Вклады электрон-электронного взаимодействия и слабой локализации в проводимость гетероструктур *p*-Ge/Ge_{1-x}Si_x

Ю.Г. Арапов, С.В. Гудина, И.В. Карсканов, В.Н. Неверов, Г.И. Харус, Н.Г. Шелушинина

Институт физики металлов УрО РАН, ул. С. Ковалевской, 18, г. Екатеринбург, 620041, ГСП-170, Россия E-mail: arapov@imp.uran.ru neverov@imp.uran.ru

Статья поступила в редакцию 9 октября 2006 г.

Разделены вклады в проводимость от модифицированного беспорядком электрон-электронного взаимодействия и слабой локализации для гетероструктур *p*-Ge/Ge_{1-x}Si_x с низкой подвижностью носителей в магнитных полях $0 \le B \le 2$ Тл при фиксированных температурах 0,2 К $\le T \le 4,2$ К. Вклад зеемановского расщепления в магнитосопротивление был учтен в электрон-электронном взаимодействии, что позволило получить разумные значения времени релаксации энергии (время сбоя фазы τ_{φ}) и его степенную температурную зависимость, предсказанную теорией. Оценены значения параметров этих эффектов: константа взаимодействия Хартри $F_0^{\sigma} = -0,51$, амплитуда фермижидкостного взаимодействия $\lambda = 0,40$, фактор Ланде g = 12,0.

Розділено внески в провідність модифікованої безладдям електрон-електронної взаємодії й слабкої локалізації для гетероструктур p-Ge/Ge $_{1-x}$ Si $_x$ з низькою рухливістю носіїв у магнітних полях $0 \le B \le 2$ Тл при фіксованих температурах 0,2 К $\le T \le 4,2$ К. Внесок зееманівського розщеплення в магнітоопір був врахований в електрон-електронній взаємодії, що дозволило одержати розумні значення часу релаксації енергії (час збою фази τ_{φ}) і його степеневу температурну залежність, що передбачено теорією. Оцінено значення параметрів цих ефектів: константа взаємодії Хартри $F_0^{\sigma} = -0,51$, амплітуда фермірідинної взаємодії $\lambda = 0,40$, фактор Ланде g = 12,0.

PACS: 73.20.Fz Слабая или андерсоновская локализация;

73.21.Ас Многослойные структуры;

73.40.-с Электронный транспорт в структурах с границами раздела.

Ключевые слова: электрон-электронное взаимодействие, слабая локализация, зеемановское расщепление, магнитосопротивление.

Введение

В слабонеупорядоченных двумерных (2D) системах ($k_F l >> 1$) (l — длина свободного пробега) при низких температурах оказываются существенными квантовые поправки к друдевской проводимости $\sigma_0 = e^2 k_F l/h$ двух типов: $\Delta \sigma = \Delta \sigma^{WL} + \Delta \sigma^{ee}$ — вследствие интерференционных эффектов при рассеянии электронных волн на примесях (слабая локализация) $\Delta \sigma^{WL}$ и модифицированного беспорядком межэлектронного взаимодействия $\Delta \sigma^{ee}$. Обе поправки логарифмически зависят от температуры.

Приложение магнитного поля позволяет разделить вклады этих эффектов, так как каждый из них обладает собственным характерным интервалом магнитных полей *B*. Для $\Delta \sigma^{WL}$ характерным является поле $B_{\varphi} = h(4eD\tau_{\varphi})^{-1}$ (*D* — коэффициент диффузии, *h* — постоянная Планка, *e* — заряд электрона), которое определяется временем сбоя фазы электронной волны τ_{φ} . Локализационный эффект практически полностью подавляется в так называемом транспортном поле $B_{\rm tr} = h(4eD\tau)^{-1}$, когда магнитная длина становится меньше длины свободного пробега *l*. Вклад в электронное взаимодействие $\Delta \sigma^{ee}$ эффекта Зеемана характеризуется полем $B_z = k_B T (g\mu_B)^{-1} (g - фактор Ланде, \mu_B - магнетон Бора, <math>k_B$ — постоянная Больцмана), когда происходит смена типа полевой зависимости сопротивления с параболического на логарифмический.

Общепринятая схема разделения вкладов электрон-электронного взаимодействия и слабой локализации в проводимость заключается в следующем. Большинство электронных систем (и прежде всего гетеросистема AlGaAs/GaAs) имеют малую величину g-фактора. Это приводит к тому, что в слабых магнитных полях магнитосопротивление определяется в основном вкладом слабой локализации, и по этому можно определить параметры слабой локализации. После вычитания из полного магнитосопротивления вклада слабой локализации исследуют электрон-электронное взаимодействие (см. например, [1]). Такую схему нельзя применить, если характерные магнитные поля для вкладов слабой локализации и электрон-электронного взаимодействия близки.

Задача данного исследования — на основе современных теоретических представлений построить схему разделения вкладов в проводимость от явлений слабой локализации и электрон-электронного взаимодействия и получить значения параметров, характеризующих данные эффекты в наших образцах. Решение этой задачи осложняется тем, что в системах *p*-Ge/Ge_{1-x}Si_x носителями заряда являются дырки, что дает сильную непараболичность закона дисперсии и большую величину *g*-фактора Ланде (на дне первой подзоны пространственного квантования *g* = 20,4). А это, в свою очередь, приводит к тому, что эффект дефазинга и эффект Зеемана дают вклады в проводимость в одной и той же области магнитных полей ($B_{\phi} \approx B_z$).

Теоретические представления

В присутствии внешнего магнитного поля сопротивление ρ и проводимость σ становятся тензорами второго ранга, компоненты которых имеют следующие соотношения между собой и зависимости от *B*:

$$\sigma_{xx} = \sigma_{yy} = \frac{\sigma_0}{1 + \gamma^2}; \quad \sigma_{xy} = -\sigma_{yx} = \frac{\sigma_0 \mu B}{1 + \gamma^2};$$
$$\sigma_{zz} = \sigma_0; \quad B \parallel z; \quad \gamma = \omega_c \tau = \mu B,$$

где ω_c — циклотронная частота, μ — подвижность носителей. С учетом квантовых поправок к проводимости имеем

$$\sigma_{xx}(B,T) = \frac{\sigma_0}{1+\gamma^2} + \Delta \sigma^{WL}(B,T) + \Delta \sigma^{ee}(B,T).$$
(1)

В магнитных полях $B >> B_{\rm tr}$ предыдущая формула примет вид

$$\sigma_{xx}(B) = \frac{\sigma_0}{1+\gamma^2} + \Delta \sigma^{ee}(B,T).$$

Для компоненты тензора сопротивления ρ_{xx} при условии $\frac{\Delta \sigma}{\sigma_0} \ll 1$ получаем

$$\rho_{xx}(B) = \frac{1}{\sigma_0} + \frac{[(\mu B)^2 - 1]\Delta\sigma^{ee}(B)}{\sigma_0^2}.$$
 (2)

Отсюда видно, что начиная с некоторого значения магнитного поля $B >> B_{\rm tr}$ продольное магнитосопротивление должно зависеть от магнитного поля квадратичным образом.

В общем виде поправка к проводимости от межэлектронного взаимодействия в диффузионном режиме ($k_B T \tau / \hbar << 1$) и слабой локализации имеет следующую зависимость от *T* и поля *B* (приведены выражения через характерные времена и поля):

$$\Delta \sigma = \frac{e^2}{\pi h} \left\{ (1 - 3\lambda) \ln \left(\frac{kT\tau}{\hbar} \right) + \alpha \left[\Psi \left(\frac{1}{2} + \frac{\tau_B}{\tau_{\varphi}} \right) - \Psi \left(\frac{1}{2} + \frac{\tau_B}{\tau} \right) \right] - G(b) \right\}, \quad (3)$$

где $\tau_B = \frac{\hbar}{4DeB}, \ b = \frac{g\mu_B B}{kT}.$

Эксперименты по наблюдению так называемого перехода металл-диэлектрик в полупроводниковых гетероструктурах с высокой подвижностью носителей вызвали существенное продвижение в теории эффектов электрон-электронного взаимодействия 2D-неупорядоченных систем [2,3]. В классических работах [4,5] вклад электрон-электронного взаимодействия получен исходя из проблемы разупорядоченной ферми-жидкости с помощью теории возмущений для наименьшего порядка по величине взаимодействия и имеет следующий вид:

$$\Delta \sigma^{ee} = \frac{e^2}{\pi h} [\Delta \sigma^{ee} (T) + \Delta \sigma_z^{ee} (B, T)] =$$
$$= \frac{e^2}{\pi h} \bigg[(1 - 3\lambda) \ln \frac{kT\tau}{\hbar} - G(b) \bigg]. \tag{4}$$

В (4) первое слагаемое в множителе перед логарифмом соответствует обменной части *e-e* взаимодействия (синглетный канал), а второе — хартриевскому вкладу (триплетный канал), которые имеют разные знаки. Здесь

$$\lambda = \frac{\tilde{F}_{\sigma}}{4} = \frac{1}{4} \left[\frac{1+F}{F} \ln \left(1+F \right) - 1 \right],$$

где \tilde{F}_{σ} и F — константы взаимодействия, причем $\tilde{F}_{\sigma} \to F$ в условиях слабого взаимодействия F << 1.

Для функции G(b), описывающей положительное магнитосопротивление за счет зеемановского расщепления уровней энергии электронов, имеются следующие выражения, в том числе в предельных случаях [1,6,7]:

$$G(b) = 2\lambda \int_{0}^{\infty} d\omega \left[\frac{d^2}{d\omega^2} \left[\frac{\omega}{e^{\omega} - 1} \right] \ln \left| 1 - \frac{b^2}{\omega^2} \right| \right], \quad (5)$$

$$b << 1, \quad G(b) = 2\lambda \cdot 0,084b^2;$$

$$b >> 1, \quad G(b) = 2\lambda \ln \left| \frac{b}{1,3} \right|. \quad (6)$$

Теперь, если в формулу (4) вместо G(b) подставим выражение (6) для b >> 1, то получим выражение с учетом зеемановского расщепления, т.е. когда $B >> B_z$:

$$\Delta \sigma^{ee} = \frac{e^2}{\pi \hbar} \left[(1 - \lambda) \ln \frac{kT\tau}{\hbar} - 2\lambda \ln \frac{g\mu_B B\tau}{1,3\hbar} \right].$$
(7)

В работах [4,5] получены выражения для $\Delta \sigma^{ee}(T,B)$ для произвольного отношения между температурой и временем свободного пробега носителей τ , а также для произвольной величины электрон-электронного взаимодействия, так что в формуле (4)

$$\lambda = \frac{1 + \gamma_2}{\gamma_2} \ln (1 + \gamma_2) - 1 = \frac{\ln (1 + F_0^{\sigma})}{F_0^{\sigma}} - 1,$$

 γ_2 — амплитуда фермижидкостного взаимодействия, F_0^{σ} — константа взаимодействия. В диффузионном режиме ($k_B T \tau / \hbar << 1$) имеем

$$G(b, F_0^{\sigma}) = -\frac{1}{2\pi F_0^{\sigma}} \sum_{n=1}^{\infty} \left\{ \frac{1}{n} \left(\ln \frac{n^2 + b^2}{n^2 + b^2 (1 + F_0^{\sigma})^{-2}} \right) - \frac{4b}{n^2} \left(\operatorname{arctg} \frac{b}{n} - \operatorname{arctg} \frac{b}{n(1 + F_0^{\sigma})} \right) \right\} - \frac{1}{\pi} \left[C + \operatorname{Re} \psi \left(1 - \frac{ib}{1 + F_0^{\sigma}} \right) \right]$$
(8)

В слабых магнитных полях $B \ll B_{tr}$ поправка от слабой локализации имеет следующую зависимость от T и поля B [8]:

$$\Delta \sigma^*(B,T) = \frac{\Delta \sigma^{WL}(B) - \Delta \sigma(0)}{\sigma(0)} =$$
$$= \alpha \frac{e^2}{\pi h} \left[\Psi \left(\frac{1}{2} + \frac{\tau_B}{2\tau_{\varphi}} \right) - \Psi \left(\frac{1}{2} + \frac{\tau_B}{2\tau} \right) + \ln \frac{\tau_{\varphi}}{\tau} \right]. \quad (9)$$

Результаты эксперимента и их обсуждение

Для обработки взяты экспериментальные зависимости компонент тензора сопротивления — продольного сопротивления ρ_{xx} и холловского сопротивления ρ_{xy} — от магнитного поля $0 \le B \le 2$ Тл при фиксированных температурах 0,2 К $\le T \le 4,2$ К для многослойных гетеростуктур *p*-Ge/Ge_{1-x}Si_x (*x* = 0,03), ширина квантовых ям (слои Ge) 20 нм, пирина барьеров (слои GeSi) 20 нм, концентрация носителей *p* = 2,4·10¹¹ см⁻².

Как при B = 0, так и в конечных полях $\sigma(T)$ подчиняется логарифмическому закону (см. рис. 1), что свидетельствует о присутствии вкладов квантовых поправок. В магнитных полях вплоть до $\omega_c \tau = 1$ наблюдается отрицательное магнитосопротивление (рис. 2), которое начиная с некоторого значения *B* пропорционально B^2 в соответствие с выражением (2). При $\omega_c \tau = 1$ ясно видна точка, в которой сопротивление не зависит от температуры, как следует из (2), равно обратной друдевской проводимости $\rho_{xx} = 1/\sigma_0$. Значение магнитного поля, при котором имеет место температурно-независимая точка, $B \sim (1,0\pm0,1)$ Тл. Это позволило нам определить такие параметры образца, как время свободного пробега $\tau \sim (4,8\pm0,3) \cdot 10^{-13}$ с и подвижность носителей $\mu = (1,0\pm0,1) \cdot 10^4$ см²/(B·c), $\sigma_0 = 12,3e^2/h$.

Приведем формулу (2) к виду $\rho_{xx}(B) = C_1 + C_2 B^2$:

$$\rho_{xx}(B) = \frac{1}{\sigma_0} - \frac{\Delta \sigma^{ee}}{\sigma_0^2} + \frac{\mu^2 \Delta \sigma^{ee}}{\sigma_0^2} B^2$$

Таким образом, зная параметры C_1 и C_2 кривых $\rho_{xx}(B)$, можно определить значения $\Delta \sigma^{ee}(B=0)$ в пределе больших полей $B >> B_{\rm tr}$ и $B >> B_z$, т.е. с учетом эффекта Зеемана (в формуле (4)). По температурной зависимости полученных данных (рис. 3,*a*, кривая 1) $\Delta \sigma^{ee}(B=0)$ (выражение (7)) найдено значение константы взаимодействия Хартри \tilde{F}^{σ} = 1,6. Поскольку теория Альтшулера–Аронова [5] развита для случая слабых взаимодействий $\tilde{F}^{\sigma} < 1$, а в нашем случае это не так, то мы должны воспользоваться более современными и общими

Рис. 1. Температурные зависимости проводимости σ_{xx} при B = 0 (*a*) и фиксированных значениях магнитных полей *B*, Тл: 0 (1); 0,2 (2); 0,4 (3); 0,6 (4); 0,9 (5) (6).

выражениями [3], описывающими сильные взаимодействия с использованием амплитуды фермижидкостного взаимодействия. Получены новые значения фермижидкостной амплитуды и константы взаимодействия: $\lambda = 0,40$, $F_0^{\sigma} = -0,51$.

Предел сильных магнитных полей и нулевого магнитного поля связаны (3), причем эта связь определяется только константой электрон-электронного взаимодействия и не зависит от *g*-фактора. Это позволило нам определить вклад электрон-электронного взаимодействия в проводимость при B = 0, На рис. 3,*a* хорошо видно, что значения вклада $\Delta \sigma^{ee}$ в нулевом магнитном поле (кривая *1* на рис. 3,*a*) и полученные экстраполяцией к B = 0 из области $B >> B_z$ (кривая *2* на рис. 3,*a*) имеют разные знаки и разные знаки температурного коэффициента, т.е. вследствие зеемановского расщепления вклад электронного взаимодействия в магнитопроводимость меняет знак.

По формуле $\sigma_{xx} = \sigma_0 + \Delta \sigma^{ee} + \Delta \sigma^{WL}$ находим значения $\Delta \sigma^{WL}$ при B = 0, На рис. 3,6 представлены температурные зависимости полученных вкладов слабой локализации (кривая 2 на рис. 3,6) и электрон-электронного взаимодействия (кривая 1 на рис. 3,6) в нулевом магнитном поле. Видно, что $|\Delta \sigma^{ee}| \sim |\Delta \sigma^{WL}| / 4$.

Рис. 2. Зависимости сопротивления ρ_{xx} от магнитного поля *В* при фиксированных температурах *Т*. Линиями показана интерполяция. $B_0 \approx 1$ Тл.

При B = 0 формула (9) принимает вид

$$\Delta \sigma^{WL} = \alpha \, \frac{e^2}{\pi h} \ln \frac{\tau_{\varphi}}{\tau},$$

где α — префактор, число вблизи единицы. Отсюда находим значения времени сбоя фазы τ_{φ} электронной волны (см. рис. 4), для которого справедлива степенная температурная зависимость. Определенный здесь показатель степени p = -0,98, значение префактора $\alpha = 1$.

Зная τ_{φ} , по формуле (5) можем восстановить зависимости $\Delta \sigma^{WL}(B)$ при фиксированных температурах (рис. 5).

Используя формулу

$$\varphi_{xx}(B) = \frac{1}{\sigma_0} - \frac{\Delta \sigma^{WL}(B)}{\sigma_0^2} + (\omega_c^2 \tau^2 - 1) \frac{\Delta \sigma^{ee}(B)}{\sigma_0^2},$$

получаем значения $\Delta \sigma^{ee}(B)$. На рис. 6 данные $\Delta \sigma^{ee}(B)$ приведены в зависимости от отношения B/T. Согласно теоретическим представлениям, зависимости $\Delta \sigma^{ee}(B/T)$ для разных температур должны ложиться на одну кривую, что, в частности, было показано для рассматриваемых систем *p*-Ge/Ge_{1-x}Si_x на образцах с меньшей концентрацией и подвижностью носителей [9]. Как видно на рис. 6, нам такого поведения получить не удалось. На наш взгляд, это связано с неточным учетом вклада слабой локализации, так как в магнитных полях, где наблюдается расхождение, мы прибли-

Рис. 3. Температурные зависимости вкладов электрон-электронного взаимодействия проводимость: a - c учетом эффекта Зеемана (1) и вклад в сильных магнитных полях, приведенный к B = 0 (2); $\delta -$ электрон-электронное взаимодействие в нулевом магнитном поле с учетом эффекта Зеемана (1) и слабой локализации (2).

жаемся к B_{tr}, и корректной теории для данной области полей не существует.

Теперь мы знаем значения $\Delta \sigma^{ee}(B)$ и $\Delta \sigma^{WL}(B)$, определили параметры этих эффектов и можем сравнить наши экспериментальные данные $\rho_{xx}(B)$ с кривыми, построенными по формулам (4), (8), (9) с использованием полученных в расчетах значений

Рис. 4. Температурная зависимость времени сбоя фазы τ_φ.

Рис. 5. Магнитополевая зависимость вклада эффекта слабой локализации σ^{WL} в проводимость при фиксированных температурах.

параметров. Результаты такого сравнения можно увидеть на рис. 7. Единственное, что нам не удалось получить ранее, это значение *g*-фактора Ланде, поэтому мы варьировали его для получения наилучшего совпадения экспериментальных и расчетных кривых $\rho_{xx}(B)$. Полученное при подгонке значение фактора Ланде *g* = 12.

Заключение

В данной работе мы определили параметры электрон-электронного взаимодействия и слабой локализации для гетероструктур p-Ge/Ge_{1-x}Si_x с низкой подвижностью носителей. Показано, что учет вклада зеемановского расщепления позволяет получить разумные значения времени релаксации энергии (время сбоя фазы τ_{φ}) и его степенную темпера-

Рис. 6. Зависимость вклада эффекта электрон-электронного взаимодействия σ^{ee} в проводимость от приведенного магнитного поля для *T*, K: 0,2 (*1*); 1,1 (*2*); 1,3 (*3*); 2,7 (*4*) и 4,2 (5).

Рис. 7. Зависимости продольного сопротивления от магнитного поля при фиксированных температурах *T*, К (символами показаны экспериментальные данные): 0,7 (*1*); 1,1 (*2*); 2,7 (*3*) и 4,2 (*4*). Сплошные линии построены по формулам (4), (8), (9) с использованием полученных в расчетах значений параметров.

турную зависимость, предсказываемую теорией. Вследствие зеемановского расщепления вклад электрон-электронного взаимодействия в проводимость меняет знак при переходе от слабых к сильным магнитным полям. Оценены значения параметров этих эффектов: константа взаимодействия Хартри $F_0^{\sigma} = -0.51$, амплитуда фермижидкостного взаимодействия $\lambda = 0.40$, фактор Ланде g = 12.0.

Работа выполнена при поддержке РФФИ, гранты 05-02-16206, 04-02-16614; CRDF и Министерства образования и науки РФ, грант Y1-P-05-14 (ЕК-05 [X1]); программы РАН «Низкоразмерные квантовые гетероструктуры»; УрО РАН, грант для молодых ученых.

- P.T. Coleridge, A.S. Sachrajda, and P. Zawadzki, *Phys. Rev.* B65, 125328 (2002).
- G. Zala, B.N. Narozhny, and I.L. Aleiner, *Phys. Rev.* B64, 214204 (2001).
- B.N. Narozhny, G. Zala, and I.L. Aleiner, *Phys. Rev.* B65, 180202 (2002).

- P.A. Lee and T.V. Ramakrishman, *Rev. Mod. Phys.* 57, 287 (1985).
- 5. B.L. Altshuler and A.G. Aronov, in: *Electron-Electron Interaction in Disorder System*, Amsterdam (1985), p. 1.
- P.A. Lee and T.V. Ramakrishman, *Phys. Rev.* B26, 4009 (1982).
- M.S. Burdis and C.C. Dean, *Phys. Rev.* B38, 3269 (1988).
- S. Hikami, A.I. Larkin, and Y. Nagaoka, *Progr. Theor. Phys.* 63, 707 (1980).
- Yu.G. Arapov, V.N. Neverov, G.I. Harus, N.G. Shelushinina, M.V. Yakunin, O.A. Kuznetsov, L. Ponomarenko, and A. De Visser, *Fiz. Nizk. Temp.* **30**, 1157 (2004).

Contributions of electron-electron interaction and weak localization to conductivity of heterostructures p-Ge/Ge_{1-x}Si_x

Yu.G. Arapov, S.V. Gudina, I.V. Karskanov, V.N. Neverov, G.I. Harus, and N.G. Shelushinina

Contributions from the disorder-modified electron-electron interaction and weak localization to conductivity of low mobility p-Ge/Ge_{1-x}Si_x heterostructures at 0.2 K $\leq T \leq 4.2$ K in magnetic field $0 \leq B \leq 2$ T were divided. Contributions of Zeeman splitting to magnetoresistance have been taken into consideration in the electron-electron interaction. This permitted us to obtain reasonable values of inelastic scattering time τ_{φ} and its power temperature dependence predicted by theory. The Hartree part of the interaction constant $F_0^{\sigma} = -0.51$, the amplitude of Fermi-liquid interaction $\lambda = 0.40$, the Lande factor g = 12.0 are estimated.

PACS: 73.20.Fz Weak or Anderson localization; 73.21.Ac Multilayers;
73.40.-c Electronic transport in interface structures.

Keywords: electron-electron interaction, weak localization, Zeeman splitting, magnetoresistance.