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NEURAL DISTRIBUTED AUTOASSOCIATIVE MEMORIES: A SURVEY  
  

Introduction. Neural network models of autoassociative, distributed memory allow storage 
and retrieval of many items (vectors) where the number of stored items can exceed the vector 
dimension (the number of neurons in the network). This opens the possibility of a sublinear 
time search (in the number of stored items) for approximate nearest neighbors among vectors 
of high dimension. 

The purpose of this paper is to review models of autoassociative, distributed memory 
that can be naturally implemented by neural networks (mainly with local learning rules and 
iterative dynamics based on information locally available to neurons). 

Scope. The survey is focused mainly on the networks of Hopfield, Willshaw and Potts, 
that have connections between pairs of neurons and operate on sparse binary vectors. We 
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discuss not only autoassociative memory, but also the generalization properties of these 
networks. We also consider neural networks with higher-order connections and networks 
with a bipartite graph structure for non-binary data with linear constraints. 

Conclusions. In conclusion we discuss the relations to similarity search, advantages 
and drawbacks of these techniques, and topics for further research. An interesting and still 
not completely resolved question is whether neural autoassociative memories can search for 
approximate nearest neighbors faster than other index structures for similarity search, in 
particular for the case of very high dimensional vectors. 

Keywords: distributed associative memory, sparse binary vector, Hopfield network, Willshaw 
memory, Potts model, nearest neighbor, similarity search.  

INTRODUCTION 

In this paper, we review some artificial neural network variants of distributed 
autoassociative memories (denoted by Neural Associative Memory, NAM) [1–
159]. 

Varieties of associative memory [93] (or content addressable memory) can 
be considered as index structures performing some types of similarity search. In 
autoassociative memory, the output is the word of memory, most similar to the 
key at the input. We restrict our initial attention to systems where the key and 
memory words are binary vectors. Therefore, autoassociative memory answers 
nearest neighbor queries for binary vectors. 

In distributed memory, different vectors (items to be stored) are stored in 
shared memory cells. That is, each item to be stored consists of a pattern of 
activation across (potentially) all the memory cells of the system and each 
memory cell of the system contributes to the storage and recall of many 
(potentially all) stored items. Some of types of distributed memory have attracti-
ve properties of parallelism, resistance to noise and malfunctions, etc. However, 
exactly correct answers to the nearest neighbor queries from such memories are 
not guaranteed, especially when too many vectors are stored in the memory. 
Neurobiologically plausible variants of distributed memory can be represented 
as artificial neural networks. These typically perform one-shot memorization of 
vectors by a local learning rule modifying connection weights and retrieve a 
memory vector in response to a query vector by an iterative procedure of activity 
propagation between neurons via their connections.  

In the first Section, we briefly introduce Hebb's theory of brain functioning 
based on cell assemblies because it has influenced many models of NAM. Then 
we introduce a generic scheme of NAMs and their characteristics (discussed in 
more details in the other sections). The following three Sections discuss the 
widespread matrix-type NAMs (where each pair of neurons is connected by two 
symmetric connections) of Hopfield, Willshaw, and Potts that work best with 
sparse binary vectors. The next Section is devoted to the function of 
generalization, which differs from the function of autoassociative memory and 
emerges in some NAMs. The following Section discusses NAMs with higher-
order connections (more than two neurons have a connection) and NAMs 
without connections. Then some recent NAMs with a bipartite graph structure 
are considered. The last Section provides discussion and concludes the paper. 
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CELL ASSEMBLIES AND GENERIC NAM  

Hebb's paradigm of cell assemblies. According to Hebb [65], nerve cells of the 
brain are densely interconnected by excitatory connections, forming a neural 
network. Each neuron determines its membrane potential as the sum of other 
active neurons' outputs weighted by connection weights. A neuron becomes 
active if this potential (the input sum) exceeds the threshold value. During 
network functioning, connection weights between simultaneously active neurons 
(encoding various items) are increased (the Hebbian learning rule). This results 
in organization of neurons into cell assemblies — groups of nerve cells most 
often active together and consequently mutually excited by connection weights 
between neurons in the assembly. At the same time, the process of increased 
connection within assemblies leads to mutual segregation of assemblies. When a 
sufficient part of a cell assembly is activated, the assembly becomes active as a 
whole because of the strong excitatory connection weights between the cells 
within the assembly. 

Cell assemblies may be regarded as memorized representations of items 
encoded by the distributed patterns of active neurons. The process of assembly 
activation by a fragment of the memorized item may be interpreted as the 
process of pattern completion or the associative retrieval of similar stored 
information when provided with a partial or distorted version of the memorized 
item.  

Hebb's theory of brain functioning — interpretation of various mental 
phenomena in terms of cell assemblies — has turned out to be one of the most 
profound and generative approaches to brain modeling and has influenced the 
work of many researchers in the fields of artificial intelligence, cognitive 
psychology, modeling of neural structures, and neurophysiology (see also 
reviews in [39, 40, 54, 75, 98, 104, 120, 121, 134]).  

A generic scheme and characteristics of NAMs. Let us introduce a generic 
model of the NAM type, inspired by Hebb's paradigm, that will be elaborated in 
the sections below devoted to specific NAMs. We mainly consider NAMs of the 
distributed and matrix-type, which are fully connected networks of binary 
neurons (but see Sections "NAMs with Higher-Order Connections and without 
Connections", "NAMs with a Bipartite Graph Structure for Nonbinary Data with 
Constraints" for other NAM types). Each of the neurons (their number is D ) 
represents a component of the binary vector z . That is, each of the D  neurons 
can be in the state 0 or 1. Each pair of neurons has two mutual connections (one 
in each direction). The elements of the connection matrix ( )D D×W  represent 
the weights of all these connections. In the learning mode, the vectors y  from 
the training or memory set (which we call the "base") are "stored" (encoded or 
memorized) in the matrix W  by using some learning rule that changes the 
values of ijw  (initially each ijw  is usually zero). 

In the retrieval mode, an input binary vector x  (probe or key or query 
vector) is fed to the network by activation of its neurons: =z x . The input sum 
of the i -th neuron 

1,i ij jj D
s w z

=
= ∑  
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is calculated. The neuron state is determined as 

( 1) 1iz t + =  (active) for ( ) ( )i is t T t≥  
and 

( 1) 0iz t + =  (inactive) for ( ) ( )i is t T t< ; iT  

is the value of the neuron threshold.  
For parallel (synchronous) network dynamics, the input sums and the states 

of all D  neurons are calculated (updated) at each step t  of iterative retrieval. 
For sequential (asynchronous) dynamics, iz  is calculated for one neuron i , 
selected randomly. For simplicity, let us consider random selection without 
replacement, and one step of the asynchronous dynamics to consist of update of 
the states of all D  neurons.  

The parameters W  and T  are set so that after a single, or several, steps of 
dynamics the state of the network (neurons) reaches a stable state (typically, the 
state vector does not change with t , but cyclic state changes are also considered 
as "stable"). At the stable state, z  is the output of the network.  

The query vector x  is usually a modified version of one of the stored 
vectors y . In the literature, this might be referred to as a noisy, corrupted, or 
distorted version of a vector. While the number of stored vectors is not too high, 
the output z  is the stored y  closest to x  (in terms of dot product 

dotsim ( , ) ,≡ 〈 〉x y x y ). 

That is, z  is the base vector y  with the maximum value of ,〈 〉x y . In this 
case, NAM returns the (exact) nearest neighbor in terms of  dotsim . For binary 
vectors with the same number of unit (i.e. with value equal to 1) components, 
this is equivalent to the nearest neighbor by the Hamming distance ( Hamdist ).  

The time complexity (runtime) of one step of the network dynamics is 
2( )O D . Thus, if a NAM can be constructed that stores a base of N D>  vectors 

so that they can be successfully retrieved from their distorted versions, then the 
retrieval time via the NAM could be less than the ( )O DN  time required for 
linear search (i.e. the sequential comparison of all base vectors y  to x ). Since 
the memory complexity of this NAM type is 2( )O D , as D  increases, one can 
expect an increasing in the size N  of the bases that could be stored and retrieved 
by NAM.  
Unfortunately, the vector at the NAM output may not be the nearest neighbor of 
the query vector, and possibly not even a vector of the base. (Note that if one 
was not concerned with biological plausibility, one can quickly check whether 
the output vector is in the base set by using a hash table to store all base vectors.) 
For most types of NAM, when the number N  of stored vectors is much smaller 
than the vector dimension D , the query vectors return the closest base vectors 
with very high probability, especially if the latter are not too similar to the other 
base vectors. Unfortunately, in some NAMs, it is only possible to store many 
fewer vectors N  than D , with high probability of accurate retrieval, especially 
if the query vectors are quite dissimilar to the base vectors.  
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For NAM analysis, base vectors are typically selected randomly 
independently from some distribution of binary vectors (e.g., vectors with the 
probability p  of 1-components equal to 1/2, or vector with pD  1-components, 
for some p  from interval (0,1)). The assumption of independence simplifies 
analytical approaches, but is likely unrealistic for real applications of NAMs. 
The query vectors are typically generated by as modifications of the base 
vectors. Distortion by deletion randomly changes some of the 1s to 0s (the 
remaining components are guaranteed to agree). A more complex distortion by 
noise randomly changes some 1s to 0s, and some 0s to 1s while (exactly or 
approximately) preserving their total number.  

For a random binary vector of dimension D  with the probability p  of a 
component to be 1, the Shannon entropy 

( )H Dh p= , 
Where 

( ) log (1 )log(1 )h p p p p p= − − − − . 

For 1D >> , a random vector with pD  of 1s has approximately the same 
entropy. The entropy of N  vectors is ( )NDh p . When N  vectors are stored in 
NAM, the entropy per connection is [40, 41].  

2( ) / ( ) /NDh p D Nh p Dα = = . 

Knowing ( )h p , it is easy to determine N  for a given α . 
When too many vectors are stored, NAM becomes overloaded and the 

probability of accurate retrieval drops (even to 0). The value of alpha for which a 
NAM still works reliably depends on the mode of its use (in addition to the 
NAM design and distributions of base and query vectors). The mode where the 
undistorted stored base vectors are still stable NAM states (or stable states differ 
by few components from the intended base vectors), has the largest value of 
alpha. (We denote the largest value of alpha for this mode as "critical", critα , and 
the corresponding N  as critN .) For critα α>  the stored vectors become unstable. 
Note that checking if an input vector is stable does not allow one to extract 
information from the NAM, since vectors not stored can also be stable.  

The information (in the Shannon information-theoretic sense) that can be 
extracted from a NAM is determined by the information efficiency (per connec-
tion) E . This quantity is bounded above by some specific α  (the entropy per 
connection that still permits information extraction), which in its turn is bounded 
above by critα . A NAM may work in recognition or correction mode. In 
recognition mode, the NAM distinguishes whether the input (query) vector is 
from the base or not, yielding extracted information quantified by recogE .  

When NAM answers the nearest neighbor queries (correction mode), 
information quantified by corrE  is extracted from the NAM by correction 
(completion) of the distorted query vectors. The more distorted the base vector 
used as the query at the NAM input, the more information corrE  is extracted from 
the NAM (provided that the intended base vector is sufficiently accurately 
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retrieved). However, more distorted input vectors lower the value of corrα  at 
which the NAM is still able to retrieve the correct base vectors, and so lowers 

corrE  (which is constrained to be less than corrα ). We refer to these information-
theoretic properties of NAMs as their information characteristics.  

Let us now consider specific variants of the generic NAM. Hereafter we use 
the terms "NAM" and "(neural) network" interchangeably. 

HOPFIELD NAMs 

Hopfield networks with dense vectors. In the Hopfield NAM, "dense" random 
binary vectors (with the components from {0,1} with the probability 1 / 2p =  of 
1) are used [68]. The learning procedure forms a symmetric matrix W  of 
connection weights with positive and negative elements. The connection matrix 
is constructed by successively storing each of the base vectors y  according to 
the Hopfield learning rule: 

( )( )ij ij i jw w y q y q= + − −  

with parameter 1 / 2q p= = ; 0iiw = . (For brevity, we use the same name for 
generalization of this rule with 1 / 2q < , though Hopfield did not propose it, 
Subection "Hopfield networks with sparse vectors").  

The dynamics in [68] is sequential (in many subsequent studies and 
implementations it is parallel) with the threshold 0T = . It was shown [68] that 
each neuron state update decreases the energy function  

, 1,
(1 / 2) i ij ji j D

z w z
=

− ∑ , 

so that a (local) minimum of energy is eventually reached and such a network 
comes into a stable activation state.  

As D → ∞ , various methods of analysis and approximation of experimental 
(modeling) data obtain crit 0.14α ≈  [68, 8, 5, 71, 35] which gives crit 0.14N D≈  
since (1 / 2) 1h = . Note that similar values of critα  are achieved at rather small 
finite D . For rigorous proofs of (smaller) critα  see refs in [107].  

As for max
corrE  for distortion by noise, 0.092 was obtained by the method of 

approximate dynamical equations of the mean field [71], and 0.095 by 
approximating the experiments to D → ∞  [35].  

By the coding theory methods in [112] it was shown that asymptotically (as 
D → ∞ ) it is possible to retrieve (with probability approaching 1) exact base 
vectors with query vectors distorted by noise (so that their Hamdist / 2D<  from 
the base vectors), for / (2ln )N D D=  stored base vectors if non-retrieval of 
some is permitted. If one requires the exact retrieval of all stored base vectors, 
the maximum number of vectors which can be stored decreases to 

/ (4ln )N D D= . These values of N  were shown to be the lower and upper 
bounds in [25, 20]. Note that in [47] crit 2α =  was obtained for "optimal" W  
(obtained by a non-Hebbian learning rule); a pseudoinverse rule (e.g. [125, 140]) 
gives crit 1α = .  
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For correlated base vectors, the storage capacity critN  depends on the 
structure of the correlation. When the base vectors are generated by a one-
dimensional Markov chain [107], critN  is somewhat higher than it is for 
independent vectors. This and other correlation models were considered in [108].  

Hopfield networks with sparse vectors. Hopfield NAMs operating with 
sparse vectors 1 / 2p <  appeared to have better information characteristics [154] 
(see also Sections "Willshaw NAMs", "Potts NAMs") than those operating with 
dense vectors ( 1 / 2p = ). For example, they attain values N D> .  

In the usual Hopfield NAM and learning rule (with 1 / 2q p= =  and 
threshold 0T = ) the number of active neurons is kept near / 2D  by the balance 
of negative and positive connections in W . Using the Hopfield rule with 

1 / 2q p= <  one can not set 0T = . This is especially evident for the Hebb 
learning rule (which we obtain from the Hopfield rule by setting 0q = ). All 
connections become non-negative, and 0T =  eventually activates all neurons. 
Similar behavior is demonstrated by the Hopfield NAM and learning rule with 

1 / 2q p= < . The problem of network activity control (i.e. maintaining some 
average activity level chosen by the designer) can be solved by applying an 
appropriate uniform activation bias to all neurons [9, 21]. This is achieved by 
setting an appropriate positive value of the time-varying threshold ( )T t  [21] to 
ensure, for example, / 2pD D<  active neurons (to match pD  in the stored 
vectors) for parallel dynamics.  

Note that the Hopfield rule with 1 / 2q p= <  provides better information 
characteristics than the pure Hebb rule with 0q =  [41, 35]. However, the Hebb 
rule requires modification of only 2( )pD  connections per vector, whereas the 
Hopfield rule modifies all connections per vector.  

As D → ∞  and 0p →  ( 1pD >> , and often ~ ln /p D D ) the theoretical 
analysis (e.g., [154, 41, 34] and others) gives 

crit (log ) / 2 1 / (2ln 2) 0.72eα = = ≈  

for the Hopfield rule with q p= , the Hebb rule, and the "optimal" W  [47]. In 
[34] they use a scaled sparseness parameter 1/2(ln )pε −=  to investigate con-
vergence of critα  to max

critα . For 1ε <<  they obtained max
crit 0.72α ≈ . However for 

0.1ε =  (corresponding to 810p −=  and to 910D > ), crit 0.43α =  only.  
In [122] it was shown that max

recog 1 / (4ln 2) 0.36E = ≈  (by the impractical 
exhaustive enumeration procedure of checking that all vectors of the base are 
stable and all other vectors with the same number of 1-components are not 
stable). This empirical estimate coincides with the estimate [41]. For retrieval by 
a single step of dynamics, 

max
corr 1/ (8ln 2) 0.18E = ≈  

for distortion by deletion of half the 1-components of a base vector [40, 41, 119, 
146].  
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Let us note again, all these results are obtained for D → ∞  and 0p → . For 
these conditions, multi-step retrieval (the usual mode of NAM retrieval as 
explained in Subsection "A generic scheme and characteristics of NAMs") is not 
required since NAM reaches a stable state after a single step. In terms of N , 
since ( ) 0h p →  for 0p → , it follows that N D>> , that is 

crit crit / ( )N D h pα= → ∞  
much faster than D → ∞ .  

The same is valid for N corresponding to E .  
In the experiments [146], for the Hebb rule and multi-step retrieval corrE  

values up to 0.09 were obtained. Detailed studies of the information 
characteristics of the finite- and infinite-dimensional networks with the Hopfield 
rule, can be found in [34, 35]. Different degrees of distortion by noise for vectors 
with pD  unit components were used. The dynamic threshold ensured pD  
active neurons at each step of the parallel dynamics. It was shown [35] that with 
this choice of threshold the stable states are static (some vector) or cycles of 
length 2 (two alternating vectors on adjacent steps of the dynamics). (This is the 
same behavior as for the fixed static threshold and is valid for all networks with 
symmetric connections.) It has been demonstrated experimentally [35] that even 
if after the first step of dynamics 

dot dotsim ( , ) sim ( , )<y z y x  

(where y  is the correct base vector, z  is the network state, and x  is the 
distorted input), the correct base vector can sometimes be retrieved by the 
subsequent steps of the dynamics. Conversely, increasing dotsim ( , )y z  at the first 
step of the dynamics does not guarantee correct retrieval [5]. These results apply 
to both the dense and sparse vector cases. This study [35] used analytical 
methods developed for the dense Hopfield network and adapted for sparse 
vectors, including the statistical neurodynamics (SN) [5, 34], the replica method 
(RM) [8], and the single step method (SS) [80].  

All these analytical methods rather poorly predicted the behavior of finite 
networks for highly sparse vectors, at least for the parallel dynamics studied. 
(Note that all these methods (SN, RM, SS) provide accurate results for D → ∞  
and 0p → , where retrieval by a single step of dynamics is enough.) Empirical 
experimentation avoids the shortcomings of these analytical methods by directly 
simulating the behavior of the networks. These simulations allow corrα  and 
information efficiency, corrE , to be estimated as a function ,p D  and the level of 
noise in the input vectors. The value of corrE  monotonically increases as D  
increases for a constant p . For p  = 0.001 – 0.01, which corresponds to the 
activity level of neurons in the brain, the maximum value of corr 0.205E ≈  was 
obtained by approximating experimental results to the case D → ∞  [35] (higher 
than max

corr 0.18E ≈  for 0p → ).  
In [38] the time of retrieval in the Hopfield network was investigated (using 

the number of retrieval steps observed in simulation experiments; this number 
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somewhat increases with D ). They conclude that for random vectors with small 
p , large D , and large N , Hopfield networks may be faster than some other 

algorithms (e.g., the inverted index) for approximate and exact nearest neighbor 
querying.  

An increasing in the number critN  of stable states corresponding to the 
stored vectors proportional to 2( / ln )D D  for ~ ln /p D D  is shown 
asymptotically in [4] (although non-rigorously, see also [34]). Note, this result 
also follows from / ( )N D h pα=  by approximating ( ) logh p p p≈ −  for small 
enough p  ( ln 1p− >> ).  

In [67] they give a rigorous analysis of a Hopfield network variant (neurons 
are divided into parts, see Section "Potts NAMs"), with the Hebb learning rule 
and p  slightly less than ln /D D , for retrieval by a single step of parallel 
dynamics with fixed T . The lower and upper bounds of N  were obtained for 
which the memory vectors are stable states (with probability approaching 1 as 
D → ∞ ), and can also be exactly retrieved from query vectors distorted by 
noise. The lower and upper bounds of N  found in [67] are of the same order as 
those found in [4]. For this mode of network operation, if we approximate the 
number of retrieval steps as ln D , we may estimate speed-up as 3/ (ln )D D  
relative to linear search (see Subsection "A generic scheme and characteristics of 
NAMs").  

For both dense and sparse vectors, the NAM capacity maxN  grows with 
increasing D . Also, in order to maintain an adequate information content for a 
sparse vector ( ( )Dh p  for ( ) 1h p << ), it is necessary to have a sufficiently high 
D . The number of connections grows as D  squared (because Hopfield 
networks are fully connected), which is unattainable even on modern computers 
at D  of millions. Besides, the neurobiologically plausible number of 
connections per neuron is on the order of 10,000. Therefore, the development of 
"diluted" networks that perform NAM functions without being fully connected is 
attractive, e.g. [105, 150, 151, 41, 142]. This partial connectivity can be used to 
reduce the memory complexity of NAM from quadratic to linear in D [98, 99].  

WILLSHAW NAMs  

Willshaw networks with sparse vectors. NAMs with binary connections from 
{0,1} are promising since they require only one bit per connection. Such 
networks were proposed both in heteroassociative [157] and autoassociative 
version s(e.g. [118, 156, 16, 152, 49, 115, 119, 122, 24, 48, 41, 42, 43, 44, 81]). 
The learning rule (let's call it the Willshaw rule) becomes: 

( )ij ij i jw w y y= ∨ ∧ , 

where ∨  is disjunction, ∧  is conjunction. Various strategies for threshold 
setting can be used, e.g., setting threshold T  to ensure pD  active neurons, as in 
Subsection "Hopfield networks with sparse vectors". 

Note that this NAM can not work with dense vectors, since storing only a 
small number of dense vectors will set almost all the connection weights to 1. 
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Moreover, for the same reason, the Willshaw networks (unlike the Hopfield 
networks) cease to work at any constant p  and alpha as D → ∞ . The number 
N  of random binary vectors able to be stored and retrieved in the Willshaw 
NAM grows with decreasing vector density. Even for not very large networks 
and not very sparse vectors ( ~ /p D D ), N  can exceed D  (e.g. D  = 4096 
allowed storage and retrieval of up to N  = 7000 vectors distorted by noise in the 
experiments of [16]). The particular N  values reached (for D  and p  fixed) 
vary depending on the degree of the query vector distortion and on the desired 
probability of retrieval.  

The maximum theoretical crit ln 2 0.69α = =  is reached as D → ∞  for 
~ ln /p D D  [40, 119, 41]. In [122] they obtained 

max
recog ln 2 / 2 0.346E = ≈  

(using a computationally expensive exhaustive enumeration procedure). In [42, 
43] the same critα  and max

recogE  were obtained analytically for the sparseness 
parameter log(1 / ) / ( )p pDβ =  equal to 1, i.е. for pD  somewhat less than 
log D . (The probability of a connection to be modified after storing N  vectors 
is 21 (1 )Np− −  21 exp( )Np≈ − −  21 exp( / ( ))Dp h pα= − −  

1 exp( log(1 / ) / ( ( )))p p h pα β= − −  1 exp( / )α β≈ − − <1 (we used 0p → ); thus 
the network can be analyzed for fixed α  and β  at D → ∞ .) The same upper 
bound of E  is given as the maximum entropy of W  learnt by the Willshaw 
rule. In [119] the efficiency 

max
corr ln 2 / 4 0.173E = ≈  

was theoretically shown for single-step (as well as multi-step) retrieval and 
distortion by deletion. 

For multi-step retrieval in finite Willshaw NAMs (with distortion by 
deletion) corrE  up to 0.19 (at D  = 20000) was obtained experimentally in [146]. 
Experiments in [146, 44] show that in the Willshaw NAM (unlike the Hopfield 
NAM), the values corrα  and corrE  for not too large D  are higher than for D → ∞  
(see also [42]). Note that the quality of retrieval in the Willshaw NAM is higher 
than in the Hopfield NAM; the retrieved vectors more often coincide exactly 
with the stored vectors of the base.  

From the detailed analytical and experimental study of the values of corrα  in 
[44] (at various levels of sparsely, parameterized as beta, degrees of distortion 
by noise, and D  up to 100000), it was found that corr 0.13E ≈  per connection 
can be reached in the experiments (for small networks, N  = 640, pD  = 20, 

0.25β = ). It was also shown that the results of the analytical methods SS [80] 
and GR [48] are far from the experimental results (in most cases, worse than 
them). Due to the connections being binary, the efficiency per bit of connection 
implemented in computer memory is higher than that for the Hopfield network 
(where corr 0.205E ≈  per connection [41]).  
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A review of NAM studies in [81] concludes that for Willshaw networks 
having connection matrix W  with probability of a nonzero element close to 0 or 
1, compression of W  improves information characteristics compared with the 
usual uncompressed Willshaw NAM. Such compressed W  are obtained when 
the base vectors have the number of 1s sublogarithmic or superlogarithmic in 
D . Their comparison of the retrieval time in compressed Willshaw networks 
and the inverted index has shown the advantage of the inverted index for most 
parameters.  

An analytical and experimental comparison of the Willshaw, the GB 
(Subsection "Willshaw-Potts network"), and the Hopfield networks (with the 
Hebb rule [4]) for vectors with p  of the order of ln /D D  and distortion by 
deletion was carried out in [59]. They investigate single-step retrieval 
theoretically (asymptotically, for D → ∞  with probability approaching 1). For 
all models, the lower bound of N  of the order 2( / ln )D D  is obtained, and for 
the Willshaw network the matching upper bound is shown. In experiments, the 
results are worse for a fixed threshold than for a variable threshold. The 
Hopfield network performed worse, in terms of empirical probability of retrieval 
versus N , compared with the other NAMs, probably because of the non-optimal 
Hebb learning rule and non-optimal threshold selection.  

For the diluted Willshaw networks [24, 6, 41, 99] the optimal pD  
(providing approximately the same capacity N ) is higher than for the fully 
connected networks.  

Willshaw networks in the index structures for nearest neighbor search . In 
[159] the base of binary sparse vectors is divided into disjoint sets (of the same 
cardinality) and each is stored in a Willshaw NAM with its own W . When the 
query vector x is input, dotsim ( , )x Wx  is calculated for the matrices W  of all 
sets, and the vectors of sets with the maximum similarity are used as the nearest 
neighbor candidates (verified by linear search). Analysis and experiments for 
bases of random vectors with small random distortions of query vectors showed 
that up to a certain number of vectors in each network the nearest neighbor is 
found with a high probability (in experiments, without error) and faster than by 
linear search only. If this number of vectors per network is exceeded, both the 
probability of finding an incorrect nearest neighbor and its distance to the correct 
vector increase. A somewhat lower speedup relative to linear search is shown for 
real, nonrandom data, versus synthetic, random data. In [60] similar results were 
obtained analytically (asymptotically for D → ∞  and error probability 
approaching zero) and experimentally for bases of sparse and dense random 
vectors (for the Hopfield rule).  

POTTS NAMs  

Potts networks. The NAM from [77] can be considered as a network of neurons 
that are divided into non-overlapping parts ("columns"), with d  neurons in each 
column and only one active neuron in the state 1z d= − , for the remaining 
column neurons 1z = − . That is, the sum of activations over all the neurons is 
zero in each column. The Hebb rule is used for learning.  

For the more convenient version of this model with the neurons having the 
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states from {0,1} and single active neuron per column, the Hopfield rule is used. 
The connection matrix W for the entire network is constructed so that 0ijw =  for 
neurons i  and j  in the same column (this implies that 0iiw = ). That is, the 
network is structured as a multipartite graph. Network dynamics (parallel or 
sequential) activates the one neuron in each column with the maximum input 
sum s  (one of these neurons is randomly activated for neurons with equal s , 
but see the GB network below). 

For the number of columns D , the value of crit /N D  of the Potts network 
was estimated by [77] to be ( 1) / 2d d −  times more than 0.14 (i.e., critα  for the 
Hopfield network with 1 / 2p = ). However, to approximate the number of 
connections in the Hopfield network, the Potts network must have /D d  
columns. Note also that one "Potts vector" contains only ( / ) logD d d  bits of 
information [79].  

The Potts network with parallel and sequential dynamics, and with single-
step and multi-step retrieval was analytically explored in [109]. For exact 
retrieval (asymptotically, as D → ∞ , with probability approaching 1), the upper 
and lower bounds of N  were estimated both for the mode of querying with 
stable stored vectors and for the correction mode querying with distorted query 
vectors. In both cases, 

/ lnN cD D= , 

where the constant c  increases quadratically in d , but with different c  
depending on the degree of distortion and the desired probability of state to be 
stable or vector to be retrieved. 

Willshaw-Potts network. For binary connections with the Willshaw learning 
rule, the Potts network becomes the Willshaw-Potts network [79]. When a vector 
is stored, a clique (a complete subgraph) is created in the connection graph. As 
for the Hopfield network, only static stable states or cycles of length 2 were 
experimentally observed for parallel dynamics. According to [79], the 
information characteristics of this network are close to the Willshaw network at 
the same vector sparsity. Since the information content of Willshaw-Potts 
vectors is low, the critN  is higher than for the Willshaw network.  

This network was rediscovered as the GB network in [58] with various 
modifications [3, 59] and hardware implementations (for example, [117] with 
non-binary connections). The GB network is oriented for exact retrieval of 
vectors with distortion by deletion (columns without values activate all neurons). 
The peculiarities of the GB network include: connections of neurons with 
themselves; the possibility for several neurons in a column (with the maximum 
input sum) to be in the active state; the contribution from each column to the 
input sum of a neuron is not more than 1; various options for threshold 
management; the possibility of working with vectors having all zero components 
in some columns, etc. A theoretical GB analysis for single-step retrieval, as well 
as an experimental comparison with the Hopfield and the Willshaw networks for 
multi-step retrieval is given in [59], see also Subsection "Willshaw networks 
with sparse vectors".  

Processing of realistic data. To represent arbitrary binary vectors in the 
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Potts network, they are divided into segments of dimension log d  and each 
segment is encoded by the activation of one neuron of its d-dimensional column 
[97]. Components of integer vectors can be represented in a similar way.  

Simulated data are typically generated as independent random samples. This 
ensures that the vectors to be stored are very nearly equally and maximally 
dissimilar. However, data generated from situations in the world is very unlikely 
to be so neatly distributed. When working with (unevenly distributed) real data, 
NAM is used non-optimally (many connections are not modified, others are 
"oversaturated"). To overcome this in the GB network, a free column neuron is 
allocated when the number of connections of a neuron (encoding some value) 
exceeds the threshold [19]. During retrieval, all column neurons that encode a 
certain value are activated.  

For better balancing the number of connections, in [64] the number of 
neurons in the column allocated to represent a vector component is proportional 
to the frequency of its 1-value in the vectors of the base. During storage, the 
various neurons representing the component are activated in turn. The authors of 
[64] also propose an algorithm for finding (with a high probability) all vectors of 
the base closest to the query vector distorted by deletion; the algorithm often 
significantly reduces the number of required queries.  

GENERALIZATION IN NAMs 

The Hebbian learning in matrix-type distributed memories naturally builds a 
kind of correlation matrix where the frequencies of joint occurrence of active 
neurons are accumulated in the updated connection weights. The neural 
assemblies thus formed in the network may have a complex internal structure 
reflecting the similarity structure of stored data. This structure can be revealed as 
stable states of the network — in the general case, different from the stored data 
vectors. That is, it is possible for vectors retrieved from a network to not be 
identical to any of the vectors stored in the network (which is generally 
undesirable). 

Similarity preserving binary vectors. Similarity of patterns of active 
neurons (represented as binary vectors) are assumed to reflect the similarity of 
items (of various complexity and generality) they encode. The similarity value is 
measured in terms of the number or fraction of common active neurons (or 
overlap, i.e. normalized dot product of the representing binary vectors). 
Moreover, the similarity "content" is available as the identities of common active 
neurons (the IDs of the common 1-components of the representing binary 
vectors).  

Note that such data representation schemes by similarity preserving binary 
vectors have been developed for objects represented by various data types, 
mainly for (feature) vectors (see survey in [131]), but also for structured data 
types such as sequences [102, 72, 85,86] and graphs [127, 128, 148, 136, 62, 
134]. A significant part of this research is developed in the framework of 
distributed representations [45, 76, 106, 126, 89], including binary sparse 
distributed representations [102, 98, 103, 127, 128, 113, 114, 137, 138, 139, 148, 
135, 136, 61, 134, 129, 130, 131, 132, 31, 33] and dense distributed representa-
tions [75, 76] (see [82, 84, 87, 88, 83] for examples of their applications). 



V.I. Gritsenko, D.A. Rachkovskij, A.A. Frolov, R. Gayler, D. Kleyko, E. Osipov 
 
 

ISSN 2519-2205 (Online), ISSN 0454-9910 (Print).  Киб. и выч. техн. 2017.  № 2 (188) 18

Complex internal structure of cell assemblies for graded connections . 
When binary vectors reflecting similarity of real objects are stored in a NAM by 
variants of the Hebb (or Hopfield) rule, the weights of connections between the 
neurons frequently activated together will be greater than the mean value of all 
the weights. On the other hand, rare combinations of active neurons will have 
smaller weights. Thus, neuron assemblies (cell assemblies in terms of Hebb 
[65]) formed in the network may have a very complicated structure. Hebb and 
Milner introduced the notions of "cores" and "fringes" ([65] pp. 126–134; for 
more recent research see [101]) to characterize qualitatively such complex 
internal structure of assemblies.  

The notions of core (kernel, nucleus) and fringe (halo) of assemblies have 
attracted attention to the function of assemblies distinct from the function of 
associative memory. This different function is not just memorization of 
individual activity patterns (vectors), but emergence of some generalized 
internal representations, that were not explicitly presented to the network as 
vectors for memorization.  

Some assembly cores may correspond to "prototypes" representing subsets 
of attributes (encoded by the active neurons represented by the 1-components of 
the corresponding vectors) often present together in some input vectors. Note 
that some of these subsets components/attributes may never be present in any 
single vector. Stronger cores, corresponding to stable combinations of a small 
number of typical attributes present in many vectors employed for learning, may 
correspond to some more abstract or general object category (class). Cores 
formed by more attributes may represent more specific categories, or object 
prototypes. However, object tokens (category instances) may also have strong 
cores if they were often presented to the network for learning. Note that some 
mechanisms may exist to prevent repeated learning of vectors that are already 
"familiar" to the network. Also, the rate of weight modification may vary based 
on the "importance" of the input vector.  

The representations of real objects have different degrees of similarity with 
each other. Similarities in various combinations of features often form different 
hierarchies of similarities that reflect hierarchies of categories of different 
degrees of generalization (object — class of objects — a more general class, 
etc.). So, assemblies formed in the network (cores and fringes of different 
"strength") may have a complex and rich hierarchical structure, with multiple 
overlapping hierarchies reflecting the structure of different contents and values 
of similarity implicitly present in the base of vectors used for the unsupervised 
network learning by the employed variant of the Hebb rule. Thus, many types of 
the category-based hierarchies (also known as generalization or classification or 
type-token hierarchies) may naturally emerge in the internal structure of 
assemblies formed in a single assembly neural network (NAM).  

Complex internal structure of a neural assembly allows a virtually 
continuous variety of hierarchical transitions. To reveal various types of 
categories and prototypes and instances formed in the network, the 
corresponding assemblies should be activated. To activate only stronger cores, 
higher values of threshold T should be used. Lower threshold values may 
additionally activate fringes.  

Research of generalization function in NAMs. Additional stable states that 
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emerge in NAM after memorizing random base vectors and do not coincide with 
the base vectors are known as false or spurious states or memories, e.g., [69, 
155]. In [155] they regarded the emergence of spurious attractors in the Hopfield 
networks as a side effect of the main function of distributed NAMs, consisting 
not in memorizing individual patterns, but in formation of prototypes. Such an 
interpretation is close to the earlier work [13, 11, 12] that considered formation 
of concepts, prototypes, and taxonomic hierarchies as a natural generalization of 
correlated patterns memorized in a distributed memory.  

Research of hierarchically correlated patterns and states in Hopfield 
networks has been initiated by physicists who studied the "ultrametric" 
organization of ground states in spin-glasses (e.g., [123, 32, 63]; see also [6] and 
its references). While these earlier works required explicit representation of 
patterns at various hierarchical levels to be used in the learning rule, more 
neurobiologically plausible and practical Hebb and Hopfield rules applied to 
(hierarchically) correlated sparse binary patterns themselves (obtained with 
some simple correlation model) were considered, e.g., in [153, 66]. Theoretically 
showed "natural" formation of stable cores and fringes as well as traveling 
through different levels of hierarchies by uniform changing of the threshold. 
More complex probabilistic neuron dynamics and threshold control expressing 
neuronal fatigue was modeled in [66]. Dynamics of transitions between stable 
memory states that models human free recall data and can also be used with 
hierarchically organized data was considered in [143]. The "neuro-window" 
approach of [74] may be considered as using multiple thresholds to activate 
cores or fringes. Revealing the stable states corresponding to emergent 
assemblies is used for data mining (binary factor analysis) in [36, 37].  

Generalization in NAMS with binary connections. The Willshaw learning 
rule does not form assemblies with the complex internal structure needed for 
generalization functions, such as emergence of generalization (type-token) 
hierarchies. The Willshaw learning rule causes the connectivity of an assembly 
(corresponding to a vector) to become full after a single learning act (vector 
storage) and not change thereafter. To preserve the capability of forming 
assemblies with a non-uniform connectivity in NAMs with binary connections, a 
stochastic analogue of the Hebbian learning rule for binary connections was 
proposed in [100, 98]: 

( )ij ij i j ijw w y y ξ= ∨ ∧ ∧ , 

where ijξ  is a binary random variable equal to 1 with the probability that 
determines the learning rate.  

The connectivity value for some set of neurons is determined here by the 
number of their 1-weight connections. Neurons that have more than some 
fraction of 1-weight connections with the other neurons of the same assembly 
may be attributed to the core part of the assembly.  

In [15] they experimentally studied formation of assemblies with cores and 
fringes using the above mentioned "stochastic Willshaw" rule ( D  = 4096, 
pD  = 120 – 200, about 60 neurons in the core and 60–140 neurons in the 

fringe). Tests have been performed on retrieving a core by its part; a core and its 
full fringe by the core and a part of the fringe (the most difficult test); and, a core 
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by a part of its fringe. As expected, experiments with correlated base vectors 
have shown a substantial decrease of storage capacity compared to random 
independent vectors. A special learning rule was proposed to increase the 
stability of fringes. Formation of prototypes with this rule was also investigated 
in [7, 23]; a model of paired-associate learning in humans is considered in [141].  

Generalization in modular NAMs. A modular structure of neural networks 
where the Hebb assemblies are formed inside the modules was proposed and 
developed in [50–56]. The modular assembly neural network is intended for 
recognition of a limited number of classes. The network is artificially partitioned 
into several modules (sub-networks) according to the number of classes that the 
network is required to recognize. Each module network is full-connected, 
connections are graded. The features extracted from all objects of a certain class 
are encoded into activation of the patterns of neurons within the corresponding 
sub-network. After learning, the Hebb assemblies are formed in each module 
network. In this modular structure, the network acquires the capability to 
generalize the description of each class within the corresponding module (sub-
network), i.e. separately and completely independently from all other classes. In 
[56] it was shown that the number of connections in each module can be reduced 
without loss of the recognition capability.  

NAMs WITH HIGHER-ORDER CONNECTIONS 
AND WITHOUT CONNECTIONS 

Neural networks in the previous sections have connections of order 2n =  (а 
connection is between two neurons). In this section we consider values of n  
other than 2, for the NAMs with the structure of the Hopfield network (unlike 
Section "Hopfield NAMs" where we only considered the case 2n = ).  

Neural networks with higher-order connections. In the higher-order (order 
2n > ) generalization of the Hopfield network, n  neurons are connected by 

single connection instead of just two (for example, [124, 17, 46, 1, 70, 94, 26, 
95, 96, 30]). For the neuron with states from {–1, + 1} ( p  = 1/2), the network 
dynamics can be defined as 

1 11
... ......

sign( )
n nn

i ij j j jj j i
z w z

≠
= ∑ . 

The analogue of the Hebb learning rule becomes 

1 21
1... 1,

1 ...
n i i in

ni i N
w y y yD

µ µ µ
µ− =

= ∑ . 

Other learning rules can also be used.  
The number of stable states corresponding to the stored random binary 

vectors (possibly slightly different from them) is estimated in the mentioned 
papers to be 1

crit ( ) n
critN n Dα −≈ . As in NAMs with connections between pairs of 

neurons, critα  depends on the specific type of learning rule and network 
dynamics. critα  does not exceed 2 and decreases with increasing n  [94]. For the 
absence of errors (with a probability approaching 1), the number of stored 
vectors 



Neural Distributed Autoassociative Memories: A Survey  
 

 

ISSN 2519-2205 (Online), ISSN 0454-9910 (Print).  Киб. и выч. техн. 2017.  № 2 (188) 21 

11 / lnn

n
N D Dc

−≈  

(for example, [46, 26, 95, 30]). In [95] they obtain 2(2 3)!!nc n> −  So, the 
exponential in n  growth of N  is due to the exponential growth of the 
connection number, and the characteristics per connection deteriorate with 
increasing n .  

The generalization of Krotov-Hopfield. For networks with higher-order 
connections, the network energy in [95] is written as 

1,
( , )

N
F µ

µ =
− 〈 〉∑ z y  

with a smooth function ( )F u . For polynomial ( )F u  and 2n = , this gives the 
energy of the usual Hopfield network ([68] and Subsection "Hopfield networks 
with dense vectors"). For small n , many memory vectors µy  have 
approximately the same values of ( )F u  and make a comparable contribution to 
the energy. For n → ∞ , the main contribution to the energy is given by the 
memory vector y with the largest ,〈 〉z y . For intermediate n , a large contribution 
is made by several nearest memory vectors.  

In [30] it is proved that for ( ) exp( )F u u=  this memory allows one to 
retrieve exp( )N Dα=  randomly distorted vectors (within Hamdist / 2D<  from 
the stored vectors) by a single step of the sequential dynamics, for some 
0 ln 2 / 2α< < , depending on the distortion, with probability converging to 1 for 
D → ∞ .  

In [95] they consider the operation of such a network in the classification 
mode, where each stored base vector corresponds to one of the categories to be 
recognized. In particular, to classify the handwritten digits of the MNIST base 
into 10 classes, in addition to the "visible" neurons to which 28x28 images (with 
pixel values in [–1, + 1]) are input, there are 10 "classification" neurons. The 
value of the output is obtained by a non-linearity ( )g s  applied to the input sum 
s , for example, tanh( )s  (instead of the sign( )s  function used in the memory 
mode). The outputs of visible neurons are fixed, and the outputs of classification 
neurons are determined by a single step of the dynamics.  

Vectors of N  memory states are formed by learning on the training set. The 
N = 2000 memory vectors minimizing the classification error for the 60,000 
images of the MNIST training set were obtained with the stochastic gradient 
descent algorithm.  

For a single step of the dynamics this structure is equivalent to a perceptron 
with one layer of N  hidden neurons [95]. The nonlinearity at the output of the 
visible neurons is ( ) ( )f u F u= , and that at the output of hidden neurons is ( )g u . 
The learned memory vectors (with components normalized to [–1, + 1]) are 
encoded in the weight vectors of the connections between the visible neurons 
and the hidden neurons. It is shown that when n  changes the visualized memory 
vectors change. For small n , the memorized vectors correspond to the features 
of the digit images, and for large n  they become prototypes of individual digits 
[95, 96].  
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Neural networks with first-order connections. In a neural network with 
connection order 1n = , each neuron is connected only with itself. They can be 
considered as networks without connections, where learning changes the state of 
the neurons themselves (with "neuron plasticity" [39]). Thus, memory is a single 
vector of the dimension of the vectors of the base. 

For binary connections, we get the Bloom filter (see the reviews [22, 149]), 
which exactly recognizes the absence of an undistorted query vector in the 
stored database by absence of at least one of its 1-components in the memory 
vector. If the 1-components of the query vector are a subset of 1-components of 
the memory vector, the vector is recognized as the base vector, but it is 
necessary to check this, since there is a false positive probability due to "ghosts" 
(vectors not from the base, the 1-components of which belong to the memory 
vector). Ghosts can be considered as analogous to spurious memories (Subsec-
tion "Research of generalization function in NAMs"). 

An analysis of the probability of their appearance under certain restrictions 
on stored random vectors is given in [144]. In [158], they reduce the probability 
of false positives. In [57], a Bloom filter version is analyzed which recognizes 
the absence of distorted query vectors. The autoscaling Bloom filter approach 
proposed in [92] suggests a generalization of the counting Bloom filter approach 
based on the mathematics of sparse hyperdimensional computing and allows 
elastic adjustment of its capacity with probabilistic bounds on false positives and 
true positives. In [90], the formation of sparse memory vectors (with an 
additional operation of context-dependent thinning [134]) is considered, and in 
[91] the probability of correct recognition is estimated. The use of graded 
connections (the formation of the memory vector is done by addition), including 
subsequent binarization, and the classification problem for vectors not from the 
base, are considered in [89, 91]. 

For real-valued vectors and connections, the recognition of random 
undistorted vectors is analyzed in [10, 126]. In [73] they allow distortion of 
vectors. In [126, 73], the analysis of non-random base vectors is given. 

NAMs WITH A BIPARTITE GRAPH STRUCTURE FOR NONBINARY DATA WITH CONSTRAINTS  

In some recent papers (e.g., [78, 145, 110, 111]), in order to create NAMs which 
can store and retrieve (from rather noisy input vectors) the number N  of (not 
always binary) vectors with N  near exponential in D , the vectors considered 
are not arbitrary random but satisfy (linear) constraints. The neural network has 
the structure of a bipartite graph. One set of neurons (not connected with each 
other) is used to represent the vectors of the base, neurons of the other set 
represent constraints. A rectangular matrix of connections between these two 
sets is learned on the vectors of the base. The connection vector of each 
constraint neuron represents the vector of that particular constraint. Iterative 
algorithms with local neuron computations are used for retrieval.  

Iterative algorithms for learning constraint matrix and vector recovery . In 
[78, 145], they consider the problem of the exact retrieval (with high probability) 
of vectors that belong to a subspace of dimension less than D . The graded 
weights of the bipartite graph connections representing linear constraints are 
learned from the vectors of the base (which have only non-negative integer 
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components). Iterative algorithms are used for learning. The weights are 
constrained to be sparse, which is required for analyzing the retrieval algorithm. 
The input (query) vectors x  are obtained from the vectors y  of the base by 
additive noise: = +x y e , where e  are random sparse vectors with (bipolar) 
integer components. During retrieval, activity propagates first from the data 
neurons to the constraint neurons and then in the opposite direction, and so on 
for multistep retrieval. Non-linear transformations are used in neurons. In a 
stable state, the data neurons represent a base vector, and all constraint neurons 
obtain a total weighted zero input from the associated data neurons. 

In [78] the vectors are divided into intersecting parts. Any part of the vector 
belongs to a subspace of smaller dimension than the vector dimension of that 
part. А subset of the constraint neurons corresponds to each part. They are not 
looking for an orthogonal basis of constraints, but for vectors orthogonal to the 
corresponding parts of the data vectors from the base: ( ) ( ) 0k k =W y , where k  is 
the part number. To do this, the objective function is formulated and optimized 
with a stochastic gradient descent (several times for each part). During retrieval, 
they first independently correct errors in each part by performing several steps of 
the network dynamics. The correction is based on the fact that 

( ) ( ) ( ) ( )k k k k=W y W e . 

Then, exploiting intersection of the parts, the parts without errors are used to 
correct the parts with errors.  

In [145], y  from a subspace of dimension d D<  are considered. Training 
forms a matrix W  of D d−  non-zero linearly independent vectors orthogonal to 
the vectors y  of the base: 0=Wy  for all y  of the base. An iterative algorithm 
of activity propagation in the network retrieves y .  

Algorithms [78, 145], described above, are claimed to store the number N  
of vectors (generated from their respective data models) exponential in D  
( ( )DO a , 1a > ) with the possibility of correcting a number of random errors that 
is linear in the vector dimension, D . However, to ensure a high probability of 
retrieval, a graph with a certain structure must be obtained, which is not 
guaranteed by the learning algorithms used.  

NAMs based on sparse recovery algorithms. To create autoassociative 
memory on the basis of a bipartite graph, in [110, 111] they use connection 
matrices W  which allow them to reconstruct a sparse noise vector e  which 
additively distorts the vector y of the base to form the query vector x . Then the 
required base vector is obtained as = −y x e . The noise vector is calculated 
using sparse recovery methods (that is, methods that find the solution vector 
with the least number of non-zero components). These methods require 
knowledge of the linear constraints matrix W  such that 0=Wy  for all vectors 
y  of the base. For some models of vectors (i.e. constraints or generative proces-
ses for the base vectors), such W  can be obtained in polynomial time from the 
base of vectors generated by the model. In contrast to [78, 145], finding W  is 
guaranteed with high probability, and adversarial rather than random errors are 
used as noise.  
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In [110] real-valued vectors are used as the base, satisfying a set of non-
sparse linear constraints. The data model, where the vectors of the base are given 
by linear combinations of vectors with sub-Gaussian components, allows storing 
the number of vectors N  up to 3/4exp( )D . The data model with a basis of 
orthonormal vectors provides N  up to exp( )d , where 1 d D≤ ≤ . Both models 
allow for accurate recovery from vectors with significant noise. 

In [111], as in [145], the vectors of the base are from a subspace defined by 
sparse linear constraints. They consider both real-valued vectors and binary 
vectors from { 1, 1}D− +  satisfying W  models of a certain type (sparse-sub-
Gaussian model). Learning is based on solving the dictionary learning problem 
with a square dictionary [111]. An iterative retrieval algorithm uses the fact that 
W  is an expander graph with good properties [111]. The memory capacity and 
resistance to distortion is increased relative to [110].  

Note the drawback of the methods considered in this section is that bases of 
real data may not correspond to the data models used.  

DISCUSSION  

In addition to being an interesting model of biological memory, neural network 
autoassociative distributed memories (NAMs) have also been considered as 
index structures that give promise to speed up nearest neighbor search relative to 
linear search (and, hopefully, to some other index structures). This mainly 
concerns sparse binary vectors of high dimension, because the number of such 
vectors that it is possible to memorize and retrieve from a significantly distorted 
version may far exceed the dimensionality of the vectors in some matrix-type 
NAMs, and the ratio /N D  may be similar to the speed-up relative to linear 
search (see the first four Sections). 

Distributed NAMs have some drawbacks relative to traditional computer 
science methods for nearest neighbor search. The vector retrieved by a NAM 
may not be the nearest neighbor of the query vector. This could be tolerable if 
the output vector is an approximate nearest neighbor from the set of stored 
vectors. However, in NAMs the output vector may not even be a vector of the 
base set ("spurious memories"). (Up to a certain number of stored vectors and 
query vector distortion these problems remain insignificant.) For dense binary 
vectors, the number of vectors able to be reliably stored and retrieved is (much) 
smaller than the vector dimension. Also, NAMs are usually analyzed for the 
average case of random vectors and distortions, whereas real data are not like 
that, which results in poorer performance. However, available comparisons with 
the inverted index for sparse binary vectors in the average case do not clearly 
show the advantage of one or other algorithm in query time (Subsections "Hop-
field networks with sparse vectors", "Willshaw networks with sparse vectors")  

An obvious approach to improve the memory and time complexity of the 
matrix-type NAMs from quadratic to linear in vector dimension is the use of 
incompletely connected networks with constant (but rather large) number of 
connections per neuron.  

An interesting direction is index structures for similarity search in which 
NAM modules are used at some stages. The index structure of Subsection 
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"Willshaw networks in the index structures for nearest neighbor search" uses 
several NAMs to memorize parts of the base, and the similarity of the result of 
single-step retrieval with the query vector is used to select the "best" NAM on 
which to perform an exact linear search against its stored vectors.  

Some studies are aimed at more efficient use of NAMs when working with 
real data. For example, the GB network with binary connections uses different 
neurons to represent the same component of the source vector, which allows for 
more balanced use of links.  

In Section "Generalization in NAMs" we discussed the use of NAMs for 
generalization rather than exact retrieval from associative memory. In the NAMs 
that use versions of the Hebb learning rule, storage of vectors (even random 
ones) is accompanied by emergence of additional stable states. For correlated 
vectors, their common 1-components become "tightly" connected and stable 
states corresponding to them arise. Revealing these stable states can be used for 
data mining, e.g. for binary factor analysis [36, 37]. Research of complex 
(possibly hierarchical) structure of stable states (discussed in terms of cores and 
fringes of neural assemblies) may appear useful both for modeling brain function 
and for applications.  

Real data in many cases are not binary sparse vectors of high dimension 
with which the NAMs considered in the first four Sections work best. So, 
similarity preserving transformations to that format are required (Subsection  
"Similarity preserving binary vectors"). However, the obtained vectors (as well 
as the initial real data) are not random and independent, so the analytical and 
experimental results available for random, independent vectors usually can not 
predict NAM characteristics for real data. 

Using data vectors (often non-binary) that satisfy some linear constraints 
(instead of random independent vectors) allows bipartite graph based NAM 
construction with capacity near exponential in the vector dimension (Section 
"NAMs with Higher-Order Connections and without Connections"). However, 
again, this requires data from specific vector models (to which real data often do 
not fit).  

In NAMs with higher-order connections, connections are not between a 
pair, but between a larger number of neurons (this number being the order). So, 
the NAM becomes of tensor-type instead of matrix-type. These NAMs (Section 
"NAMs with a Bipartite Graph Structure for Nonbinary Data with Constraints") 
allow storing the number of dense vectors exponential in the order. However, 
this is achieved by the corresponding increase in the number of connections, and 
therefore in memory and in query time.  

The higher-order NAMs are generalized in [95, 96], where, roughly, the 
sum of polynomial functions of the dot products between all memory vectors 
and the network state is used as the input sum of a neuron. Such a treatment 
makes it possible to draw interesting analogies with perceptrons and kernel 
methods in the classification problem. However, for nearest neighbor search, this 
seems impose a query time exceeding that of linear search.  

Overcoming these and other drawbacks and knowledge gaps, and improving 
NAMs are promising topics for further research. 

Let's note other directions of research in fast similarity search of binary 
(non- sparse) vectors. Examples of index structures for exact search are [28] 
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(with a fixed query radius and analysis for worst-case data; however impractical 
due to the small query radius required for sub-linear query time and moderate 
memory costs) and [116] (practical, with variable radius of the query and 
analysis for random data). 

Theoretical algorithms for approximate search (providing: sublinear search 
time, a specified maximum difference of the result from the result of the exact 
search, and no false negatives) in [2] are modifications of more practical 
algorithm classes related to Locality Sensitive Hashing and Locality Sensitive 
Filtering (see [18, 14, 147]). However, the latter allow false negatives (with low 
probability). Unlike NAMs, these algorithms provide guarantees for the worst-
case data, but require a separate index structure for each degree of distortion of 
the query vector. The bounds on the ratio of binomial coefficients [2] is useful 
for NAMs.  

We note that the index structures for the Hamming distance [28, 117] work 
with vectors of moderate dimension (up to hundreds), and for binary sparse high 
dimensional vectors Jaccard similarity index structures are used [147, 2, 27, 29]. 
A survey of these and other similar index structures is presented in the 
forthcoming [133], see also [132] for another type of index structures.  
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НЕЙРОСЕТЕВАЯ РАСПРЕДЕЛЕННАЯ 
АВТОАССОЦИАТИВНАЯ ПАМЯТЬ: ОБЗОР  

В настоящем обзоре рассмотрены модели автоассоциативной распределенной памяти, 
которые могут быть естественным образом реализованы нейронными сетями. Модели 
используют для запоминания векторов в основном локальном правиле обучения путем 
модификации значений весов межнейронных связей, которые существуют между все-
ми нейронами (полносвязные сети). В распределенной памяти различные векторы 
запоминают в одних и тех же ячейках памяти, которым в рассматриваемом случае 
нейронной сети соответствуют одни и те же связи. Обычно исследуют запоминание 
векторов, случайно выбранных из некоторого распределения. 

При подаче на вход автоассоциативной памяти искаженных вариантов запомнен-
ных в ней векторов осуществляется извлечение (восстановление) ближайшего запом-
ненного вектора. Это реализуется за счет итеративной динамики нейронной сети на 
основе локально доступной в нейронах информации, полученной по связям от других 
нейронов сети. Вплоть до определенного количества запомненных в сети векторов и 
степени их искажения на входе, в результате динамики сеть с симметричными связями 
приходит в устойчивое состояние, соответствующее запомненному в сети вектору, 
имеющему наибольшее сходство с входным вектором (сходство обычно измеряют в 
терминах скалярного произведения).  

Такие нейросетевые варианты автоассоциативной памяти позволяют запомнить с 
возможностью восстановления такого количества векторов, которое может превышать 
размерность векторов (совпадающую с количества нейронов в сети). Для векторов 
большой размерности это открывает возможность поиска приближенного ближайшего 
соседа с временной сложностью, сублинейной от количества запомненных в нейрон-
ной сети векторов. К недостаткам такой памяти относится то, что восстановленный 
динамикой сети вектор может не быть ближайшим ко входному или даже может вооб-
ще не принадлежать к множеству запомненных векторов и значительно отличаться от 
любого из них. Исследования различных типов нейросетевой автоассоциативной памя-
ти направлены на выявление диапазонов параметров, при которых указанные недоста-
тки проявляются с малой вероятностью, а достоинства выражены в максимальной 
степени. 
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Основное внимание уделено сетям с парными связями типа Hopfield, Willshaw, 
Potts и работе с бинарными разреженными векторами (векторами с количеством еди-
ничных компонентов, малым по сравнению с количеством их нулевых компонентов), 
т.к. только для таких векторов удается запомнить с возможностью восстановления 
большое количество векторов. Помимо функции автоассоциативной памяти, для этих 
сетей также обсуждается функция обобщения. Обсуждаются также неполносвязные 
сети. Кроме того, рассмотрена автоассоциативная память в нейронных сетях со связя-
ми высшего порядка — то есть со связями не между парами, а между большим количе-
ством нейронов. 

Рассмотрена также автоассоциативная память в нейронных сетях со структурой 
двудольного графа, где одно множество нейронов представляет запоминаемые векто-
ры, а другое — линейные ограничения, которым они подчиняются. Эти сети выполня-
ют функцию автоассоциативной памяти и для небинарных данных, удовлетворяющих 
заданной модели ограничений. 

Обсуждаются отношение рассмотренных в обзоре моделей нейросетевой автоас-
социативной распределенной памяти к проблематике поиска по сходству, достоинства 
и недостатки рассмотренных методов, направления дальнейших исследований. Один 
из интересных и все еще не полностью разрешенных вопросов заключается в том, 
может ли нейронная автоассоциативная память искать приближенных ближайших 
соседей быстрее других индексных структур для поиска по сходству, в частности, для 
случая векторов очень больших размерностей. 
Ключевые слова: распределенная ассоциативная память, разреженный бинарный 
вектор, сеть Хопфилда, память Уиллшоу, модель Поттса, ближайший сосед, поиск 
по сходству. 
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НЕЙРОМЕРЕЖНА РОЗПОДІЛЕНА 
АВТОАССОЦІАТИВНА ПАМ’ЯТЬ: ОГЛЯД 

У цьому огляді розглянуто моделі автоасоціативної розподіленої пам’яті, які можуть 
бути природним чином реалізовані нейронними мережами. Моделі використовують 
для запам’ятовування векторів в основному локальному правилі навчання шляхом 
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модифікації значень ваг міжнейронних зв’язків, які існують між всіма нейронами (пов-
нозв’язні мережі). У розподіленій пам’яті різні вектори запам’ятовуються в одних і тих 
самих елементах пам’яті, яким в цьому випадку нейронної мережі відповідають одні і 
ті ж зв’язки. Зазвичай досліджують запам’ятовування векторів, випадково вибраних з 
деякого розподілу. 

Якщо на вхід автоасоціативної пам’яті подаються спотворені варіанти за-
пам’ятованих в ній векторів, здійснюється витяг (відновлення) найближчого раніше 
запам’ятованого вектора. Це реалізується за рахунок ітераційної динаміки нейронної 
мережі на основі локально доступної в нейронах інформації, отриманої від інших 
нейронів мережі. До певної кількості запам’ятованих в мережі векторів і ступеня їх 
спотворення на вході, в результаті динаміки мережа із симетричними зв’язками прихо-
дить в стійкий стан, відповідний запам’ятованому в мережі вектору, який має 
найбільшу схожість з вхідним вектором (схожість зазвичай вимірюють як скалярний 
добуток). 

Такі нейромережні варіанти автоасоціативної пам’яті дозволяють запам’ятати з 
можливістю відновлення таку кількість векторів, яка може перевищувати розмірність 
векторів (що збігається з кількістю нейронів в мережі). Для векторів великої 
розмірності це відкриває можливість пошуку наближеного найближчого сусіда з 
складністю, сублінейною від кількості запам’ятованих в нейронній мережі векторів. До 
недоліків такої пам’яті відноситься те, що відновлений динамікою мережі вектор може 
не бути найближчим до вхідного або навіть може взагалі не належати до множини 
запам’ятованих векторів і значно відрізнятися від будь-якого з них. Дослідження 
різних типів нейромережної автоасоціативної пам’яті спрямовано на виявлення 
діапазонів параметрів, при яких зазначені недоліки проявляються з малою імовірністю, 
а достоїнства виражені в максимальному ступені. 

Основну увагу приділено мережам з парними зв’язками типу Hopfield, Willshaw, 
Potts і роботі з бінарними розрідженими векторами (векторами з кількістю одиничних 
компонентів, яке є малим у порівнянні з кількістю їх нульових компонентів), так як 
тільки для таких векторів вдається запам’ятати з можливістю відновлення велику 
кількість векторів. Крім функції автоасоціативної пам’яті, для цих мереж також 
обговорюється функція узагальнення. Обговорюються також неповнозв’язкові мережі. 
Крім того, розглянуто автоасоціативну пам’ять в нейронних мережах зі зв’язками ви-
щого порядку — тобто зі зв’язками не між парами, а між великою кількістю нейронів. 

Розглянуто також автоасоціативна пам’ять в нейронних мережах зі структурою 
двудольного графа, де одна множина нейронів надає вектори, які запам’ятовуються, а 
інша — лінійні обмеження, яким вони підкорюються. Ці мережі виконують функцію 
автоасоціативної пам’яті також для небінарних даних, які відповідають заданій моделі 
обмежень. 

Обговорюються можливості використання розглянутих в огляді моделей нейро-
мережної автоасоціативної розподіленої пам’яті у проблематиці пошуку за схожістю, 
достоїнства і недоліки розглянутих методів, напрямки подальших досліджень. Один із 
цікавих і все ще не повністю вирішених питань полягає в тому, чи може нейронна 
автоасоціативна пам’ять шукати наближених найближчих сусідів швидше інших 
індексних структур для пошуку за схожістю, зокрема, у випадку векторів дуже великих 
розмірностей. 
Ключові слова: розподілена асоціативна пам’ять, розріджений бінарний вектор, ме-
режа Хопфілда, пам’ять Уілшоу, модель Потса, найближчий сусід, пошук за схожіс-
тю. 


