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The aim of this work is the characterization of ternary molybdenum–vana-
dium nitride (Mo–V–N) coatings deposited on silicon and XC100 steel sub-
strates by the reactive radiofrequency dual magnetron sputtering with dif-
ferent contents of the Mo and V targets and nitrogen as reactive gas. The 

metal-target bias voltages are varied from 300 to 900 V. The hardness, sur-
face morphology, microstructure and composition are studied by nanoinden-
tation, scanning electron microscopy, atomic-force microscopy, and x-ray 

diffractometry. The Mo–V–N films manifest pyramidal surface morphology, 
high roughness (of 13.5 nm), but low mechanical properties. Hardness and 

Young’s modulus are found in the ranges of 10–18 GPa and 100–335 GPa, 
respectively. The residual stresses of coatings are compressive and varied be-
tween 0.8 GPa and 2.5 GPa (calculated with the Stoney formula). 

Keywords: coatings, microstructure, residual stresses, roughness, hardness. 

Метою даної роботи є характеризація покриттів із трикомпонентного мо-
лібден-ванадійового нітриду (Mo–V–N), що наносилися на кремнійові та 

сталеві (XC100) поверхні шляхом реактивного радіочастотного магнет-
ронного двокатодного розпорошення цілей із різним вмістом Мо та V із 

використанням азоту в якості реакційноздатного газу. Відхили напруги 

зміщення металевої цілі варіювалися від 300 до 900 В. Твердість, морфо-
логію поверхні, мікроструктуру та склад було досліджено за допомогою 
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метод наноіндентування, сканувальної електронної мікроскопії, атомно-
силової мікроскопії та рентґенівської дифрактометрії. Плівки Mo–V–N 

мають пірамідальну морфологію поверхні, високу шерсткість (13,5 нм), 
але низькі механічні властивості. Твердість і модуль Юнґа лежать у дія-
пазонах 10–18 ГПа та 100–335 ГПа відповідно. Залишкові напруження у 

покриттях (обчислені за формулою Стоні) є стискальними і лежать у ме-
жах між 0,8 і 2,5 ГПа. 

Ключові слова: покриття, мікроструктура, залишкові напруги, шерст-
кість, твердість. 

Целью этой работы является характеризация покрытий, изготовленных 

из трёхкомпонентного молибден-ванадиевого нитрида (Mo–V–N), кото-
рые наносились на кремниевые и стальные (ХС100) подложки с помощью 

реактивного радиочастотного магнетронного двухкатодного распыления 

мишеней с различным содержанием Mo и V с использованием азота в ка-
честве реагирующего газа. Напряжения смещения металлической мише-
ни варьировались от 300 до 900 В. Твёрдость, морфология поверхности, 
микроструктура и состав изучались при помощи наноиндентирования, 
сканирующей электронной микроскопии, атомно-силовой микроскопии и 

рентгеновской дифрактометрии. Плёнки Mo–V–N обладают пирамидаль-
ной морфологией поверхности, высокой шероховатостью (13,5 нм), но 

низкими механическими свойствами. Твёрдость и модуль Юнга находят-
ся в диапазонах 10–18 ГПа и 100–335 ГПа соответственно. Остаточные 

напряжения в покрытиях (рассчитанные по формуле Стони) являются 

сжимающими и изменяются в пределах от 0,8 до 2,5 ГПа. 

Ключевые слова: покрытия, микроструктура, остаточные напряжения, 
шероховатость, твёрдость. 
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1. INTRODUCTION 

Molybdenum nitride is a transition metal nitride and interstitial com-
pound. As many other transition metal nitrides, molybdenum nitride 

has good physical and chemical properties, including high hardness, 

good electrical conductivity, wear and corrosion resistance. Molyb-
denum nitride also has unique electronic, magnetic, superconducting 

and catalytic properties that are similar to noble metals in many as-
pects. Because of these excellent properties, molybdenum nitride has 

found wide application in modern industry such as wear and corrosion 

resistant coatings and catalyst. The existence of the Mo–N phase in 

stainless steel was reported to enhance the hardness of the bulk mate-
rial [1]. The thin surface layer affects the properties of tools, particu-
larly their service life, durability and performance and thus increases 

work productivity and decreases costs of machining [2]. The following 

three basic types of standard layers have been used most frequently in 
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commercial applications: Ti–N, Ti–Al–N, Ti–C–N and their multi-
layer and gradient modifications [3]. 
 The superconducting properties of Mo–N thin film also have been 

investigated [4, 5]. Mo–N films can be prepared with various type pro-
cesses. A sputtered Mo film implanted with nitrogen will produce -
Mo2N, B1-Mo–N, and -Mo–N and lead to changes in the optical prop-
erties [6]. In this article, we filed ternary Mo–V–N coatings on carbon 

steel substrates XC100 and silicon using a magnetron Physical Vapour 

Deposition sputtering system with the Mo and V objectives and nitro-
gen as gas reactive. The nitride molybdenum vanadium (Mo–V–N), a 

ternary nitride by incorporation of V and Mo, the Mo–V–N coatings 

have been reported having good oxidation resistance without composi-
tional and structural changes after both as molybdenum and vanadium 

can form protective oxides which have eliminated the diffusion of oxy-
gen into the substrate. 
 Molybdenum nitride is an attractive candidate for the diffusion bar-
rier owing to its high conductivity and resistance of diffusion to for-
eign atoms. During the past two decades, several works [7–11] have 

been reported regarding molybdenum nitride as diffusion barriers. In 

magnetron sputtering, a magnetic field is applied to avoid the loss of 

electrons in the plasma, by placing a magnet (magnetron) behind the 

target. The magnetic field generated, traps the electrons in the plas-
ma, in a region between the target and the substrate, and helps produc-
ing more ions. This allows us to work at low gas pressures and with rel-
atively low target voltages [12]. If a reactive gas (nitrogen here) is in-
stead introduced into the chamber, it reacts with the sputtered materi-
al to form a compound on the substrate. This technique is called reac-
tive magnetron sputtering [13]. 

2. EXPERIMENTAL PROCEDURE 

Mo–V–N thin films were deposited by radiofrequency (RF) dual mag-
netron sputtering (NORDIKO type 3500–13.56 MHz, 1250 W) in an 

Ar/N2 mixed atmosphere on Si (100) coupons (1010 mm2, 380 m 

thick) and polished XC100 steel discs (d  15 mm, 3 mm thick) with the 

Mo and V targets and argon, nitrogen as reactive gas. The sputtering 

rate obtained for 600 eV the energy of Ar ions 0.92 for Mo and 1.2 for 

V. The following chemical composition (%wt.) (see Table 1). 
 In this study, Mo (99.95 at.%) and V (99.96 at.%) targets were used 

TABLE 1. Chemical composition of XC100 steel. 

XC100 C Mn Si Cr Ni 

% wt. 0.95–1.1 0.25–0.4 0.1–0.35 1.3–1.6 0.3 
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to co-deposit the Mo–V–N films. The Mo and V targets were cleaned 

with an Ar discharge for 8 min at 250 W (500 V) to obtain 230–
250 nm thick Mo (or V) underlayers to improve adhesion, the distance 

between the confocal arranged targets and the substrate was 70 mm. 

Table 2 gives conditions of Mo–V–N coating deposition. In the second 

part of this study, Mo–N and Mo–V–N films were deposited using 

DC/RF dual magnetron sputtering system (AC450). ADC and RF 

(13.56 MHz) generator were used to polarize the Mo and V targets. The 

substrates were fixed on a vertical support which is polarized in DC 

(1000 V) and the potential float .The structure of the coatings was ana-
lysed by XRD. 
 The average grain size of the thin films was determined by Scher-
rer’s method [14]: 
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where 0.9 is the shape factor,  represents the X-ray wavelength, 

which used for the measurement (Co  0.178 nm), the line  is the line 

width (FWHM) in radians,  is the Bragg’s angle. 
 The position of the (111) diffraction peak was used to estimate the 

grain size. The measurement of apparent microhardness (obtained in 1 

mN of lading) and the Young’s modulus of these coatings is carried out 

using a nanoindentation (XP–MTS) (typical pyramidal Berkovitch in-
denture) according to the method developed by [15]. The compressive 
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Here,  is the residual stress in the thin film, Es and s are Young’s 

modulus (195 GPa) and Poisson’s ratio (0.29) of the substrate, ef and es 

TABLE 2. Deposition conditions of the Mo–V–N coating. 

Coating 
Targets bias, [V] Nitrogen  

in the plasma, % 
Deposition time, 

min V Mo 

Mo–V–N 

300 
500 
700 

900 

20 80 

900 
700 
500 
300 
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indicate the film and substrate thicknesses, respectively, R is the cur-
vature radius of the sample after deposition, R0 the curvature radius 

before deposition. 
 The pin-on-disc and oscillating (TRIBO tester) wear tests were car-
ried out to characterize the tribological performance of the coatings. 

The counterparts were 100Cr6 steel balls, 6 mm in diameter. The ap-
plied load was increased progressively from 0 to 5 N within the sliding 

speed was 0.5 m/s. The maximum sliding distance was 600 mm and the 

wear track diameter was 2 mm under a test temperature of 21.5C and 

a relative humidity of 33.2%. Each test lasted about 10 min. During 

the measurement, the experimental parameters such as transverse 

force and acoustic emission are recorded for the subsequent data anal-
ysis. 

3. RESULTS AND DISCUSSION 

According to the spectrum of X-rays diffraction in Fig. 1, we note that 

in addition to the peaks (110), (211) and (200) of the cubic structure -
Fe, there are also peaks (111) of the tetragonal structure Mo2N, which 

is present for all concentrations of nitrogen. For the low nitrogen con-

 

Fig. 1. Spectra of the thin Mo and Mo–N films. 
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centrations ( 10% N2) in the sputtering gas, cubic Mo3N2 is formed 

and transforms to hexagonal structure Mo5N6 (for 30% N2). Increasing 

the N2 concentration to 40% N2 results in a strong hexagonal Mo–N 

peak. Mo2N and Mo–N phases are identified as -Mo2N and -Mo–N 

[17]. 
 However, the intensity of the Mo–N peak reduces drastically [18], 

with increase in N2 concentration from 40% to 50% amorphous phase 

or phase, which tends to become nanocrystalline [19], have determined 

that the nitrogen and molybdenum sites are fully occupied for the 

highly-ordered -Mo–N phase with lattice parameters of a  0.573659 

nm and c  0.561884 nm [19]. The XRD peaks corresponding to the -
Mo–N phase observed in Fig. 1 have lattice constants of a  0.574 nm 

and c  0.5622 nm, which are very close to those reported by [19]. 

Which suggest the formation of a highly ordered -Mo–N phase. Fur-
thermore, the peak intensity decreases as the Mo2N nitrogen concen-
tration increases. It should be not end here that all the peaks of Mo–N 

are not properly aligned with PDF files (i.e., the positions of these 

peaks are translated to smaller 2 angles), so large interplanar distanc-
es. This one can only be explained by a deviation from stoichiometry of 

the layer, the N/Mo ratio being greater than 1, and therefore the inser-
tion probable nitrogen atoms in interstitial sites. 
 The analysis of the XRD patterns (Mo–N, Mo–V–N and V–N) was 

presented in Fig. 2. We note that most of the peaks of phases: Mo2N 

(111), Mo2N (200) and Fe, there are also V–N peaks (111) and V–N 

(200) respectively in 43.96C and 51.83C, and the peaks of low inten-

 

Fig. 2. Spectra of the Mo–N, Mo–V–N, and V–N coatings. 
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sity of V2N (110) at 43.03C. These peaks were also detected for the 

coatings (V–Ti–N) [20]. A vanadium oxide V5O9 (101) and (0–22) of low 

intensity peaks were also detected respectively at 30.58C and 35.50C. 

In contrast, the V–N (111) and V2N (110) orientations gradually 

emerge that is probably caused by the increase in the applied power of 

the V target (bias voltage). This suggests that the Mo–V–N films are a 

solid solution composed of Mo and V, where Mo atoms are substituted 

by V ones. 
 Moreover, as the structural property and the lattice constants of 

Mo–N and V–N are very similar, this is not so easy to determine the re-
al composition of these Mo–V–N phases. V–N is of interest for the ap-
plications requiring hard and corrosion resistant materials [21]. In the 

Mo–V–N coatings, as a function of the Mo and V targets, we observe no 

presence of C in our coatings, and they present up to 4 at.% of oxygen, 

which is negligible for the mechanical applications. The V content in 

increases between 0 and 29 at.% with the Mo target bias. This result 

can be explained by the resulting increase of the V-target sputtering 

rate. However, between 700 and 900 V, we note a weak increase of the 

V content from 28 to 31 at.% for the same target bias, molybdenum 

has a higher sputtering rate than vanadium it was logical that fixing 

the Mo target bias and, varying V, one would to obtain a maximum of V 

in the (V,Mo)N films as 45 at.%. It is noteworthy that V content in-
creases with the V target bias, and the maximum value was about 31 

at.% obtained at 900 V in Fig. 3. 
 We see the variation of the hardness and Young’s modulus of the 

Mo–N and Mo–V–N coatings for both the Mo and V targets that is 

 

Fig. 3. Composition of the different elements as a function of the voltage ap-
plied to the V and Mo targets. 
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shown in Fig. 4. 
 The relaxation of residual stress directly affects the hardness of 

(Mo,V)N coatings. We note the slight decrease in residual stresses 

when the voltage increases for both the Mo and V targets. We see that 

the compressive residual stresses have the same trend as the hardness 

and the Young’s modulus, residual stresses vary between 0.8 and 

 

Fig. 4. Hardness, Young’s modulus of thin Mo–V–N films as a function of V. 

 

Fig. 5. Residual stresses depending on the applied voltage. 
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2.5 GPa the layer (to 900 V) (see Fig. 5). 
 Two phenomena could explain the variation of the residual stress; 

the substitution of the atoms of V by Mo and the energy of the sort 

(species) or the incidental atoms during the process of cathodic spray-
ing (pulverizing), the residual stress increase with the contents of va-
nadium until their the highest value for 28% of V, then they de-
creased. These maximal values correspond to the training (formation) 

of the systems Mo0.4V0.28N0.3 which are more put under stress than Mo–
N because of the setting-up (presence) of V atoms in Mo–N. 
 The morphology and the atomic-force microscope (AFM) is used to 

produce images of our films in order to determine their microstruc-
tures, to measure the roughness of the surface studied until a resolu-
tion near the atomic scale (in our case, the roughness of 73.2 nm pass to 

5 nm for the Mo–N coating and of 13.5 nm to 1 nm for the Mo–V–N 

coating), and to determine the grain size or to characterize the porosity 

of a layer. The choice of the applied force and the distance between the 

tip and the surface of the film was made to bring enough a hard tip in 

order to realize the scan, while avoiding the deformation of the tip or 

the sample surface. Figure 6 shows the AFM images of a surface of 

9 m
2
 films Mo–N and Mo–V–N obtained on substrates of silicon Mo–

N (Fig. 6, b). 
 We observe that all the films exhibit a fibrous and homogeneous 

structure, a low porosity. The modules of the Mo–V–N film sizes 

(Fig. 6, a) are larger than those for the Mo–N film. The Mo–N layer 

appears less dense than Mo–V–N, but Mo–N columns are larger than 

those of Mo–V–N. 
 The introduction of V into the Mo–N film contributes to the reduc-
tion of grain size in the layers of Mo–V–N seems less porous than Mo–
N. The Mo–V–N coating also reveals a dense columnar structure with a 

small grain size and higher RMS roughness. According to the Mathieu 

SMZ23, this structure is compatible with zone II. 

 

Fig. 6. AFM surface morphologies of Mo–V–N (a) and Mo–N deposited on Si 
(b). 
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4. CONCLUSIONS 

Vanadium directly affects the physical-chemical and structural prop-
erties; residual stresses are studied. Of the above results, the following 

ones can be deduced. 
 1. A rough faceted grain structure with pyramid-like forms was ob-
served for the Mo–V–N films. According to the XRD, we can suppose 

that the Mo–V–N coatings are composed of the solids. The Mo–N film 

is well crystallized; it is very dense and presents good mechanical prop-
erties solve by substitution. 
 2. We note the decrease in residual compressive stresses when we in-

creased the voltage V of a target can be explained by replacing Mo at-
oms with V atoms. 
 3. The second point is the increase of residual stresses causes the en-
ergy of the incident species of atoms during the sputtering process. 
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