Краткие сообщения

Перераспределение носителей в недодопированных кислородом монокристаллах Y₁Ba₂Cu₃O_{7-δ} при высоком гидростатическом давлении

Р.В. Вовк, М.А. Оболенский, А.В. Бондаренко

Харьковский национальный университет им. В.Н. Каразина пл. Свободы, 4, г. Харьков, 61077, Украина E-mail: Ruslan.V.Vovk@univer.kharkov.ua

Статья поступила в редакцию 30 июня 2006 г.

Исследовано влияние высокого гидростатического давления до 7 кбар на проводимость и перенос заряда в *ab*-плоскости монокристаллов $Y_1Ba_2Cu_3O_{7-\delta}$ с дефицитом кислорода $\delta \approx 0,55$ и критической температурой $T_c \approx 45$ К. Показано, что индуцированное давлением перераспределение лабильного кислорода приводит к изменению величины энергии активации переноса заряда и усилению фазового расслоения в образце. Обнаружена существенная асимметрия хода релаксации электросопротивления в процессе выдержки образца при комнатной температуре после приложения и снятия давления.

Досліджено вплив високого гідростатичного тиску до 7 кбар на провідність і перенесення заряду в *ab*-площині монокристалів Y₁Ba₂Cu₃O₇₋₈ з дефіцитом кисню $\delta \approx 0.55$ і критичною температурою $T_c \approx 45$ К. Показано, що індукований тиском перерозподіл лабільного кисню призводить до зміни величини енергії активації перенесення заряду і посилення фазового розшарування у зразку. Виявлено істотну асиметрію ходу релаксації електроопору у процесі витримування зразка при кімнатній температурі після докладання та знімання тиску.

PACS: 74.72.-h

Ключевые слова: высокое давление, монокристаллы Y₁Ba₂Cu₃O_{7-δ}, перераспределение кислорода, перенос заряда, релаксация электросопротивления.

Экспериментальные исследования различных физических свойств высокотемпературного сверхпроводника (ВТСП) Y₁Ba₂Cu₃O_{7-δ}, показывают наличие в этом соединении неравновесного состояния, наблюдаемого при определенной степени дефицита кислорода [1-9]. Важную роль при этом играют внешние факторы, такие как температура [6] и высокое давление [4,5,7-9], приводящие к изменению параметров решетки и индуцирующие процессы перераспределения лабильного кислорода, что, в свою очередь, изменяет транспортные характеристики и критические параметры сверхпроводника. Степень этих изменений существенным образом зависит от величины кислородного индекса δ [6–9]. Характерной особенностью соединений Y₁Ba₂Cu₃O_{7-δ} с δ ≥ 0,3 является уширение их резистивных переходов в

сверхпроводящее состояние под давлением [7]. Причина такого поведения к настоящему времени не установлена. Следует также отметить, что, несмотря на достаточно значительное количество работ, посвященных исследованиям релаксационных процессов в системе 1-2-3 при приложении высокого давления, многие аспекты этого явления, например, такие, как перенос заряда и характер перераспределения вакансионной подсистемы, все еще остаются окончательно невыясненными. Очевидно, определенную роль здесь играет то обстоятельство, что существенная часть экспериментальных результатов получена на керамических и поликристаллических образцах с высоким содержанием межгранулярных связей [4,5,8]. В настоящей работе исследовано влияние гидростатического давления до 7 кбар на проводящие характеристики в *ab*-плоскости монокристаллов $Y_1Ba_2Cu_3O_{7-\delta}$ с дефицитом кислорода $\delta \approx 0,55$ и критической температурой T_c , равной 45 К.

Монокристаллы У1Ва2Си3О7-6 выращивали по раствор-расплавной технологии в золотом тигле по методике, описанной в [6,7]. Для получения образцов с оптимальным содержанием кислорода отобранные кристаллы отжигали в потоке кислорода при температуре 400°С в течение пяти суток. Для уменьшения содержания кислорода проводили отжиг образцов в течение двух-трех суток в атмосфере воздуха при температуре 450-620°С. Электроконтакты изготавливали по стандартной четырехзондовой схеме при помощи серебряной пасты. Гидростатическое давление создавали в автономной камере типа поршень-цилиндр [7]. Величину давления измеряли с помощью манганинового манометра, температуру — медь-константановой термопарой, вмонтированной в наружную поверхность камеры на уровне расположения образца. Для определения влияния перераспределения кислорода проводили измерения по истечении нескольких суток после приложения и снятия давления, по мере завершения релаксационных процессов.

На рис.1 приведены температурные зависимости электросопротивления образца, измеренные в *ab*-плоскости при различных давлениях. Видно, что уменьшение содержания кислорода, кроме понижения критической температуры от 92 до 45 К и увеличения абсолютного значения электросопротивления от 0,1 Ом-см до 3,19 Ом-см, приводит к переходу от металлического поведения кривых $R_{ab}(T)$ к зависимостям с характерным термоактивационным прогибом.

Резистивные переходы в сверхпроводящее состояние показаны на рис.1 (вставке *a*). Видно, что при понижении содержания кислорода ширина резистивного перехода в сверхпроводящее состояние возрастает более чем в 30 раз по сравнению с исход-

Рис. 1. Температурные зависимости электросопротивления при различных давлениях P, кбар. Сплошная кривая получена непосредственно после снятия давления. Вставка (*a*): резистивные переходы в сверхпроводящее состояние при различных давлениях. Вставка (*б*): зависимости $T_c(P)$. На вставке приведены значения давления при температурах сверхпроводящего перехода.

ным образцом (от $\Delta T_c \leq 0.3$ К до $\Delta T_c \leq 10$ К), а сверхпроводящий переход приобретает ступенчатую форму. Это, по-видимому, свидетельствует о появлении в образце как минимум двух фаз, имеющих различные критические температуры (T_{c1} и T_{c2}) перехода в сверхпроводящее состояние [6]. Приложение давления приводит к уменьшению электросопротивления и увеличению T_c (см. таблицу и вставку (δ) на рис. 1) со скоростью $dT_c/dP \approx 1.02$ К·кбар⁻¹, что согласуется с литературными данными [4,5,7].

В отличие от образцов с $\delta \le 0,5$ [9,10], во всем исследованном нами интервале температур на зависимости $R_{ab}(T)$ линейный участок не наблюдался. На рис. 2 приведены температурные зависимости $R_{ab}(T)$ в координатах $\ln(R/T)-T^{-1}$ при различных давлениях. Видно, что все кривые спрямляются в

	Давление Р, кбар при комнатной температуре							
Параметр	0	4,3 (непосредственно	4,3 (через семь суток	5	6,3	7	0 (непосредственно	0 (через семь
		после приложения	после приложения				после снятия	суток после
		давления)	давления)				давления)	снятия давления)
R ₃₀₀ , Ом	3,19	2,6	1,9	1,85	1,82	1,8	2,15	3,18
<i>Т_с</i> , К	45,42	48,25	48,27	48,74	49,24	50,15	45,23	45,30
$(T_{c1} - T_{c2}), K$	2,23	2,25	4,42	5,46	6,7	7,01	6,02	2,53
Δ, Κ	69,8	59,5	57	57,4	58,2	57,9	56,4	69,2
τ, ч	_	9	-	-	_	_	5,5	_

Таблица 1. Эволюция параметров исследованного образца в условиях приложения и снятия высокого гидростатического давления.

 Π р и м е ч а н и е
: T_c соответствует середине сверхпроводящего перехода.

Рис. 2. Зависимости $\ln(R_{ab}/T) - 1/T$ при различных давлениях *P*, кбар: 0 (1); 4,3 (2) и 6,3 (3). Кривая (4) измерена непосредственно после снятия давления. Вставка (*a*): зависимости $dR_{ab}(T)/dT$ в области сверхпроводящего перехода. Кривая 1 — зависимость, измереная до приложения давления; кривая 2 измерена непосредственно после приложения давления 4,3 кбар; кривая 3 — после выдержки образца при комнатной температуре под давлением 4,3 кбар в течение недели; кривая 4 измерена непосредственно после снятия давления, кривая 4 измерена непосредственно после приложения давлением 4,3 кбар в течение недели; кривая 5 — после выдержки образца при нулевом давлении в течение трех суток. Вставка (*б*): релаксационные зависимости $R_{300}(t)$, измеренные после приложения давления (2).

широком интервале температур, что соответствует их описанию аналитическим выражением

$$R = AT \exp(\Delta/T), \tag{1}$$

где А-некоторая константа, а Δ - энергия активации. Как известно, такая зависимость характерна для активационного механизма движения носителей [10]. На рис. 2 кривым 1 и 4 соответствуют зависимости, измеренные до приложения и непосредственно после снятия давления. Сравнение этих кривых показывает, что результаты измерений зависят не только от величины приложенного давления, но и от времени выдержки образца при комнатной температуре. Так, непосредственно после снятия давления электросопротивление образца при комнатной температуре приблизительно на 30% меньше, чем R, измеренное до приложения давления, и в дальнейшем оно в течение трех суток релаксировало к равновесному значению. После этого зависимость R(T) полностью совпадала с измеренной до приложения давления, что свидетельствует об обратимости процесса. При этом величина энергии активации, определяемая из этих кривых согласно (1), увеличилась приблизительно на 24% (от 56,4 до 69,8 К) (см. таблицу), что может свидетельствовать об изменении характера распределения вакансионной кислородной подсистемы.

Следует отметить, что при описании процесса перераспределения лабильного компонента в соединении Y1Ba2Cu3O7-6 до настоящего времени доминирующей причиной рассматривалось упорядочение кислорода, в том числе с образованием различного рода сверхструктур (см., например, [11]). Однако недавно в теоретической работе [12] было показано, что в Y1Ba2Cu3O7-б изменение критической температуры однозначным образом связано с размерами сверхпроводящих кластеров, образуемых ионами кислорода, которые формируют отрицательные U центры (NUC), ответственные за генерацию носителей в соединении. Например, большим размерам таких кластеров соответствуют более высокие значения Т_с, и наоборот. Расчеты размеров кластеров, проведенные в [12], хорошо согласуются с нашими оценками 30-300 Å [6] и размерами 50-400 Å, полученными из нейтронографических [2] и оптических [3] исследований. Очевидно, индуцированное давлением перераспределение лабильного кислорода определенным образом сказывается на размерах кластеров, которые могут представлять собой отдельные сверхпроводящие фазы, а также на достижении порога перколяции по ним. Это, в свою очередь, должно приводить к изменению зависимостей $R_{ab}(T)$.

Действительно, как отмечалось выше, отклонение от стехиометрии по кислороду приводит к появлению ступенчатой формы резистивных переходов и двух отчетливо выраженных пиков на зависимостях $dR_{ab}(T)/dT$ в области сверхпроводящего перехода (вставка (а) на рис. 2). Согласно [13], максимумы на этих зависимостях соответствуют T_c . На этом рисунке кривая 1 соответствует зависимости, измеренной до приложения давления; кривая 2 измерена непосредственно после приложения давления, равного 4,3 кбар, кривая 3 — после выдержки образца при комнатной температуре под давлением 4,3 кбар в течение недели; кривая 4 получена непосредственно после снятия давления и кривая 5 после выдержки образца при атмосферном давлении в течение трех суток. Как следует из рисунка, выдержка образца при комнатной температуре в процессе приложения-снятия давления, помимо абсолютного изменения величины Т_с приводит к существенным качественным изменениям ширины и формы сверхпроводящего перехода. Сравнение кривых 2 и 3 показывает, что после выдержки образца под давлением в течение недели абсолютная величина производной dR_{ab}/dT уменьшается почти в четыре раза, а переход значительно уширяется (разность между пиками, соответствующими высоко- и низкотемпературной фазам (T_{c1} – T_{c2}) увеличивается от 2,25 до 4,42 К). На зависимости, измеренной непосредственно после снятия давления (кривая 4), изменяется только абсолютное значение T_c , а ширина перехода и величина dR_{ab}/dT остаются практически неизменными. Сравнение кривых 4 и 5 показывает, что после выдержки образца при комнатной температуре и атмосферном давлении в течение трех суток ширина и форма перехода практически полностью восстанавливаются до исходных значений. Это дает нам основание предположить, что при увеличении давления часть кислорода из фазы с меньшей Т_с мигрирует в фазу с большей критической температурой, а при уменьшении давления происходит обратное перераспределение. Подобное явление возможно, например, в случае реализации процесса восходящей диффузии [14].

Согласно [15], величина критической температуры для соединения $Y_1Ba_2Cu_3O_{7-\delta}$ связана с числом дырок в плоскости CuO_2 универсальной параболической зависимостью:

$$T_c = T_c^{\max} [1 - 82,6(n - n_{\text{opt}})^2], \qquad (2)$$

где T_c^{max} — максимальная критическая температура, а $n_{\text{opt}} = 0,25$ — оптимальное содержание числа дырок на плоскость для этого соединения. Расчеты, проведенные с помощью этого соотношения, показывают, что с увеличением давления, в процессе выдержки при комнатной температуре, число носителей в низкотемпературной фазе уменьшается примерно на 3–4%, в то время как в высокотемпературной фазе происходит увеличение количества дырок.

На вставке (δ) на рис. 2 представлены результаты измерений временных зависимостей релаксации электросопротивления при комнатной температуре $R_{300}(t)$. Точки на кривой t соответствуют зависимости, измеренной после приложения давления 4,3кбар, а на кривой 2 — после снижения давления до атмосферного. Сплошными линиями показаны результаты расчетов по формуле, предложенной в [1]:

$$R(t) = R(\infty) + [R(0) - R(\infty)] \exp[-(t/\tau)^{1/2}], \quad (3)$$

где $R(\infty)$ и R(0) — равновесное и начальное значения электросопротивления соответственно; τ — характерное время релаксационного процесса. Расчеты, проведенные согласно (3), показали, что после снятия давления равновесное значение $R(\infty)$ достигается значительно быстрее, чем при приложении давления: $\tau(4,3 \text{ кбар}) / \tau(0 \text{ кбар}) \approx 1,64$. Подобный эффект наблюдался ранее для керамических образцов YBaCuO при изучении релаксации T_c [8]. Авторы работы [8] предположили, что это явление обусловлено разностью диффузионного пути в про-

цессе индуцированного давлением удлинения-укорачивания цепочек кислорода в Си-О плоскостях. Очевидно, аналогичным образом можно объяснить и процесс образования-распада кластеров различных размеров. Это подтверждает высказанное ранее предположение о том, что приложение высокого гидростатического давления приводит к диффузионному перемещению лабильного компонента из фазы с меньшей T_c в высокотемпературную фазу. Однако для однозначного объяснения этих эффектов требуются дальнейшие исследования, в частности изучение процесса перераспределения заряда непосредственно вблизи перехода металл — диэлектрик и измерение барических зависимостей эффекта Холла в образцах с дефицитом кислорода.

- J.D. Jorgencen, Shiyou Pei, P. Lightfoot, H. Shi, A.P. Paulikas and B.M.W. Veal, *Physica* C167, 571 (1990); H. Shaked, J.D. Jorgencen, B.A. Hunter, R.L. Hitterman, A.P. Paulicas, and B.M. Veal, *Phys. Rev.* B51, 547 (1995).
- 2. F. Heinmaa and H. Lutgenemejer, *Appl. Magn. Reson.* **3**, 689 (1992).
- 3. K. Widder, A. Zibold, M. Merz, H.P. Getherich, A. Erb, and G. Müller-Vogt, *Physica* C232, 82 (1994).
- J. Metzler, T. Weber, W.H. Fietz, K. Grube, H.A. Ludwig, T. Wolf, and H. Wuhl, *Physica* C214, 371 (1993); W.H. Fietz, R. Quenzel, K. Grube, J. Metzler, T. Weber, and H.A. Ludwig, *Physica* C235, 1786 (1994).
- 5. S. Sadewasser, J.S. Schilling, A.P. Paulicas, and B.M. Veal, *Phys. Rev.* **B61**, 741 (2000).
- 6. М.А. Оболенский, А.В. Бондаренко, Р.В. Вовк, А.А. Продан, *ФНТ* **23**, 1179 (1997).
- Д.Д. Балла, А.В. Бондаренко, Р.В. Вовк, М.А. Оболенский, А.А. Продан, *ФНТ* 23, 1039 (1997).
- 8. И.М. Фита, В.П. Дьяконов, Р. Пузняк, Г. Шимчак, *ФТТ* **40**, 1968 (1998).
- 9. М.А. Оболенский, Р.В. Вовк, А.В. Бондаренко, ФНТ **32**, 802 (2006).
- M.A. Obolenskii, R.V. Vovk, A.V. Bondarenko, and N.N. Chebotaev, *Fiz. Nizk. Temp.* **32**, 746 (2006).
- А.А. Мамалуй, Л.С. Палатник, К В. Беднов, М.А. Оболенский, А.В. Бондаренко, *ФНТ* 19, 1180 (1993).
- 12. К.В. Мицен, О.М. Иваненко, *Писъма в ЖЭТФ* 82, 144 (2005).
- L. Mendonca Ferreira, P. Pureur, H.A. Borges, and P. Lejay, *Phys. Rev.* B69, 212505 (2004).
- 14. А.М. Косевич, УФН **114**,507 (1974).
- M.R. Presland, J.L. Tallon, R.G. Buckley, R.S. Liu, and N.D. Flower, *Physica* C176, 96 (1991); J.L. Tallon, C. Berbhard, H. Shaked, R.L. Hitterman, and J.D. Jorgensen, *Phys. Rev.* B51, 12911 (1995).

$\begin{array}{c} \mbox{Redistribution of carriers in oxygen underdoped} \\ \mbox{Y}_1 \mbox{Ba}_2 \mbox{Cu}_3 \mbox{O}_{7-\delta} \mbox{ single crystals at high} \\ \mbox{ hydrostatical pressure} \end{array}$

R.V. Vovk, M.A. Obolenskii, and A.V. Bondarenko

The effect of high hydrostatic pressure up to 7 kbar on conductivity and charge transfer in the *ab*-plane of Y₁Ba₂Cu₃O_{7- δ} single crystals with an oxygen deficit $\delta \approx 0.55$ and a critical temperature $T_c \approx 45$ K is investigated. It is shown that the pressure induced redistribution of labile oxy-

gen causes the activation energy of charge transfer to vary and the phase immiscibility of a sample to increase. A substantial asymmetry in the resistivity relaxation behavior is observed on holding the sample at room temperature after pressure application and removal.

Keywords: high pressure, $Y_1Ba_2Cu_3O_{7-\delta}$ single crystals, redistribution of oxygen, transfer of charge, relaxation of resistivity.