [36] отмечают, что введение небольшого количества олова в систему ZnO:Мn приводит к возрастанию намагниченности образца (рис. 12). Максимальная величина намагниченности для этой системы (Sn-0,001 ат. %, Mn-3 ат. %) была достигнута на уровне 0,5 μ_B ион при комнатной температуре. Тем не менее при введении 0,1 ат. % олова намагниченность образца резко уменьшается и становится даже ниже намагниченности образца в отсутствие олова. Авторы работы придерживаются модели связанных магнитных поляронов и считают, что дырки, локализованные вблизи ионов марганца, ответственны за ферромагнетизм.

Ферромагнитное состояние было реализовано и в *p*-типе ZnO:Mn, с температурой Кюри ~110°C [39].

Система ZnO:Co

Кобальт имеет конфигурацию $3d^7$ и, таким образом, может обеспечить магнитный момент $3\mu_B/$ ион. Близость ионных радиусов Co²⁺ и Zn²⁺ в тетраэдрической координации (ионный радиус Co²⁺ равен 0,58 Å, Zn²⁺ – 0,60 Å) способствует эффективному растворению кобальта в ZnO до 20 ат. %. При этом кристаллическая решетка существенно не искажается. Ионы кобальта проявляют линии поглощения в видимой области спектра при 570, 620 и 660 нм (*d*-*d*-переходы), по которым можно оценить их электронное состояние (такие переходы возможны только в Co²⁺).

Авторы оригинальной работы по ферромагнетизму в ZnO:Co [40] реализовали ферромагнитное состояние с температурой Кюри 280–300°С при 5, 15 и 25 ат. % кобальта (рис. 13). Магнитный момент насыщения при низких температурах составлял $2\mu_B$ /ион. С увеличением концентрации электронов (легирование Al) температура Кюри и намагниченность возрастали. Ферромагнетизм наблюдался только в образцах с высокой концентрацией электронов (10^{20} см⁻³), авторы отмечают плохую воспроизводимость результатов.

Ли с соавторами [41] реализовали ферромагнетизм в ZnO:Со без дополнительного легирования с $T_C \sim 350$ К. При этом магнитный момент насыщения составлял 0,56 μ_B /ион для образца с 20 ат. % Со и концентрацией носителей $\sim 10^{17}$ см⁻³. Намагниченность образцов увеличивалась с ростом содержания кобальта и температуры. Увеличение намагниченности при повышении температуры авторы объясняют

М	<i>х</i> , ат.%	Т, К	Вид образца/ подложка	Техно- логия	Толщина пленки <i>t</i> , нм	ρ, Ом∙см	Концентрация <i>n</i> , <i>p</i> , см ⁻³	Примечание	Ссылка
Mn	2	~50 из М(Т) ≥300 из М(Н)	Керамика	ТФР	_	_	_	Ферромагнетизм (ФМ) обнаружен при спекании в аргоне, при спекании в воздухе ФМ отсутствует.	[33]
Mn	2	500 980?	Керамика	ТФР	_	-	_	Многофазная система Mn–Zn–O.	[34]
Mn	2	>420	Керамика	ТФР	_	_	_	Высокие температуры спекания (>700°С) подавляют ФМ.	[35]
Mn	2,2	>300	Пленка / плавленый кварц	ИЛО	2000-3000	_	_		[35]
Mn	3	>300	Пленка / сапфир (0001)	ИЛО	300-400	0,185-195	$n = 10^{16}$	Дополнительное легирование Sn (до 0,1 ат. %)	[36]
Mn	3	~250	Моно- кристал ZnO:Sn	ИИ (Mn)	_	_	<i>n</i> = 10 ¹⁸ до импл.	Гауссово распределение марганца по глубине с максимумом при 150 нм.	[37]
Mn	1,8-9,1	300	Пленка / сапфир (0001)	ИЛО	1000 зерна 140	_	_		[38]
Mn	9	110	Пленка / сапфир (0001)	ВЧМР	40	_	$p = 10^{15}$	Пленка с буферным слоем ZnMnO толщиной в 40 нм	[39]
Co	5 15 25	280 300 280	Пленка / сапфир (1120)	ИЛО	100-200	-2.10^{-3} 3.10^{-2}	$- n = 2,9 \cdot 10^{20}$ $n = 1,2 \cdot 10^{18}$	Дополнительное легирование AL	[40]
Со	20	350	Пленка / сапфир (0001)	Золь-гел ь	200-250	*1,5	*5,25·10 ¹⁷	*- при 300 К	[41]
Со	25	300	Пленка / сапфир (0001)	ИЛО	_	_	_		[42]
Co	3–5	300	Моно- кристалл ZnO:Sn	ИИ (Со)	_	_	<i>n</i> = 10 ¹⁸ до импл.	Гауссово распределение марганца по глубине с максимумом при 200 нм.	[43]
Fe	1,58	300	Наноленты	КТВО	_	_	_	Остаточная намагниченность 0,065 эме∕см ³	[44]
Fe, Cu	Fe-5 Cu-1	550	керамика	ТФР	-	0,1	$n = 4, 2 \cdot 10^{17}$	Без меди $n = 5 \cdot 10^{17}$	[45]
Cu	1	390 >390	Пленка	ИЛО в среде N ₂ O	250 нм	28	$p = 3 \cdot 10^{17}$		[32]
Ni	0,93	350	Нанокрис-т аллы	Из раствора ацетатов Zn и Ni в этаноле	~ 200 нм	_	_		[46]

Таблица 1. Магнитные свойства Zn_{1-x}M_xO

Обозначения: М — переходной металл; ат. % в катионной подрешетке; ТФР — твердофазная реакция; ИЛО — импульсное лазерное осаждение; ИИ — ионная имплантация; ВЧМР — высокочастотное магнетронное распыление; КТВО — карботермическое восстановление оксидов.

Puc. 11. Намагниченность пленки Zn_{0,978}Mn_{0,022}O при 300 К [35].

увеличением концентрации носителей. Тем не менее образцы имели довольно высокое удельное сопротивление (1-6 Ом·см), которое увеличивалось с увеличением содержания кобальта. Величина сопротивления чистых и легированных пленок ZnO различалась на два порядка. Эти результаты авторы объясняют электронной структурой ZnCoO, считая, что кобальт в ZnO создает глубокие уровни, которые могут захватывать электроны (созданные донорными дефектами, такими как кислородная вакансия и межузельный атом цинка), увеличивая тем самым ферромагнитное спин-спиновое взаимодействие между атомами кобальта. Такой захват увеличивает и сопротивление образцов вследствие уменьшения концентрации носителей.

Следует отметить, что ферромагнитное состояние в ZnO:Co, в отличие от системы ZnO:Mn (2–9 ат. % Mn), было реализовано при довольно больших концентрациях магнитной примеси (15–25 ат. %). Были достигнуты и гораздо большие величины насыщения намагниченности образцов 1–2 μ_B /ион по сравнению с ZnO:Mn (порядка 0,3–0,6 μ_B /ион).

Рис. 12. Магнитополевые зависимости намагниченности системы ZnO:Mn (3 ат. %) при введении олова (0–0,1%) [36].

Puc. 13. Температурные зависимости намагниченности пленок ZnO:Co [40].

Системы ZnO:Cu, ZnO:Fe и ZnO:Fe,Cu

В настоящее время появились теоретические и экспериментальные работы по ферромагнетизму в системе ZnO:Cu. Хотя атом меди и имеет заполненную 3*d*-оболочку, медь в ZnO может находиться в качестве двухвалентного парамагнитного иона ($3d^9$, S = 1/2). Теоретические расчеты показали, что в зависимости от того, как разделены атомы меди в ZnO (в плоскости базиса и вдоль оси *C*) может быть реализовано как ферромагнитное, так и антиферромагнитное состояния [32]. Экспериментальное исследование магнитных свойств такой системы должно дать однозначные результаты, поскольку металлическая медь и возможные окислы CuO и Cu₂O не являются ферромагнитным.

Авторы работы [32] реализовали ферромагнитное состояние с $T_C > 390$ К в пленках ZnO:Cu *p*-типа проводимости (рис. 14). При 200 К магнитный момент пленок составлял 0,4 μ_B /ион (при 1 ат. % Cu).

Рис. 14. Температурные зависимости намагниченности пленки Zn_{0,93}Cu_{0,07}O. На вставке — зависимость намагниченности от поля [32].

При увеличении концентрации меди магнитный момент, приходящийся на один атом меди, уменьшался, что, вероятно, связано с формированием антиферромагнитного взаимодействия между смежными атомами меди. Ферромагнетизм в пленках *n*-типа авторами не обнаружен.

Максимальная температура Кюри ~550 К была достигнута в керамических образцах ZnO при их одновременном легировании железом (5 ат. %) и медью (1 ат. %) (рис. 15). Намагниченность образцов ZnO:Fe, содержащих медь, была в 30 раз большей, чем образцов ZnO:Fe без меди, и при комнатной температуре составляла величину 0,75 μ_B / Fe. Образцы имели *n*-тип проводимости с концентрацией носителей 5.10¹⁷ см⁻³, и при легировании медью концентрация носителей уменьшалась. Очевидно, что в этом случае медь играет роль акцептора (авторы установили методом рентгеновской адсорбционной спектроскопии, что медь имеет валентность +1, а не +2). Таким образом, очевидно, что в этой системе электроны не способствуют ферромагнитному состоянию (не усиливают обмен).

Рис. 15. Зависимости намагниченности керамического образца ZnO, легированного медью и железом (5 ат. %) от магнитного поля и концентрации меди (a); температурная зависимость намагниченности ZnO с 5 ат. % железа и 1 ат. % меди (6) [45].

Выводы

Проанализирован ряд теоретических и экспериментальных работ по реализации высокотемпературного ферромагнитного упорядочения в ZnO при его легировании переходными металлами. Следует отметить, что мы ограничились рассмотрением работ, в которых сообщается о реализации ферромагнетизма с $T_C \ge 300$ К. Из анализа литературных данных можно сделать следующие выводы.

1. Ферромагнитное состояние реализовано в образцах различного типа — керамике, имплантированных монокристаллах и в тонких пленках оксида цинка.

2. Методами получения образцов служили твердофазные реакции, импульсное лазерное осаждение, ионная имплантация, газофазные реакции при карботермическом восстановлении оксидов, синтез из растворов ацетатов в этаноле.

3. При содержании примеси Мп в интервале 1,8–9 ат. %, Со (3–25 ат. %), Fe (1,6–5 ат. %), Cu(1–7 ат. %), Ni (0,9 ат. %) реализовано ферромагнитное упорядоченное состояние со следующими характерными и наиболее реальными, с нашей точки зрения, температурами Кюри: Mn,Co,Fe – $T_C \ge 300$ K; Fe+Cu – $T_C \ge 550$ K; Cu – $T_C \ge 390$ K; Ni – $T_C \ge 350$ K.

4. Увеличение содержания магнитных ионов приводит в большинстве случаев к уменьшению магнитного момента в расчете на один магнитный атом (удельный момент), что, по мнению авторов, свидетельствует об образовании пар, связанных антиферромагнитным взаимодействием.

5. Не проводились полные эксперименты по выявлению зависимости T_C от концентрации носителей тока, в то время как некоторые сопутствующие компоненты (Sn, Cu) существенно повышают величину удельного момента.

6. Особо следует отметить роль меди, которая в двухвалентном состоянии является парамагнитным ионом (d^9 , S = 1/2). Ее присутствие в ZnO приводит к значению $T_C \ge 390$ K, а в сочетании с Fe устанавливает рекордное значение $T_C = 550$ K.

7. Следует учитывать, что не всем авторам удалось реализовать ферромагнитное состояние в ZnO:М либо полученные температуры Кюри имели низкие значения (2–50 К). Также следует обратить особое внимание на недостаточную воспроизводимость полученных результатов.

Представленные результаты являются обнадеживающими и в конечном счете приведут к созданию ферромагнетиков на основе твердых растворов ZnO с переходными *d*-металлами, имеющих стабильное значение $T_C > 300$ K.

- M. Rodot, J. Lewis, H. Rodot, J. Cohen, and P. Mollard, J. Phys. Soc. Jpn. 21, 627 (1966).
- J. Cohen, A. Globa, P. Mollard, H. Rodot, and M. Rodot. J. Phys. (Paris) 29, 4 (1968).
- S. Takeyama and R.R. Galazka, *Phys. Status Solidi* B96, 413 (1979).
- А.В. Комаров, С.М. Рябченко, Н.И. Витриховский, Письма в ЖЭТФ 27, 441 (1978)
- Е.И. Слынько, Н.С. Якимова, А.Д. Огородник, В.В. Слынько, А.В. Еленевская, Физическая электроника 3, 102 (1970).
- К.Д. Товстюк, В.В. Слынько, Е.И. Слынько, З.Д. Ковалюк, Г.Б. Дилевский, *Физическая электроника* 7, 42 (1974).
- Е.И. Слынько, Р.Д. Иванчук, В.В. Слынько, А.В. Савицкий, К.Д. Товстюк, УФЖ 21, 663 (1976).
- 8. В.В. Слынько, Р.Д. Иванчук, УФЖ 26, 221 (1981).
- M. Inoue, H. Kiyoaki, K. Ishii, and T. Tatsukawa, J. Low Temp. Phys. 23, 785 (1976)
- Г.В. Лашкарев, А.В. Бродовой, М.В. Радченко, Е.И. Слынько, К.Д. Товстюк, ФТП 18, 1547 (1984).
- T. Story, R.R. Galazka, R. Frenkel, and P.A. Wolff, *Phys. Rev. Lett.* 56, 777 (1986).
- P. Lazarczyk, T. Story, M. Arciszewska, and R.R. Galazka, *JMMM* 169, 151 (1997).
- Г.В. Лашкарев, М.В. Радченко, Р.О. Кикодзе, Е.И. Слынько, ФТП 13, 1548 (1979).
- M.V. Radchenko, G.V. Lashkarev, V. Osinniy, B. Witkowska, V. Domukovski, and T. Story, *J. Magn. Magn. Mater.* 224, 77 (2002).
- 15. T. Dietl and H. Ohno, *Physica* E9, 185 (2001).
- 16. H. Ohno, Appl. Phys. Lett. 69, 363 (1996).
- 17. A. Twardowski, Acta Phys. Pol. A98, 203 (2000).
- M. Sawicki, Abstracts XXXIII Int. School Phys. Semicond. Compound Jaszowiec (2004), P. 67.
- A.I. Dmitriev, Z.D. Kovalyuk, V.I. Lazorenko, and G.V. Lashkarev, *Phys. Status Solidi* B162, 213 (1990).
- Н.Б. Брандт, В.А. Кульбачинский, Г.В. Лашкарев, З.Д. Ковалюк, ФТП 21, 1230 (1987).
- V.V. Slyn'ko, A.G. Khandozhko, Z.D. Kovalyuk, V.E. Slyn'ko, A.V. Zaslonkin, M. Arciszewska, and W.D. Dobrowolski, *Phys. Rev.* B71, 245301 (2005).
- 22. T.M. Pekarek, D.J. Arenas, I. Miotkowski, and A.K. Ramdas, *J. Appl. Phys.* **97**, 10M106 (2005).
- G. Franzese, Ashlee Byrd, J.L. Tracy, J. Garner, T.M. Pekarek, I. Miotkowski, and A.K. Ramdas, *J. Appl. Phys.* 97, 10D308 (2005).
- J.L. Tracy, G. Franzese, Ashlee Byrd, J. Garner, T.M. Pekarek, I. Miotkowski, and A.K. Ramdas, *Phys. Rev.* B72, 165201 (2005).
- 25. T.M. Pekarek, B.C. Croocer, I. Miotkowski, and A.K. Ramdas. J. Appl. Phys. 83, 6557 (1998).
- T.M. Pekarek, M. Duffy, J. Garner, B.C. Crooker, I. Miotkowski, and A.K. Ramdas, *J. Appl. Phys.* 87, 6448 (2000).
- T.M. Pekarek, C.L. Fuller, J. Garner, B.C. Crooker, I. Miotkowski, and A.K. Ramdas, *J. Appl. Phys.* 89, 7030 (2001).

- 28. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, *Science* 287, 1019 (2000).
- K. Sato and H. Katayama-Yoshida, Jpn. J. Appl. Phys. 39, L555 (2000).
- K. Sato and H. Katayama-Yoshida, Jpn. J. Appl. Phys. 40, L334 (2001).
- J.M.D. Coey, M. Venkatesan, and C.B. Fitzgerald, *Nature* 4, 173 (2005).
- D.B. Buchholz, R.P.H. Chang, J.H. Song, and J.B. Ketterson, *Appl. Phys. Lett.* 87, 082504 (2005).
- 33. W. Chen, L.F. Zhao, Y.Q. Wang, J.H. Miao, S. Liu, Z.C. Xia, and S.L. Yuan, *Appl. Phys. Lett.* 87, 042507 (2005).
- D.C. Kundalia, S.B. Ogale, and S.E. Lofland, *Nature* 3, 709, (2004).
- 35. P. Sharma, A. Gupta, K.V. Rao, and F.J. Owen, *Nature* **2**, 673 (2003).
- M. Ivill, S.J. Pearton, D.P. Norton, J. Kelly, and A.F. Hebard, J. Appl. Phys. 97, 053904 (2005).
- D.P. Norton, S.J. Pearton, A.F. Hebart, N. Theodoropoulou, L.A. Boatner, and R.G. Wilson, *Appl. Phys. Lett.* 82, 239 (2003).
- M. Diaconu, H. Schmidt, H. Hochmuth, and M. Lorenz, *Thin Solid Films* 486, 117 (2005).
- 39. S.J. Lee, H.S. Lee, D.Y. Kim, and T.W. Kim, *J. Cryst. Growth* 276, 121 (2005).
- K. Ueda, H. Tabata, and T. Kawai, *Appl. Phys. Lett.* 79, 988 (2001).
- H.J. Lee, S.Y. Jeong, C.R. Cho, and C.H. Park, Appl. Phys. Lett. 81, 4020 (2002).
- K. Rode, A. Anane, R. Mattana, J.P. Contour, O. Durand, and R. LeBourgeois, *J. Appl. Phys.* 93, 7676 (2003).
- N.A. Theodoropoulou, A.F. Hebard, and D.P. Norton, Solid State Electronics 47, 2231 (2003).
- 44. C.X. Xu, X.W. Sun, Z.L. Dong, M.B. Yu, Y.Z. Xiong, and J.S. Chen, *Appl. Phys. Lett.* 86, 173110 (2005).
- 45. S-J. Han, J.W. Song, C.-H. Yang, and S.H. Park, *Appl. Phys. Lett.* **81**, 4212 (2002).
- 46. P.V. Radovanovic and D.R. Gamelin, *Phys. Rev. Lett.* **91**, 157202 (2003).

Deluted magnetic semiconductors as materials for spintronics

G.V. Lashkarev, M.V. Radchenko, V.A. Karpina, and V.I. Sichkovskyi

The paper reviews studies of some diluted magnetic semiconductors. The experimental data on ferromagnetic state in promising materials to be used in spintronics are considered.

PACS: 75.50.Pp Magnetic semiconductors.

Keywords: diluted magnetic semiconductors, ferromagnetic semiconductors, spin electronics.