УДК 546.661 : 546.221.1 / 546.23 / 546.28

В. Ф. Зинченко, В. Э. Чигринов, И. Р. Магунов, И. В. Стоянова, А. О. Стоянов

ВЛИЯНИЕ ВЗАИМОДЕЙСТВИЯ В СИСТЕМАХ ХАЛЬКОШПИНЕЛЬ-ГЕРМАНИЙ НА СВОЙСТВА НАНОСИМЫХ ТОНКОПЛЕНОЧНЫХ ПОКРЫТИЙ

Досліджено структуру та спектральні властивості композитів складу MIn₂X₄ (M– Zn, Eu; X–S, Se)–Ge в різних діапазонах спектру та вплив на них термічного випаровування у вакуумі. Встановлено оптичні та експлуатаційні параметри тонкоплівкових покриттів, отриманих з композитів.

Ключові слова: композит, складний халькогенід, германій, спектральні характеристики, термічне випаровування, тонкоплівкове покриття.

Введение

Разработка материалов с различными функциональными свойствами для полупроводниковой техники, оптоэлектроники, ИК оптики и лазерной техники является одним из важнейших направлений, определяющих научно-технический прогресс и, соответственно, статус страны. В последнее время особое внимание специалистов в области оптического материаловедения начали привлекать композиционные материалы, склонные к химическому взаимодействию в экстремальных условиях (высокие температуры, глубокий вакуум) с последующей регенерацией в форме наноструктурированных композитов. Такие материалы можно условно назвать CVD (от англ. "Chemical Vapor Deposition")-композитами. Особенно значительные успехи в создании и применении такого рода композитов достигнуты на основе систем типа халькогенид (оксид) металла (германий) [1–6]. Это связано, с одной стороны, с исключительно высокой способностью германия формировать наноструктурированные покрытия [7], а с другой — образовывать относительно легко летучие халькогениды типа GeX (X–S, Se, Te) [8, 9].

До сих пор в качестве исходных халькогенидов металлов как компонентов CVD– композитов использовались бинарные соединения цинка типа ZnX [1–3], сурьмы типа Sb₂X₃ [4] и европия типа EuX (где X–S, Se) [6]. Представлял интерес изучение возможности использования в качестве одного из компонентов сложных халькогенидов типа халькошпинелей состава MIn_2X_4 , (M–Zn, Eu) которые ранее достаточно успешно применялись как самостоятельные пленкообразующие материалы [3]. Такая возможность обусловлена способностью к обменным реакциям со стороны как MX, так и In_2X_3 с германием и последующим образованием легколетучих соединений, то есть к собственно CVD–процессу в экстремальных условиях термического испарения в глубоком вакууме.

[©] Зінченко Віктор Федосійович, завідувач відділу хімії функціональних неорганічних матеріалів Фізико-хімічного інституту ім. О.В. Богатського НАН України, доктор хімічних наук, професор, основний напрямок — неорганічна хімія твердого тіла; Чигринов Валентин Ерленович — аспірант цього ж інституту; Магунов Ігор Робертович, Стоянова Ірина Вікторівна, наукові співробітники цього ж інституту, Стоянов Олександр Олегович, кандидат хімічних наук, провідний інженер цього ж інституту.

Экспериментальная часть

В качестве исходных материалов использовали германий высокой чистоты (марки ГЭ производства Запорожского титано-магниевого комбината) и сложные халькогениды, которые получены синтезом из элементных металлов и халькогенов в двухзонных эвакуированных реакторах из кварцевого стекла путем нагрева в специально подобранном температурном режиме. Синтезированные образцы халькогенидов обладают разнообразной окраской: ZnIn₂S₄ — ярко-желтого, Eu-In₂S₄ — желтого с сероватым оттенком, EuIn₂Se₄ — темно-оранжевого цветов.

Компоненты CVD-композитов идентифицированы методом рентгеновского фазового анализа (РФА). Идентификацию соединений проводили методом количественного РФА на автоматизированной установке ДРОН-3М (Си-Ка-излучение).

 $ZnIn_2S_4$ кристаллизуется в гексагональной структуре [10]. Соединение EuIn_2S_4 обладает кристаллической структурой типа EuGa_2S_4 (ромбическая сингония). Нами проведено уточнение параметров кристаллической структуры EuIn_2S_4, (табл. 1). EuIn_2Se_4 имеет аналогичную кристаллическую структуру (естественно, с другими параметрами).

CVD-композиты получали измельчением компонентов (сложных халькогенидов и германия) до тонкодисперсных порошков, смешиванием в стехиометрическом соотношении (1 : 1), прессованием и длительным (4–5 ч) прокаливанием при определенной температуре. Последнюю устанавливали опытным путем: она должна была быть такой, при которой еще не начиналось заметное улетучивание компонентов CVD-композита, о котором судили по появлению темного налета на холодных частях реактора. Термообработка образцов производилась в среде дополнительно очищенного аргона в высокотемпературной трубчатой (горизонтальной) печи RHTC 80-450 производства фирмы Nabertherm (Германия) с автоматическим регулированием температуры с точностью ± 1 °C.

Таблица 1

Атом	Положение	x	У	Ζ			
Eu(1)	16e	0,878(1)	0,625	0,125			
Eu(2)	8a	0,625	0,625	0,125			
Eu(3)	8b	0,125	0,625	0,125			
In(1)	32h	0,750	0,4866(4)	0,121(1)			
In(2)	32h	0,750	0,6973(4)	0,408(1)			
S(1)	32h	0,989(4)	0,599(2)	0,243(3)			
S(2)	32h	0,748(6)	0,579(2)	0,019(3)			
S(3)	32h	0,594(3)	0,750	0,267(8)			
S(4)	32h	0,900(3)	0,500	0,991(9)			
Пространственная группа		<i>Fddd</i> (no. 70)					
Периоды решетки, Å		a = 20,79(1), b = 21,04(1), c = 13,018(4)					
Расчетная плотность, г/см-3		$d_{cal} = 4,76$					
Независимые отражения		318					
Изотропная температурная по- правка, Å ²		B = 0,50(8)					
Параметр текстуры		τ = 0,60(1), ось текстуры [100]					
Фактор расхожд	цения	$R_W = 0,105$					

Кристаллографические данные соединения EuIn₂S₄ (структура типа EuGa₂S₄)

Все образцы CVD-композитов обладали темно-серой окраской, обусловленной Ge, с оттенками цвета второго компонента.

Образцы CVD-композитов и остатков после их термического испарения в вакууме исследовали методами электронной спектроскопии диффузного отражения и ИК-спектроскопии. Электронные спектры диффузного отражения снимали на спектрофотометре Perkin-Elmer "Lambda 9" (США) в УФ (200–400 нм), видимом и ближнем (800–2500 нм) ИК-диапазонах спектра; образцом для сравнения служил тонкодисперсный MgO. Записывали спектральные зависимости функции Кубелки–Мунка:

$$F(R) = \frac{(1-R)^2}{2R} = \frac{k}{s},$$
 (1)

где R — относительное отражение; k, s — коэффициенты поглощения и рассеяния, соответственно.

ИК-спектры пропускания в диапазоне волновых чисел 4000–200 см⁻¹ записывали на спектрометре Frontier Perkin-Elmer (США). Для записи спектра образцы измельчали и прессовали с предварительно прогретым при 180 °C CsI (*oc.ч.*) в массовом соотношении 1 : 20.

Испытание образцов исследуемых систем проводили путем термического испарения в вакууме (резистивный вариант) на установке ВУ-1А из молибденовых испарителей (лодочек) при силе тока нагрева до 80–90А и остаточном давлении газов до 10⁻³ Па со скоростью нанесения покрытия 7–70 нм/мин. Тонкопленочные покрытия из испаряемых материалов наносили на подложки из различных материалов (оптическое стекло К8, кварц, германий) и формы (плоскопараллельные и клинообразные пластины). Проводили определение оптических (показатель преломления) и эксплуатационных (механическая прочность, климатическая стойкость) параметров нанесенных на подложки покрытий. Детально методы их определения приведены в работе [11].

Процесс термического испарения в вакууме и конденсации покрытия на подложке контролировали как силой тока через испаритель (лодочку), так и толщиной покрытия d. Можно считать, что скорость конденсации (т.е. изменение толщины покрытия d за единицу времени τ), d/ τ пропорциональна скорости испарения, которая, в свою очередь, определяется мощностью испарителя $W = I^2 R_{\text{исп.}}$ Поскольку испарители имеют, как правило, стандартные размеры, можно считать, что $R_{\text{исп.}} \approx \text{const.}$ Отсюда вытекает, что d/ $\tau \approx a \cdot I^2$, где a = const. Тогда величина скорости конденсации (испарения), приведенная к одинаковой мощности, то есть $f = d/a \tau I^2$ должна отражать некоторое условное значение летучести CVD-композита.

Результаты и их обсуждение

На электронных спектрах диффузного отражения (ДО) в УФ-диапазоне для всех композитов халькогенид (германий) (рис. 1) проявляются три характерные полосы. Одну из них (наибольшей интенсивности) с максимумом при ~350–370 нм, очевидно, можно отнести к электронным переходам в валентной зоне элементного германия, а две другие (меньшей интенсивности) связаны с переходами внутри валентных зон халькогенидов. В пользу этого говорит существенное увеличение интенсивности первой из полос по мере увеличения содержания германия в композите при переходе от системы EuIn₂Se₄ к EuIn₂S₄ и, далее к ZnIn₂S₄ (массовое содержание Ge составляет в них 9,4; 12,5 и 14,6% (мас.), соответственно). Поскольку содержа-

Рис. 1. Электронные спектры диффузного отражения в УФ диапазоне исходных композитов систем: 1 — ZnIn₂S₄-Ge; 2 — EuIn₂S₄-Ge; 3 — EuIn₂Se₄-Ge

ние халькогенида в композите при этом изменяется незначительно (90,6; 87,5 и 85,4% (мас.)), его изменение в указанном выше ряду композитов должно слабо влиять на интенсивность двух других полос, что и наблюдается в действительности. В то же время, природа халькогенида существенно влияет на соотношение интенсивностей указанных двух полос: в то время как для европийсодержащих композитов первая из них обладает большей интенсивностью, то в случае композита $ZnIn_2S_4$ —Ge наблюдается обратная картина. Дать более детальную интерпретацию наблюдаемых спектров композитов в настоящее время не представляется возможным. Что касается других диапазонов спектра (видимого и ИК), спектральные характеристики ДО для них весьма близки и различаются лишь фоновой интенсивностью и некоторым различием положения длин волн, соответствующих переходам электронов через энергетический квазизазор.

Более однозначное истолкование возможно для ИК-спектров как исходных компонентов и композитов на их основе, так и остатков после их термического испарения, что позволяет дать хотя бы качественное объяснение происходящих CVD-процессов. В ИК-спектрах пропускания EuIn₂Se₄ и композитов на его основе (рис. 2, б) четко проявляется полоса валентных колебаний In-Se с минимумами при 224-230 см⁻¹, причем, в композите, как и следовало ожидать, ее интенсивность заметно (~ в 2 раза) ниже по сравнению с таковой для индивидуального халькогенида. Это, несомненно, является результатом введения добавки германия и, возможно, его взаимодействия с исходным халькогенидом. Дополнительным подтверждением последнего служит определенное изменение характера полосы поглощения, в частности, ее некоторый (на 6 см⁻¹) батохромный сдвиг, а также появление характерных для наноструктурированных систем осцилляций спектральной кривой в области 600-300 см⁻¹. Более пологий вид спектра также косвенно отображает факт наноструктурирования в композите. ИК-спектр остатка после термического испарения в вакууме композита системы EuIn₂Se₄–Ge сохраняет черты сходства с таковыми для исходного композита, однако, с существенным ослаблением интенсивности полосы колебаний связей In-Se. Кроме всего, практически полностью утрачивается характерная для композита осцилляция спектральной кривой. Скорее всего, такие изменения обусловлены разложением EuIn₂Se₄ и последующим испарением ее более летучего компонента, In₂Se₃ по схеме [9]:

$$\operatorname{EuIn}_{2}\operatorname{Se}_{4} + \operatorname{Ge} \xrightarrow{t, \operatorname{vac.}} \operatorname{EuSe} + \operatorname{In}_{2}\operatorname{Se}^{\uparrow} + \operatorname{GeSe}^{\uparrow} + 1/2\operatorname{Se}_{2}^{\uparrow}.$$
(2)

II. Результати наукових досліджень

В случае системы EuIn₂S₄–Ge характер ИК-спектров заметно отличается от описанного выше. Полоса валентных колебаний связей In–S в данном случае сдвинута в область больших волновых чисел ($245 \div 400 \text{ см}^{-1}$) по сравнению с областью валентных колебаний связей In–Se в силу понятных причин (большая жесткость и меньшая приведенная масса осциллятора), а также расщеплена на большее число пиков. Следует отметить, что интенсивность полосы поглощения композита, как и в предыдущем случае значительно (~ в 2 раза) ниже сравнительно с таковой для индивидуального халькогенида (рис. 2, а), причем и в том, и в другом случае наблюдается

Рис. 2. ИК-спектры пропускания систем: EuIn₂S₄–Ge (a); EuIn₂Se₄–Ge(б): 1 — халькогенид; 2 — композит; 3 — остаток после испарения

осцилляция спектральных кривых. ИК-спектр остатка композита после его испарения в вакууме резко отличается от описанных выше, а именно: наряду с "остатками" полосы валентных колебаний связей In–S, появляется новая полоса поглощения в диапазоне 500–350 см⁻¹ со слабо разрешенными пиками. Некоторые из них, в частности, при $\tilde{v} = 362$ и 386 см⁻¹ близки по положению к таковым для GeS₂ [12]. На спектральной кривой заметно усиливается характерная для наноструктурированных систем осцилляция в области 1000–500 см⁻¹. Скорее всего, эти факты являются отображением иного характера термического испарения композита EuIn₂S₄–Ge в вакууме по сравнению с описанной ранее системой. Возможно, это имеет место из-за значительно большей термической прочности GeS₂ по сравнению с GeSe₂ и, наоборот, меньшей прочностью GeS по сравнению с GeSe, значения – ΔH_{298}^{o} которых составляют 155 и 63, 70 и 84 кДж/моль, соответственно [8, 9, 13]. Отсюда, испарение композита EuIn₂S₄–Ge можно представить схемой:

$$\operatorname{Euln}_{2}S_{4} + \operatorname{Ge} \xrightarrow{t, \operatorname{vac.}} \operatorname{EuS} + \operatorname{In}_{2}S \uparrow + \operatorname{GeS}_{2} \uparrow.$$
(3)

Из-за меньшей летучести GeS_2 (по сравнению с In_2S) он частично сохраняется в остатке, чему способствует его связывание с EuS в сложный халькогенид по схеме [14]:

$$\operatorname{EuS} + \operatorname{GeS}_{2} \xrightarrow{t, \operatorname{vac.}} \operatorname{EuGeS}_{3}.$$

$$(4)$$

ИК-спектр композита ZnIn₂S₄–Ge практически идентичен таковому для ZnS– Ge (не представлены в настоящей работе) с той разницей, что интенсивность слабо структурированной полосы поглощения с минимумом при 303 см⁻¹ и первого из них значительно меньше. Следует также отметить наличие на его спектральной кривой характерной осцилляции, что свойственно наноструктурированным системам. Отдаленное сходство с композитом EuIn₂S₄-Ge придает наличие в ИК-спектре композита ZnIn₂S₄-Ge плеча при 342-347 см⁻¹, которому соответствует четкий пик поглощения при 345 см⁻¹ в ИК-спектре европийсодержащего композита. Возможно, столь слабая структурированность ИК-спектра композита ZnIn₂S₄–Ge обусловлена более высоким уровнем кристаллической структуры его халькогенидного компонента (гексагональная сингония) по сравнению с таковой для EuIn₂S₄ (ромбическая сингония). Отсутствие данных об остатке после испарения композита ZnIn₂S₄-Ge не позволяет однозначно судить о механизме CVD-процесса. Некоторую информацию об этом дают оценочные величины относительной летучести указанного и двух других композитов. Из табл. 1 следует, что при сопоставимых значениях силы тока на испарителе и толщины покрытий время, требуемое для нанесения покрытия из композита $ZnIn_2S_4$ -Ge, значительно (в 5-8 раз) меньше по сравнению с другими композитами. Этот факт отражен в параметре летучести, значение которого для композита ZnIn₂S₄--Ge в 6-12 раз выше сравнительно с композитами EuIn₂Se₄–Ge и EuIn₂S₄–Ge, соответственно.

Таблица 2

Система	Режим испарения		Физиче- ская толщина,	Условная лету- честь,	$n \\ (\lambda = 860)$	λ1, ΗΜ	Адге- зия	Механи- ческая прочность,
	I, A	τ, мин.	HM	f · 104	940 нм)			оо. (груп- па)
ZnIn ₂ S ₄ – Ge	80	6	425	110	3,06 / 2,99	720	+	2000 (2)
EuIn ₂ S ₄ – Ge	90	47	338	8,9	3,46 / 3,38	770	+	>20000 (0)
EuIn2Se4– Ge	80	30	347	18,1	3,70/3,59	820	+	9000 (0)

Режимы испарения композитов и оптические и эксплуатационные свойства покрытий на основе систем халькошпинель – германий

Некоторое различие в летучестях двух последних композитов легко объясняется различной термической прочностью и летучестью продуктов CVD-процесса (см. выше). Резкое отличие летучести $ZnIn_2S_4$ от таковой для $EuIn_2S_4$, скорее всего, обусловлено совершенно иным химизмом CVD-процесса первого из них. В данном случае, очевидно, он осуществляется преимущественно за счет разложения $ZnIn_2S_4$ и последующего испарения ZnS и Ge:

$$\operatorname{ZnIn}_{2}S_{4} + \operatorname{Ge} \xrightarrow{t, \operatorname{vac.}} \operatorname{Zn} \uparrow + \operatorname{GeS} \uparrow + \operatorname{In}_{2}S_{3}.$$
(5)

Возможной причиной изменение механизма CVD-процесса, скорее всего, является заметно более высокая термическая прочность In_2S_3 по сравнению с таковой для ZnS (значения - ΔH_{298}^o составляют, соответственно, 142 и 96 кДж/моль в пересчете на одну связь металл–сера) [8,13]. В то же время, в Ец-

In₂S₄ соотношение энергий связей прямо противоположное (142 и 212 кДж/моль связей In-S и Eu-S, соответственно) [8,13,15].

Спектры пропускания тонкопленочных покрытий, полученных термическим испарением CVD композитов, представлены на рис.3. Спектральные характеристики проявляют характерный для интерференционной картины вид с чередующимися минимумами и максимумами в ближнем ИК-диапазоне спектра. Тонкопленочные покрытия практически непрозрачны при $\lambda < 600$ нм.

Рис. 3. Электронные спектры пропускания тонкопленочных покрытий на подложках из кварца: 1 — ZnIn₂S₄-Ge; 2 — Eu-In₂S₄-Ge; 3 — EuIn₂Se₄-Ge

Значения коротковолновой границы (λ_1) области прозрачности, оцененной по точкам перегиба спектральных кривых в области, в которой уже отсутствует интерференционная картина, лежат в диапазоне 700–800 нм, закономерно смещаясь в длинноволновый диапазон (рис. 3, табл. 2) при катионной (Zn→Eu) и анионной (S→Se) замене в халькошпинели на более тяжелый аналог. Однако, влияние замены, особенно катионной, в данном случае не столь значительно, как в случае покрытий, полученных из чистых халькошпинелей [3].

Из данных, представленных в табл. 2 следует, что показатели преломления покрытия (n) возрастают симбатно величине λ_1 , то есть значение n увеличивается в том же ряду халькошпинелей, что качественно соответствует известному правилу Мосса [16]. При этом их значения значительно выше по сравнению с покрытиями из чистых халькошпинелей, что свидетельствует о наличии в покрытия, кроме компонентов шпинели, также материала со значительно более высоким показателем преломления, а именно, нанокристаллического германия, значения n которого составляют 4,6 и более в исследуемом спектральном диапазоне [7]. Что касается эксплуатационных свойств (климатическая стойкость и механическая прочность), то они вполне удовлетворяют предъявляемым к халькогенидным покрытиям требованиям. Особенно высокой механической прочностью отличается покрытие, полученное испарением композита EuIn₂S₄–Ge, которое практически не поддается истиранию при стандартных испытаниях. В природе такого явления еще предстоит разобраться при проведении дальнейших исследований микроструктуры покрытий.

Выводы

Композиты типа сложный халькогенид (халькошпинель) состава MIn_2X_4 (M–Zn, Eu; X–S, Se)–германий являются перспективными материалами для интерференционной оптики ИК диапазона спектра. При катионной (Zn→Eu) и анионной (S→Se) замене на более тяжелый аналог в составе халькогенида из-

меняется химизм CVD-процесса термического испарения материалов в глубоком вакууме, что подтверждается сопоставлением летучестей, а также спектральных характеристик исходных композитов и их остатков. Тонкопленочные покрытия на основе композитов обладают весьма высокими (3,0–3,7) значениями показателя преломления и механической прочности. Установлено качественное соответствие между значениями показателя преломления и коротковолновой границы области прозрачности пленок при изменении состава композита.

Исследованы структура и спектральные свойства композитов состава MIn₂X₄ (M–Zn, Eu; X–S, Se)–Ge в различных диапазонах спектра и влияние на них термического испарения в вакууме. Установлены оптические и эксплуатационные параметры тонкопленочных покрытий, полученных из композитов.

Ключевые слова: композит, сложный халькогенид, германий, спектральные характеристики, термическое испарение, тонкопленочное покрытие.

Structure and spectral properties in various intervals of a spectrum of MIn_2X_4 (M–Zn, Eu; X– S, Se)–Ge composites and effect on them of the thermal evaporation in vacuum were researched. Optical and operational parameters of the thin-film coatings produced from composites have been established.

Keywords: composite, complex chalcogenide, Germanium, spectral characteristics, thermal evaporation, thin-film coating.

- 1. Зінченко В. Ф. Оптичні властивості тонкоплівкових покриттів, одержаних з композитів ZnS–Ge методом CVD / В. Ф. Зінченко, Γ. І. Кочерба, І. Р. Магунов та ін. // Фіз. і хім. твердого тіла. 2011. Т. 12, № 2. С. 433–437.
- 2. Зінченко В. Ф. Вплив взаємодії у системі ZnSe–Ge на властивості композитів та одержаних з них тонкоплівкових покриттів / В. Ф. Зінченко, В. Е. Чигринов, О. В. Мозкова та ін. // Фіз. і хім. твердого тіла. – 2012. – Т. 13, № 3. – С. 785–789.
- Зінченко В. Ф. Розробка і властивості халькогенідних матеріалів для інтерференційної оптики, що функціонує у екстремальних умовах / В. Ф. Зінченко, І. Р. Магунов, В. П. Антонович та ін. // Вісн. Українського матеріалознавчого товариства. – 2012. – № 1(5). – С. 89–98.
- Пат. № 81076 Україна, на корисну модель Матеріал для інтерференційних покриттів / В. Ф. Зінченко, В. Е. Чигринов, О. В. Мозкова, І. Р. Магунов // Заявка № и 2012 12780; заявл. 09.11.2012; опубл. 25.06.2013. Бюл. № 12. – 4 с.
- 5. Зінченко В. Ф. Вплив взаємодії на оптичні властивості композитів систем GeO–GeO₂ та Ge–GeO₂(SnO₂) / В. Ф. Зінченко, В. Е. Чигринов, О. В. Мозкова та ін. // Укр. хім. журн. 2013. Т. 79, № 10. С. 91–95.
- 6. Зінченко В. Ф. Оптичні властивості композитів систем EuX (X–S, Se)–Ge та одержаних з них покриттів / В. Ф. Зінченко, В. Е. Чигринов, І. Р. Магунов, О. В. Мозкова // Укр. хім. журн. 2014. Т. 80, № 1. С. 15–19.
- Zinchenko V. F. Structural and spectral features of Germanium based interference optics for infrared range of spectrum / V. F. Zinchenko, V. P. Sobol', O. V. Sviridova // Phys. Chem. Solid State. – 2012. – T. 13, No. 1. – C. 197–200.
- 8. Самсонов Г. В. Сульфиды / Г. В. Самсонов, С. В. Дроздова. М.: Металлургия, 1972.

II. Результати наукових досліджень

- Герасимов Я. И. Химическая термодинамика в цветной металлургии: Т.VI / Я. И. Герасимов, А. Н. Крестовников, С. И. Горбов. М.: Металлургия, 1974.
- Tomashik V. Ternary Alloys Based on II-VI Semiconductor Compounds / V. Tomashik, P. Feychuk, L. Shcerbak. Chernivtsi, Books XXI, 2010.
- Зінченко В. Ф. Оптичні і експлуатаційні властивості тонкоплівкових покриттів, отриманих методом вакуумного випаровування фторидів РЗМ / В. Ф. Зінченко, Н. П. Єфрюшина, Г. І. Кочерба та ін. // Фіз. і хім. твердого тіла. – 2001. – Т. 2, № 3. – С. 351– 360.
- Юрченко Э. Н. Колебательные спектры неорганических соединений / Э. Н. Юрченко, Г. Н. Кустова, С. С. Бацанов. – М.: Наука, Новосибирск, 1981.
- Ефимов А. И. Свойства неорганических соединений / А. И. Ефимов, Л. П. Белорукова, И. В. Василькова, В. П. Чечев // Справ. – Л.: Химия, 1983.
- Рустамов П. Г. Хальколантанаты редких элементов. (Химия редких элементов) / П. Г. Рустамов, О. М. Алиев, А. В. Эйнуллаев, И. П. Алиев. – М.: Наука, 1989.
- Косолапова Т. Я. Свойства, получение и применение тугоплавких соединений: Справ. изд. – М.: Металлургия, 1986.
- Moss T. S. Relations between the Refractive Index and Energy Gap of Semiconductors // Phys. Stat. Solidi (b).–1985. – Vol. 131. – P. 415–427.