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COMPARATIVE ANALYSIS OF ESTIMATION METHODS
OF THE PHYSIOLOGICAL SIGNALS VARIABILITY

Introduction. In the modern world, more attention is paid to the study of the behavior of
complexly organized medical and biological systems. The fundamental concept of synergetics
is the generalized entropy, which quantitatively characterizes the degree of the system chaot-
icness. Of special interest are studies of changes in the dynamic series chaotic parameters
generated by various biological systems.

The purpose of the article is further development and experimental research of methods
for analyzing the variability of physiological signals under external influences on the body.

Methods. Two alternative approaches of estimating the variability of dynamic seriesare
investigated: based on the calculation of the sample variance relative changes and entropy
estimates (in a sliding window with the specified parameters) in relation to the first window.
The theoretical and experimental dependences between the Shannon entropy and the stan-
dard deviation for a normal distribution of a random variable that generates a dynamic
series are studied. Comparison of these estimates with real and model data is carried out.

Results. To increase the sensitivity of entropy estimates to the variability of the dynamic
series, it is proposed to move from a series of discrete entropy h(l) values at the | -th point,

calculated by the sliding window method, to its phase portrait on the plane h(l), h(l) , where

h(l) is the estimate of the first derivative h(l). For an integral assessment of the chaotic

nature of physiological signals, it is suggested to estimate the area of the convex hull of the
entropy phase portrait and the coordinates of the phase portrait gravity center X, Y. Ex-
perimental studies have confirmed the diagnostic value of these parameters in the assessment
of variability of the electrocardiograms and rhythmograms indices with external influences
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on the body (intravenous therapy, surgery and physical activity).

Conclusions. Deviations of the integral parameters of the entropy phase portrait under
the effect of external influences on the organism were detected, which open new possibilities
in the evaluation of the cardiac activity regulation in preventive and clinical medicine. These
integral parameters require further study to confirm their statistical significance in represen-
tative samples of observations.

Keywords: variability of physiological signals, entropy estimates, diagnostic criteria.
INTRODUCTION

In the modern world more attention is paid to the behavior of complexly
organized medical and biological systems [1]. For this purpose synergetic
methods are used, aimed at studying the general laws of processes in nonlinear
dynamical systems and the research of the relationship between ordered and
chaotic structures [2].

The fundamental concept of synergetics is the generalized entropy, which
guantitatively characterizes the degree of system chaoticness. In cardiology,
entropic indices are actively studied to assess the heart rhythm chaoticness. For
example, in [3-5], the relationship between entropy and traditiona heart rate
parameters was studied. It was found that in healthy people the RR-intervals
entropy correlates reliably with al the main indicators of heart rate variability
(HRV).

Interesting results were obtained by analyzing the relationship between the
traditional HRV parameters and the sample entropy under isometric and
dynamic loads [6]. Studies have shown that in healthy volunteers the traditional
HRV parameters react equally to both types of load, while the sample entropy
significantly changed only under isometric load. This indicates that the
vegetative control of cardiovascular reactions to isometric and dynamic loads is
different. It allows us to change the traditional view on the interaction between
the branches of the autonomic nervous system.

Changes in the chaoticness of the different dynamic series parameters,
which carry additional diagnostic value, for example, in the rhythmogram [7, 8]
or the e ectroencephaogram [9], are of particular interest.

There are different approaches to solve such problems. The simplest way is
to estimate the entropy calculated from successive sections of the dynamic series
(windows) and compare the estimates that are normalized by the first window.
Based on such studies, it was possible to detect gender differences in the time
variation of Shannon entropy of the conditionaly healthy men and women
electrocardiograms (ECG) in response to stressful effects[10].

In the process of research, another curious fact was established, which, in
the author's opinion [10], is worth a specia study. It has been found that the
most stable parameter, reflecting statistically significant changes in the signa
over time, is precisely entropy, and not dispersion.

According to [11], important information about the properties of the system
carries not only by the entropy itself, but also by the nature changes over time. In
[12], a number of interesting results on the entropy method usage were obtained
for a comprehensive assessment of the risk factors dynamics for cardiovascular
diseases.

Since mathematical methods for estimating the variability of dynamic series
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are becoming increasingly popular in the solution of applied problems, it is
necessary to carry out additional studies and determine the conditions under
which the analysis of Shannon and other entropies will be more effective.

The purpose of the article is further development and experimental research
of methods for analyzing the variability of physiological signals under externa
influences on the body.

TWO APPROACHES TO ESTIMATION OF DYNAMIC RANGE VARIABILITY

Let it be required to evaluate experimentally the variability of avalues sequence
A=a,a,..,a,, (D)
representing the redlization of some random variable X with an unknown

distribution law p(X).
This can be done if we calculate the sample variance

o’ = N lll(e\——Ze\)j )

which estimates the square of the values X deviations relative to the estimation
of mathematical expectation M{ X} .

The sample variance ¢* can be calculated as data is accumulated using the

recursion formula, and with a minor modification such an estimate will be
unbiased and consistent [13].

The second way of calculating the variability of the sequence (1) is based on
the use of the statistical analogue of the well-known Shannon entropy expression

H=-2 plog,p;, 3
j=1
where p; is the frequency of entry values a, i=1,..,N into the intervals

A, =[aj‘,aj*], j=L..,n.
For a given n boundary a;,a; of these intervals, including those with
aternating variables a,, are determined by the relations

maxa —ming (]

a =ming + -1, j=1..,n, (4)

a’ =mina +wj, j=1..n. )

The greater the value H , the further the system is from the ordered state.
The maximum value Shannon's entropy reaches when all states of the system are
equally possible. It follows that the entropy (3) takes values on the interval
[0, log, n]. For convenience, instead of (3), the normalized entropy is often used
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> p;log, p;

=12 €[01]. (6)
log, n

norm

It is easy to show [14] that the value (3) is invariant under permutations of
the series elements (1). Therefore, the Shannon entropy (3) itself, as well as
dispersion (2), characterizes only the properties of the random variable X that
generates the sequence (1), and not the variability of the sequence itself.
Therefore, it is possible to estimate the variability of a dynamic series only by
calculating (2) or (3) on individual sections of the processed sequence (1).

This can be done if you scan the observed time series with a sequence of
windows, in each of which calculate the relative increment of entropy

-2 P logp, }
H=—*———00%, | =1 ..,M, @

1

where p; isthe frequency of occurrence of the time series values, observed on

the | -th fragment, the j -th interval A, =[aj’,aj*], j=L4..,n,and
H,= _Z puIOQ Pi: (8
j=1

is an entropy calculated in the first window, provided that H, = 0.

There are other entropy estimates of the dynamic series chaoticness, a
comparative analysis of which is presented in [14]. For example, it is possible to
calculate in each | -th window a modernized permutation entropy PE, which is
based on estimating the frequency of five characteristic patterns appearance

(Fig. 1).
Patterns classes are uniquely determined by thevalues a , i=2,..., N -1 of

the sequence (1) asfollows:

class my, if (& —a_,)>h A (a;—5,,) >h,

class m,,if (a_,—a)>hA (a,,,-a)>h,

class my,if (& —a.,)>h v(a,-a)>hv (a,-a,)>h,

cessm,,if (a_,-a)>h v(a -a,)>hv(a,-3q,)>h

class i, if none of the above relations holds, in which h is a given
threshold of insengitivity to loca changesin the signal.

AN A N —

T T, T3 Ty Tg

Fig. 1. Five classes of modernized permutation entropy patterns
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Then the permutation entropy in the |-th window is calculated by the
formula

-3 bl log Pl )
PE,

in which p(r;) is the frequency of the pattern j appearance in the |-th
window, and

100%, 1 =1 ..M | ©)

PE, =

F)E1 = —Z p(Tle) Iog p(njl) (10)

is a permutation entropy calculated in the first window, provided that PE, #0.
Similarly, one can get an idea of the dynamic series variability if one
eval uates the variances (2) on successive signal windows of length K, :

Ko

1 1
B Ko_lz(ail _?ZQ|

2
0 i j :100%, 1 =1,...,.M ,

2 i—1 (12)
o, = 2
cSl
where a, arethe discrete values observed in the | -th window, and
1 % 18 Y
2 = L, — — A
61 = K, _l;(all K, ;auj (12)

is avariance estimation of the values a, observed in the first window under the

assumption that o2 # 0.

Note that the procedures (7), (9) and (11) can be implemented when the
| +1-th window is shifted by the | +1-th ratio to the K, window width or when
windows are shifted by one point (diding window mode). It is clear that in the
latter case the amount of necessary caculations will be greater, but the graph of
changesin the calculated values will look smoother.

It is known [15] that for fixed distributions of the random variable X
generating the series (1), the entropy is related to the standard deviation (SD) o
by certain dependence. For example, if a quantity X has a continuous normal
distribution, then [16]

+00 +0

1 X?
H =] p(X)log p(X)dX =~ D(X)[logm—?loge}dx =

—o0 —0

_[ p(X)X?dX =logov2n +%Ioge:

—0

loge
26°

- 409(@0)-1]& p(X)dX +
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=logo+/2ne =0.5log, 2rne+log, G . (13)

It follows that for a continuous normal distribution the relationship between
H and o is

H=205+log,c. (14)

For experimental verification of this relationship, moded experiments were
carried out.

MODEL EXPERIMENTS

The experiments were carried out by processing the generated test sequences of
independent normally distributed quantities a, i =1,...,N with zero mean and

c=0.1 for different values of the number of points N. Following the
recommendations of [17], to determine the boundaries (4), (5) of the intervals

A, =[q;,a]], j=1..,n thevaluewastaken n=12.

Model experiments have shown that under N >200 the graphs of the
theoretical and experimental dependences have amost the same form (Fig. 2).

The nonlinear character of the dependences (14) leads us to the important
conclusion. With anormal distribution of the random variable X that generates
the sequence (1), even minor changes in the SD in the region of small values
lead to large changes in the Shannon entropy, whereas a change of the same
percentage in the region of large values practically does not lead to any changes
inH.

It is easy to verify that the boundary of these regions determines the value of
the SD

c,~1443, (15)

satisfying the condition oH / dc =1.

To illustrate, let us consider the results of estimating the chaoticity of two
model signals, which are a sequence of independent normally distributed
guantities with zero mean and different values of the SD at the first and second
halves of the observations (Fig. 3).

a b

Fig. 2. Graphsof the entropy H dependencesonthe SD & under normal distribution:
isthe theoretical dependence (14); is the experimental dependence ( N =400 paints)
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Fig. 3. Model signalswith low (&) and high (b) values of SD

Thefirst signal (Fig. 3, a) consists of two fragments of N =400 points each
with the parameters o, =0.1 and o,, =0.13, respectively, and the second
signal (Fig. 3, b) consists of two fragments of points N =400 with the
parameters ¢, =2.70 and o,, =3.51, respectively. Thus, on the second halves
of both signals, the same increase in SD is observed in comparison with the first
half, equa to 30 %. But in this case the values of the SD on the first signal
belong to the region ¢ <o,, and on the second signal — to the region ¢ > g,
where o, isthethreshold value determined by the relation (15).

Table 1 presents the results of calculating the Shannon entropy on fragments
of these series.

Table 1. Results of modeling

: . Entropy, Entropy
Test signa SD, un. | SD increase un. increase
. . 0.1
Timeseries1 30% 1.90 20%
0.13 2.29
2.7 4.93
Time series 2 30 % 2%
351 ’ 5.05 ’

Thus, with the same increment in the SD (30 %), the increment of the
Shannon entropy on the second signal was lower than the first signal.
Let's make a comparative analysis of the estimating results of the dynamic
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series variability using siding windows. The model signal was a sequence of
M =10 fragments, each consisting of K,=50 dots and generated by an
autoregressive model of the form

a, =ha_, +(@-1)E ,,, k=1...,Ky, I =1,..,M, (16)

where A, (0<2A, <1) is the parameter that determines the variability of the
signal on the | -th fragment, a, =0.1 is the initid value, £<N(0,6%) is a
sequence of independent normally distributed random numbers with zero
mathematical expectation and variance ¢° = 3.

Thus, the entire signal contained N =500 points. The parameter values on
the A,,A,,...,A,, fragments of one of the test signals are presented in Table 2,
and the graph of thissignal isshown in Fig. 4.

Table 2. Thevalues of the parameters A, on thetest signal fragments

1 2 3 4 5 6 7 8 9 10

7\,| 0.93 0.86 0.75 0.1 0.2 0.3 0.6 0.7 0.8 0.9

The results of estimating the variability of the test signal using procedures
(7) and (11) with sliding windows are shown in Fig. 5.

Fig. 4. Thetest signal of the 10 fragments with different parameters A,
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SD, %
/

H, %

Region ¢ <1.443 Region ¢ >1.443 Region c <1.443
i

Fig. 5. Dynamics of changes in the SD and Shannon entropy H during the processing of
the test signal

It is easy to see that both parameters had similar trends — an increase in SD
was accompanied by an increase in entropy, and vice versa. But in the region
o >0,, the sengitivity of the entropy to the variability of the signal is almost 2

times less than the sensitivity of the SD, which agrees with the results of the
study of the theoretical relationship between these values.

PHASE PORTRAIT OF SLIDING ENTROPY

To increase the sendtivity of entropy assessment to the variability of the
dynamic series, it is proposed to move from a series of discrete values h(l)
calculated by the dliding window method to a phase portrait of entropy on the
plane h(l), h(l), where h(l) is the estimation of the first derivative h(l) at the
| -th point.

Despite the fact that the procedure of numerical differentiation of noisy data
refers to incorrectly posed mathematical problems, the application of special
filtration and regularization procedures [18] allowed us to obtain acceptable

estimates of the derivative h(l). As aresult, it is possible to construct graphic

images of the entropy phase portrait as points on the plane h(l), h(l).

For illustration, Fig. 6 shows examples of phase portraits of Shannon and
permutation entropies, which are constructed from the same dynamic series of
parameter B, values (symmetry of the T -wave in the process of recording the
electrocardiogram), which are used as an additional diagnostic sign of coronary
heart disease in the method of phasegraphy [19].
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h(l), % h(l), %

h(l),%/c h(l),%/c
a) 0)

Fig. 6. Phase portraits of the Shannon (a) and permutation (b) entropy of the parameter
B, onthereal ECG

h(1),%

h(1),%/c

Fig. 7. The phase portrait of the dliding entropy (left) and its convex hull (right)

For an integral estimate of the physiological signals chaoticity, we construct
in the normalized coordinates h(l), h(l) the convex hull of the entropy phase

portrait and determine the area S of the resulting polygon, as well as the
coordinates X , Y of the phase portrait center of gravity (Fig. 7).

PRACTICAL RESULTS

A serious manifestation of cardiovascular disease is sudden cardiac death, when
a patient dies almost instantaneoudly (from a few seconds to an hour) after the
onset of a heart attack. One of the predictors of sudden cardiac death, which has
recently gained wide popularity in clinicd studies, is based on an analysis of the
so-called electrical heart aternation [20], which refers to the regular alternation
of the e ectrocardiogram elements characteritics.

The complexity of constructing computer algorithms for automatic detection
of the aternation effect is due to the fact that real signals with the presence and
absence of an dectrical dternation are externaly virtualy indistinguishable
(Fig. 8) [19].
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- fa

Fig. 8. ECG with arandom distortion (top) and T-wave aternation (bottom)

At the same time, the proposed method for estimating the randomness of the
time sequence on the basis of caculating the area of the convex hull of the
entropy phase portrait makes it possible to reliably solve this problem. To test
the effectiveness of this method, test signals with different values of the T-wave
amplitudes dternation levels were generated against a background of 15 %
random distortions. Test signals were generated on the basis of the generative
model of artificial realistic forms ECG generation [21].

Despite the fact that visually these signadls were practicaly indis
tinguishable, the area of the convex hull of the permutation entropy phase
portrait (EPP) decreased monotonically as the alternation of the T-wave
increased, i.e. increasing proportion of the regular component of amplitude
variation (Table 3). At the aternation level of 60 mcV, the area decreased by
more than 30 % (from 0.89 units to 0.62 units) compared to the signal without
aternation.

The proposed approach has also found practical application in assessing
subtle changes in the signal during the intravenous therapy. The research was
conducted in 2016 in the State Scientific Institution "Scientific and Practical
Center for Preventive and Clinical Medicing" State Administration (SSI "SPC
PCM" SA). The urgency of this task is due to the fact that many medications,
including those used in cardiological practice, often have side effects (from 30 to
70 %) [22].

Table 4 shows the results of ECG treatment during the intravenous drip
infusion of Tivomax, Armadin and T-triomax to a patient R. at the age of 72
years old with pronounced bigeminy, which manifested itself in the regular
aternation of normal and extrasystolic heart cycles. ECG was recorded every 5
minutes during the introduction of medications. Each ECG was recorded for 150
seconds with atotal duration of 2 hours.

As can be seen from the table, by the time of 12:03 (35 minutes after the
start of the medication administration) the heart rate returned to normal, there
was a sharp decrease (by 92 %) of the SDNN parameter, the traditional index of
heart rate variability. At this point in time, the area S,; of the permutation

entropy phase portrait of the RR-intervals has decreased by 44 % from the initial
value.

It should be noted that after the normalization of the rhythm during the
further adminigration of medications, the parameter SDNN remained

practically unchanged, while the area S,; continued to decrease smoothly
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Table 3. Areas of EPP convex hullswith a T-wave alter nation

T-wave amplitude alternation level, mcV
0 15 30 60
N 9 5 0 S P 5 .
] YA [ I [ ..
0.21 / 0.2 / 0.2° / 0.21 < O
- ApEN . N A
S=0.89 un. S=0.76 un. S=0.64 un. S=0.62 un.

(Fig. 9). Since, as dready noted, the Shannon entropy (unlike the
SD)characterizes not the magnitude of the spread, but the variety of the
processed sequence, such agradual changein the parameter S, after restoration

of the heart rhythm, that carries information on subtle changes in the heart
rhythm, may have additional diagnostic value, which requires further study.

It is aso clear that monitoring the ECG during the drip administration of
drugs alows you to control the absence of undesirable changes in parameters
caused by individual drug intolerance.

To illustrate such possibilities, Table 5 shows the dynamics of changes in
the ECG parameters of patient |. 76 years old in the process of drip
administration of Panangin and Mexicor medications. During the entire period of
administration, the median ECG cycle in the time domain and in the phase plane
remained practically unchanged, and the values of the T -wave symmetry
parameter were within the physiological norm: B, =0.653+0.014 units. Stable

was the area of the EPP convex hull parameter B;: S;; =0.743+0.016 units,

which gave the reason for the doctors to continue treatment without changing the
dosage of the medications.

\| .

| Rhythm normalization |

%

Fig. 9. Dynamics of changes in the integral heart rate
parameters in the process of drip administration
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Table 4. Dynamics of ECG parametersduring patient R. dropper

Recording . SDNN,
fime ECG fragment RR-intervals EPP Skr, UN. ms
11:35 ) 0995 | 515
%

11:47 ) l\ W} 083 | 510
i /

N

12:03 R : // 0751 | 27
e
o ~
, N

12:12 ) < )| |oes2| 30
0. //

12:32 AN ’ /) 0644 | 22
005 N1

12:37 MR 0619 | 33

>
=i Q. e = e L]

. =

12:47 S el 1] |oseL| 27
021 /
= N

13:02 ) / 0585 | 41

er A L= L= I .
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Table 5. ECG parametersdynamicsfor drip administration of potassium medications

Ti | h . The EPP convex hull of
me Averagecycle ECG phase portrait the By
05 25
s 04 ,
0.4 £ T g; |
02 \}_ 0,1 0.
: . \
15 0 ---V-c:\késl HPZ ----- 04 | 1 047 -
5 -0,3 . 021
04 0.4 \ /
o D.Iz IJ.I4 EI.IS U.IB ,0‘64 ,0‘62 u' ululz ? N—TJ‘DS 017 039 061 08 108
= 0.65un -
Pr Sy = 0.764 un.
e =
06 0,44 .
0,34 -
0.4 7 - 02 / \
02 FAN 0,14 0.7 \
P E
25 0 ‘—'V’o’\’}\i”é ’”%”" - -U.? | : 047 &
min 02 % -0,2 4 % = & /
-0,3 4 + e 0.21
0.4 0,4 ] ./
0 o 8'471 U;le 08 004 002 0 002 0,04 S oy 0w 1o 0m T
Pr = DAL U A = 029mV Sy = 0.754un,
05 125
B 0.5
I 1 0,4 0 ]
03 I 03 ' L1
02 1 /\ 02 07 (
P / o , ) \
49 [ T N o (’K ,,,,, \{_ n: 047 \ \
min e 0.2 e AT 021 i
02 ~ 03 o ’
03 i 04 008 \"//
0 U‘IZ U|‘4 U.‘E U‘IB _IJIEIIE |]I [|I|]‘E. ’ 005 017 039 061 083 1.05
B, =0.64un. A =028mV Sr = 0.744 un.

Interesting results were obtained in the study of subtle ECG changes by
estimating the area of the convex hull of the permutation entropy phase portrait
in patients whith coronary heart disease that underwent coronary artery bypass
surgery (CABG).

Since such an operation is most often performed in the open heart with the
use of an artificia circulation device, the ECG was recorded before and after
surgery (Table 6).

On the first day after the operation, the EPP [, parameter decreased by

5 %, and on the 7-th day after the operation its value reached §;; =0.595, which

is 24 % lower than before surgery. The patient successfully passed the
rehabilitation period and was discharged aweek after the operation.

Of particular interest is the study of subtle ECG changes directly in the
process of coronary stenting, which is more sparing surgical treatment for the
patient, which, unlike CABG, does not require cardiac arrest. The results of such
a study, obtained with the stenting of the anterior interventricular branch of the
right coronary artery to patient |. 50 years old with the diagnosis of
postinfarction cardiosclerosis, are presented in Table 7.
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Table 6. Dynamics of integral ECG parameters of a 55 yearsold patient before and after
CABG

Before CABG 1day 6 day

1.25 1.25 125

0.99 0.9 0.99
0.7 0.7 0.7
O
° »
0.47 0.47 0.47
0.21 0.21 0.21 \

N N Y

-0.05 -0.05 -0.05
005 017 03% 061 083 105 005 0717 039 081 083 105 005 017 03% 061 083 105

Sir = 0.783 units Syt = 0.751 units Syr = 0.595 units

It can be seen from the table that the area of the Shannon entropy phase
portrait of the S, parameter increases during the whole procedure by 27 %, and

on the next day after the operation by 33 %. The symmetry of the T -wave also
increases during the entire operation, reaching 42 % when the blood flow of the
anterior interventricular branch of the right coronary artery is restored. On the
first day after stenting, the value of the symmetry index decreased to a
physiological norm of B, =0.67 units.

Similar results were observed when examining ECG changes during the
installation of several stents (in the circumflex branch and in the anterior
interventricular branch of the coronary artery) to a 74 years old patient
diagnosed with stenosing coronary artery atherosclerosis (Table 8).

In this case, during the operation, the symmetry index of the T -wave was
practically unchanged and was within the limits of the physiological norm:
B; =0,64+0,09 units. At the same time, the area of the phase portrait of the

permutation entropy increased throughout the procedure, reaching 45 % by the
end of the operation, and the control measurement for the following day showed
adecreasein 3, EPP by 35 %.

We aso note that during the operation a gradual decrease in the integral
parameter Y, (the center of gravity of the EPP aong the y-axis) by the end of

the operation reached 20 % of the initial value. This indicates that in this patient
decreased average level entropy in the course of operations, which most likely
indicated a lower level of adaptive capacity of the organism than a younger
patient.

The detected fact made it possible to put forward the hypothesis that
important additional diagnostic information in assessing the reserve capabilities
of the cardiovascular system can provide an analysis of the ECG phase portrait
during exercise. We present the first results aimed at studying such possibilities.
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Table 7. Dynamics of changesin EPP parameter during stenting

Phase The convex hull of a B, EPP Integral parameters
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Table 8. Dynamics of changesin EPP parametersduring stenting

Th hull of
# Stage e convex hull of a Integral parameters
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1.2
0. — S =0.597un;;
Introduction 07 . Xgr =0.56un,;
1 | of theintrodu- | » .
cer : Yir =0.632un;
o N f; = 0.644 un.
VD‘HVED 05 017 0339 061 08 105
2
0 / Sy =0.755un;
, | Reintroduction v / " ' Xyr = 0568 un.
of introducer | ow \ J Yir = 0.608 un.;
o2 B =0.68 un.
——1
VD."fD 05 017 039 061 08 105
2
Painin the ’ . Sy =08Lun;
sternum, the o7 Xgr =0.511 un;;
3 | introduction of / ¢ )
aniso-mic " [ Yor = 0597 un;
spray 021 ] B =0.526 un.
VD‘HE:D‘DS 017 033 061 083 105
=
’ N Sy =0529un;;
0.7
X, =0.527 un;;
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Table 9 shows the results obtained when testing a conditionally healthy 55
years old volunteer on a treadmill. During testing, the speed of the tape reached
2.7 kmv/h, and the angle of inclination gradually increased to 10 %, which in the
second stage ensured the metabolic equivalent MET = 4.6. After that, the tested
person rested for 10 minutes.

In the process of increasing the load, the SDNN parameter decreased by
86 %, which agrees with the known data on the increase in the sympathetic part

ISSN 2519-2205 (Online), ISSN 0454-9910 (Print). Kud. i Bbra. Texs. 2017. Ne 3 (189) 21



K.B. Orikhovska, L.S. Fainzilberg

of the autonomic nervous system under load. Simultaneously with the decrease
in heart rate variability, the integral parameter S., characterizing the area of the

convex hull of the permutation entropy phase portrait increased by 66 %. Recall
that, unlike SDNN, this parameter characterizes not the degree of dispersion,
but the variety of RR-intervals.

It is clear that load tests using treadmill and veloergometer can be used only
in medica conditions. Such tools are of little use for testing in the field, in
sports, in the workplace, etc. This requires not only portable ECG measurement
tools, but also simple methods that allow to obtain operational test results in a
convenient and understandable form.

In this regard, it is of interest to evaluate the possihilities of the proposed
approach when performing simplified methods for assessing the adaptive
capacity of a person under stress, in particular, the famous Martine-K ushel evsky
test. To perform such studies, it is sufficient to estimate the EPP parameters in
three states: before the stress, after performing 20 deep sit-upsin 30 seconds and
during restitution period after 3 min rest.

During the studies, ECG treatment was performed on 30 healthy volunteers
at the age of 20,6 +1 year. For illustration, Table 10 shows the results obtained
with the testing of volunteer M. 20 years old.

As follows from the data given at the height of the load, the SDNN
parameter (SD of the RR-intervals) decreased by 18 %, while the S, area

increased by 12 %. There were aso characteristic changes in the integral
parameters X, and Yg,: the EPP center of gravity shifted to the left by 24 % of
theinitial value and rose by 34 %.
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Table 9. Dynamics of changes in integral parameters for a
treadmill test
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Table 10. Dynamics of EPP RR-intervals of a healthy volunteer M.

Before stress Stress Restitution

1.25

1.25 125

D‘ 99 D qg D [+]s]

0.7 \ \

AR | TR | )

ﬂ ) 0.47 N
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005 077 039 061 083 105 005 017 039 061 083 105 "00s 0717 039 061 08 105

S =0.65un; S =0.729un;; Sy =0.662un,;
Xpe = 0497 un; X =0.408un;; X =0.38Un;
Y =0501un;; Y., =0.695un; Y =0.671un;
SDNN =69 ms DNN =54ms DNN =95ms

A similar reaction to the load was demonstrated by 12 other volunteers. This
result shows once again that the SDNN and S, parameters from different

perspectives characterize the variability of the heart rhythm: the first parameter
characterizes only the magnitude of the RR-intervals spread, and the second
parameter characterizes the variety of their values.

CONCLUSIONS

The article considers various approaches to the assessment of heart rate
variability and other parameters of a single-channel ECG under the effect of
external influences on the body (intravenous therapy, surgery and physica
activity). A comparative analysis of two approaches to the variability estimation
is carried out: based on the dispersion andysis and the Shannon entropy
calculated from successive sections of the same discrete signal.

To increase the Shannon entropy sensitivity to an estimation of a variety of
an investigated parameter in the course of its observation, it is proposed to
construct an entropy phase portrait calculated in a dliding window and to
estimate the area of its convex hull and the coordinates of the gravity center in
the phase plane.

Characteristic changes in these integral parameters are established when the
effect of electrical alternation of the heart is detected, as well as during physical
exertion (treadmill and Martine-Kushelevsky test), with drip administration of
medications and in operative treatment of cardiovascular pathologies (coronary
artery bypass surgery and stenting).

It can be assumed that the detected facts of changes in the values of the
proposed integral indicators of the entropy phase portrait, including the S

parameter, indicate the search for the most economica way of regulating cardiac
activity. Of course, such a hypothesis requires further study and evaluation of
the statistical reliability of the observed differences in representative samples of

24 ISSN 2519-2205 (Online), ISSN 0454-9910 (Print). Ku6. u Bbra. Texi. 2017, Ne 3 (189)



Comparative Analysis of Estimation Methods of the Physiological Signals Variability

observations, which can lay the basis for new diagnostic criteria in preventive
and clinical cardiology.
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CPABHMTEJIBHBI AHAJIN3 METOOB OITEHKI
NU3MEHYNBOCTHU ®U3NOJIOT'NMYECKUX CUT'HAJIOB

Bseoenue. B coBpeMeHHOM MHpe Bce Ooibllice BHUMAHUE YICISIETCS U3yIEHHIO MOBEICHNUS
CII0’)KHOOPIaHU30BAHHBIX CHCTEM, K KOTOPbIM B MEPBYIO OYEpEAb OTHOCATCA MEAUKO-
Ouonornueckue cucteMbl. @yHIaMEeHTaNbHOE MOHSATHE CHHEPTEeTHKU — 000O0IIEHHAs SHTPO-
1S, KOTOpas KOJIMYECTBEHHO XapaKTepU3yeT CTENeHb XAOTHYHOCTH cHcTeMbl. OcoOblit
HMHTEpPEC MPEACTABISIOT UCCIEAOBAHUS U3MEHEHMM IOKa3aTelleldl XaOTUYHOCTH JUHAMH4eC-
KUX PSJIOB, IOPOXKIAEMBIX PA3IMYHBIMH OMOJIOTHYECKIMU CUCTEMaMH.

L]env cmamvu — ganpHENIIee pa3sBUTHE M IKCIEPUMEHTAIBHOE HCCIEI0BAaHUE MaTe-
MaTHYECKUX METOJIOB OLICHKH H3MEHYUBOCTU (U3HOJIOTMYECKUX CHTHAJIOB IPH BHEIIHUX
BO3JICHCTBUAX HA OPTaHU3M.

Memoowi. ViccnenoBaHo JBa albTEPHATUBHBIX MOAX0JAa OLCHKH W3MEHYUBOCTH JHHA-
MHUYECKUX PAIOB: Ha OCHOBE BBHIYMCICHUSI OTHOCHTEIHHBIX H3MEHEHHH BEIOOPOYHON JHCIIep-
CHHU ¥ SHTPONHUKHBIX OLECHOK (B CKOJB3SIIEM OKHE C 3aJaHHBIMH ITapaMeTpaMH) MO OTHOLIe-
HHIO K TIepBOMY (OIIOpHOMY) OKHY. M3ydeHa TeopeTnueckasl U SKCIepUMEHTaIbHAS 3aBUCH-
MOCTH MEKAY UIEHHOHOBCKOH JSHTPONHUEH M CpEeJIHEKBAaJPaTHUECKUM OTKJIOHEHHUEM IpU
HOPMAaJBbHOM PAaCHpPEJEIICHUN CIydallHOW BEIWYUHBI, MOPOXKIAIOMEH TUHAMUYECKUM pAL.
[IpoBeneHO cpaBHEHHUs YKa3aHHBIX OLIEHOK Ha PEAJIbHBIX U MOJIEJIbHBIX JaHHBIX.

Pezynomamei. [{ns1 TIOBBIIEHNS YyBCTBUTEIBHOCTH YHTPOIMUHBIX OLEHOK K M3MEH-
YMBOCTH JMHAMHUYECKOTO PsAla Mpeularaercs NepedTH OoT psiia AUCKPETHBIX 3Ha4EHUH JHT-

pormn h(l) B | -if Touke, BBIUHCICHHOH METOIOM CKOMIB3AIIEro OKHA, K ee (asoBOMY TOpT-

pery Ha mrockoctu h(l),h(l), rme h(l) — onenka mepsoii mpoussoanoit h(l) . s unrerpa-
JIGHOW OLICHKH XaOTHYHOCTH (HM3HOJOTHIECKUX CHUTHAJIOB MPEIIOKEHO OIEHUTHh ILIOMIAIb
BBIIIYKJIOH 000s10uKH (ha30BOr0 MOPTPETa SHTPOIUU U KOOPAUHATHI LEHTpa TsxecTH X ,Y
¢a3zoBoro moprpera. DKCIIEPHUMEHTAIBHBIC HUCCIICIOBAHUS IIOATBEPANIN JAAATHOCTUICCKYIO
IIEHHOCTh YKa3aHHBIX [TOKa3aTeNel Mpu OlleHKe H3MEHYUBOCTH TapaMeTPOB AIICKTPOKAPANO-
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IpaMM M PUTMOTPaMM TP BHEIIHNX BO3JICHCTBUSIX HAa OpraHu3M (BBeJCHHE JIEKapCTBEHHBIX
IpernapaToB, ONepaTHBHOE BMEIIATEILCTBO H (PM3NUECKas HArPY3Ka).

Bui6oow. O6HapyKeHHbIE OTKIOHEHHSI HHTETPalbHBIX MOKa3aTeneil hasoBoro moprpera
SHTPONUH 1O IeHCTBUEM BHEIIHHUX BO3IECHCTBUI Ha OPraHU3M OTKPHIBAIOT HOBBIE BO3MOXK-
HOCTH B OLICHKE PETYIAINHN CepACTHON NEATENFHOCTH B IPO(DHIAKTHICCKOH U KIIMHUIECKOH
MeIuluHe M TpeOYIOT HalbHEHINero u3ydeHus A HOATBEPXKACHHUA HX CTaTHCTHYECKON
3HAYMMOCTH Ha PeIPe3eHTATUBHEIX BRIOOPKAX HAOTIOCHHI.

Knwouegvie cnoea. usmenuusocms ¢u3uw102uuecxux CUcHal08, 3Hmp01’luIZHbl€ OY€eHKU, ouae-
Hocmu4eckue kpumepuu.

K.b. Opixoécbka, MOJIOAII. HAyK. CIiBPOO., aCIipaHT

BifIJI. BiJUI. IHTEJIEKTYyaJIbHUX aBTOMAaTHYHHX CUCTEM

e-mail: kseniaor@gmail.com

JI.C. @auinzinbbepe, A-p T€XH. HAYK, AOLEHT, TOJIOB. HAYK.

CHiBpOO. BiJlA. IHTETEKTYyaIbHIX aBTOMATHYHUAX CHCTEM

e-mail: fainzilberg@gmail.com

MiXHApOIHHUI HAYKOBO-y40OBHIA IIEHTp iHGOPMALIIHHIX TEXHOJIOTIH

ta cucreM HAH Vkpainu Ta MOH Vkpainu, np. Akaaemika I'imynikosa, 40,
M. Kuis, 03680, Ykpaina

TIOPIBHSJIBHUIT AHAJII3 METO/IB OIIIHIOBAHH S
MIHJIMBOCTI ®IBIOJIOTITYHUX CUT'HAJIIB

Po3risiHyTO pi3Hi MiAXOAW 1O OLIHKM MIHJIMBOCTI CEpPLIEBOrO PUTMY Ta iHIIMX IOKa3HHKIB
onno kaHanbHO! EKI' mij mi€ro 30BHIIIHIX BIUTHMBIB Ha OpraHi3M. 3alpolOHOBAHO HOBHIA
MiAXIJ A0 OIIHIOBaHHS MIHIUBOCTI (Di310JIOTIYHUX CHTHAJIB HA OCHOBI BM3HAYEHHS IUIOIII
onykJoi 000J0HKH (ha30BOro moprpera KoB3HOI eHTpormii. HaBeneHo pesynpTaT 3acTocy-
BaHHJ 3aIPOIIOHOBAHOTO ITiIX0y Ha MOJAEIBHUX Ta PEAbHUX JaHUX, 30KpeMa JJIsl BUSBIICH-
Hi eeKTy eIeKTPUYHOI ajbTepHauii cepist, (pi3MYHOMY HaBaHTaXeHHI (Tpeamina i mpoba
Maprina-Ky1reneBcbKkoro), mpu KpalIMHHOMY BBEIEHHI JIIKAPCHKUX MPENapaTiB i IpH ole-
paTHBHOMY JKyBaHHI CEpIEBO-CYAMHHHUX IaTOJNOTiH (QOpPTOKOpDOHApHE LIYHTYBAaHHSI Ta
CTEHTYBaHHS).

Knwuosi cnosa. minausicmov (Qizionociunux cueHanie, enmponiuni OyiHKu, Oia2HOCMUYHI
Kpumepii.
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