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A new sequential approach to investigations of the structure of metric spaces at infinity is proposed. Criteria for
the finiteness and boundedness of metric spaces at infinity are found.
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As the asymptotic structure describing the behavior of an unbounded metric space (X,d) at

infinity, we mean a metric space that is a limit of rescaling metric spaces (X ,—d } for r, tending

T

to infinity. The Gromov—Hausdorff convergence and the asymptotic cones are most often used
for the construction of such limits. Both of these approaches are based on higher-order logic ab-
stractions (see, e. g. [1] for details), which makes them very powerful, but it does away the con-
structiveness. In this paper, we propose a more elementary, sequential approach for describing the
structure of unbounded metric spaces at infinity.

Let (X,d) be an unbounded metric space, p be a point of X, and #=(r,),y be a scaling
sequence of positive real numbers tending to infinity. Denote, by X_ -, the set of all sequences

= d ,
X =(x,)pen € X foreach of which limd(x,,, p) = e, and there is a finite limit d; (£) := lim M
N—>o00 y Nn—o0 rn
Define the equivalence relation = on X, 7 as

(fzgy:(mn19£%ﬁ=o}

n—oo [

oo, 77

on X, ;. We say that points

Let foy; be the set of equivalence classes generated by

o,pe f = are mutually stable if, for ¥ e o and 7 €, there is a limit

00, B) = lim S Yn). (1)

n—yoco Ty
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Let us consider the weighted graph (Gy ;,p) with the vertex set V(G ;)= in =, the edge
set E(Gy ;) such that

({u,v} € E(Gy ;)) & (uand v are mutually stable and u # v),

and the weight p: E(Gy ;) » R defined by formula (1).

Definition 1. The pretangent spaces (to (X,d) at infinity w.r.t. 7) are the maximal cliques
Q f 7 of Gy 7 with metrics determined with the help of (1).

Recall that a cligue in a graph G is aset AcV(G) such that every two distinct points of A
are adjacent. A clique C in G is maximal if C ¢ A implies C = A for every clique A in G.

Define a subset o, = oy (X, 7) of the set wa = by the rule

(Geay) o (GeX.. ; and dy(3)=0). 2)

Then o is a common point of all pretangent spaces ny;. This means, in particular, that
the graph Gy ; is connected.

Let (13)3eny © N beinfinite and strictly increasing. Denote, by 7, the subsequence (T e of

write X := (xnk Vren- [tis clear that lim d(xnk p)=

the 7 = (1, ) and, for every & = (¥, ),.er € X ;
%00

oo, 7

I~ -, = B ~ o - d , )
=ooand dy (&) =d;(X) for every ¥ e X_, . Moreover, if 7€ X_, ; and lim Xy Yn) exists, then
’ ’ N—>oo Tn
lim — T (n—yn) 3)
h—so0 T, n—soo [

0
Let us define Xx,,; and p” similarly to wa; and, respectively, to p, and let «: f(wj -Q, 7
n: X, ; > Q. 7 be the natural projections 1t~(x) ={geX. ;:p(X,7)=0}, t'(x)={FeX, ;:
p'(X,5)=0}, and let @;(¥):=%" for all xeX_ ;. Then there is an embedding em’:in; -
—-Q ff 7 of the weighted graph (Gy 7, p) in the weighted graph (G ;:,p”) such that the diagram

~ (0 ~
w7 —> Xo ;'
TEJ/ l/n'
X em’ X
n; — s of -

is commutative. Since em” is an embedding of weighted graphs, em’(C) is a clique in Gy ; if
C isaclique in Gy ;. Furthermore, (3) implies that the restrictions em”| y are isometries of
the pretangent spaces Qi = on the metric spaces em’(Q f 7). e

Definition 2. A pretangent space ny; is tangent if the clique em’(ij) is maximal for
every infinite, strictly increasing sequence (1), € N.

Example 1. Let E be a finite-dimensional Euclidean space and let X ¢ E be such that the
Hausdorff distance dg(E, X) is finite. Then, for every scaling sequence 7, all pretangent spaces

QX _ are tangent and isometric to E .

oo 1
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Asymptotic behavior of metric spaces at infinity

In conclusion of this brief introduction, it should be noted that there exist other techniques,
which allow one to investigate the asymptotic properties of metric spaces at infinity. As examples,
we mention only the balleans theory [2] and the Wijsman convergence [3—5].

1. Finiteness. In this section, we study the conditions, under which pretangent spaces are
finite.

Theorem 1. Let (X, d) be an unbounded metric space, pe X , n>2, and let

[ min d(x,p) [l d(xpx)

I<k<n t<k<l<n
n(n—l)+1

, if(x1,...xn)¢(p,...,p),

max d(xy, p)
1<k<n

F(x(y...,x,)= (

_0, if (x1,...xn):(p,...,p).
Then the inequality JQSS};

l]m Fn(X1,...,Xn):
Xpy ey Xy >0

Note that, for every unbounded metric space (X, d), there is a pretangent space Q f # consist-
ing of at least two points.

Corollary 1. Let (X,d) be an unbounded metric space and let o, be a point defined by (2)
for every scaling sequence 7 . Then the following statements are equivalent:

(i) The graph Gy ; is a star with the center oy for every scaling sequence 7 ;

(i) The limit relation  lim Fy(x(, x9)=0 holds.

xl,x2—>oo

<n holds for every pretangent space foy; if and only if

Let us consider now the problem of existence of finite tangent spaces.
Definition 3. Let E c R™ . The porosity of E at infinity is the quantity

p(E, ) :=lim sup—l(oo’ hE)

msu ) (4)

where [(oo, h, E) is the length of the longest interval in the set [0, 2]\ E . The set E is strongly
porous at infinity if p(E,e)=1.

The standard definition of the porosity at a point can be found in [6].

For a metric space (X,d) and pe X, we write §,(X):={d(x, p):x e X}.

Theorem 2. Let (X,d) be an unbounded metric space, p e X . The following statements are
equivalent:

(i) The set S ,(X) is strongly porous at infinity;

(ii) There is a single-point tangent space Qi 25

(iii) There is a finite tangent space ny .

(iv) There is a compact tangent space ny P

(V) There is a bounded, separable tangent space Qf, ;.

Some results similar to Theorem 1 and Theorem 2 can be found in [7] and [8] respectively.

2. Boundedness. Let T=(1,)),y € R. We say that 7 is eventually increasing if the inequa-
lity 1,,,4 =1, holds for sufficiently large 7. For E cR*, we write E. for the set of eventually
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increasing sequences Tc E with 1imT, =°°. Denote also, by I~]i3, the set of all sequences of open
n—soo

intervals (a,,b,) < R* meeting the following conditions:
Each (a,,b,) is a connected component of the set Int(R" \ E);
(a,),en is eventually increasing;

b, —a
lima, =< and [im —=*
Nn—soo n—yoo bn

=1,

Define an equivalence < on the set of sequences of strictly positive numbers as follows.
Let a=(a,)peny and 7=(Y,)pen- Then ax<7 if there are some constants ¢y, ¢y >0 such that
ca, <Y, < cya, forevery neN.

Definition 4. Let EcR* and let Te E.,. The set E is % -strongly porous at infinity if there
is a sequence ((a,,b,)),ey €15 such that T=<a where @=(a,),oy. The set E is completely
strongly porous at infinity if E is % -strongly porous at infinity for every e E’, .

Note that every completely strongly porous at infinity set is strongly porous at infinity but
not conversely.

Definition 5. Let (X, d) be an unbounded metric space and let p e X . A scaling sequence 7
is normal if 7 is eventually increasing and there is ¥ € me = such that

d(x,,
i “Fw )y

n—oo [

Write 3,(X) for the set of all pretangent spaces Q ffy; with normal scaling sequences 7.

Under which conditions is the family $,(X) uniformly bounded?
Recall that a family 3 of a metric spaces (Y, d,) is uniformly bounded if

sup{diamY :Y e 3} <=

If all metric spaces (Y, dy ) are pointed with marked points py €Y and

inf{dy (py, y):y €Y \{py}, Y €3)>0,

then we say that 3 is uniformly discrete (w.r.t. the points py ).

The following theorem is an analog of Theorem 3.11 and Theorem 4.1 from [9].

Theorem 3. Let (X,d) be an unbounded metric space and let p e X Then the following sta-
tements are equivalent:

(i) The family 3,(X) is uniformly bounded;

(i) §,(X) is completely strongly porous at infinity;

(iii) The family 3,(X) is uniformly discrete w.r.t. the points o, defined by (2).

If 3,(X) is uniformly bounded, then every pretangent space foy ; is bounded, but the con-
verse, in general, does not hold.

Definition 6. The set E cR" is w -strongly porous at infinity if, for every sequence e E.
there is a subsequence 7', for which E is T'-strongly porous at infinity.

The following theorem gives a boundedness criterion for pretangent spaces.

Theorem 4. Let (X,d) be an unbounded metric space and let p € X . All pretangent spaces to
X at infinity are bounded if and only if the set S,(X) is w -strongly porous at infinity.
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Asymptotic behavior of metric spaces at infinity

The example of w -strongly porous at infinity set E cR* which is not completely strongly
porous at infinity, can be obtained as a modification of Example 2.10 [10].

Using Theorem 4, we can obtain a criterion of existence of an unbounded pretangent space.
The conditions of such type are important for the development of a theory of pretangent spaces
of the second order or more (i.e., pretangent spaces to pretangent spaces, pretangent spaces to
pretangent spaces to pretangent spaces and so on).

Let (Y,dy) be a metric space. Then for every KcY and yeYV, we write dist(y, K)=
=inf{dy (y, x): x € K}. The following definition can be found in [11].

Definition 7. Let (K,)), .y be a sequence of subsets of (Y,dy) The set

Lim inf K, :={y €Y :lim dist(y, K,,) = 0}
n—>co N—>c0

is the Kuratowski lower limit of (K,)),cy in (Y, dy).

For AcR and t e R, weset tA:={ta:ae A}.

Theorem 3. Let (X, d) be an unbounded metric space and let p € X Then the following state-
ments are equivalent:

(i) There exists an unbounded pretangent space Qf, 5

(ii) There exists a scaling sequence T=(1,),ey such that the Kuratowski lower limit

1
Liminf—:3,(X) is an unbounded subset of R";

n—oo 1y,

(iii) The set S,(X) is not w -strongly porous at infinity.

Let (7,)qen be @ sequence of scaling sequences. Then for every m € N and every unbounded
metric space (X, d) we define a pretangent space QX (FyornF) by the following inductive rule:
Qm‘(a).: ch";i lf m=1 and

X

Q
X B B '—Q °°,(71,...,7m_1)
00, (0 Ty )’ "% o0, Tn
itm>2.

Using Theorem 5, we can obtain the following corollary.

Corollary 2. Let (X,d) be an unbounded metric space and let pe X If the equality
p(S8,(X),)=0 holds, then there is a sequence (7, )yen 0f scaling sequences such that the pre-
tangent space ny (i,... 7, 1S unbounded for every meN.
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ACUMIITOTNYHA ITOBE/ITHKA
METPUYHUX ITPOCTOPIB HA HECKIHYEHHOCTI

3arporroHOBaHO HOBUH CEKBEHIIATbHIH Mi/IXi/T 10 TOCIIIKEHHS CTPYKTYPU METPIYHUX IIPOCTOPIB Y HECKIHYCHHO
Bizaneniii Touri. 3HaiieHo Kpurepii CKIHYeHHOCTI Ta 0OMEKEHOCTI METPHUYHKIX IIPOCTOPIB Ha HECKIHYEHHOCTI.

Knouosi cnosa: acumnmomuuna oOMedCeHICMb Mempuyunoz0 npocmopy, ACUMIMOMUUHA CKIHUEHHICb Mem-
PUUHOZ0 NPOCTROPY, 30IAHCHICTID MEMPUUHUX NPOCTIOPIE, CULLHA NOPUCTIICTL Y TROUL.
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ACUMIITOTNYECKOE ITOBEJJEHNE
METPUYECKUX TIPOCTPAHCTB HA BECKOHEYHOCTU

[Tpetosxken HOBBIN CEKBEHITMAIBHBII MOJAXOM K UCCIEOBAHUIO CTPYKTYPBI METPUYECKUX TIPOCTPAHCTB B Oec-
KOHEYHO yJaJIeHHoii Touke. HaiizleHbl KpuTeprn KOHEYHOCTH U OTPaHNYEHHOCTH METPUYECKUX MPOCTPAHCTB Ha
6ECKOHEYHOCTH.

Kntouesvie cnosa: acumnmomuuecxkas O0ZPAHUYEHHOCTTD MEMPUUECKOZ0 NPOCMPAHCmMeEda, ACUMNMOMu4ecKas Ko-
HEUHOCMb MEMpUUeCcKozo npocmpancmeda, cxooumocmn MEMPUUECKUX NPOCMPANRCINE, CUIbHASL NOPUCITIOCTMb 68 MOUKE.
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