

О необходимости условия Винера для нелинейных сингулярных параболических уравнений

И. И. Скрыпник

Представлена А. Е. Шишковым

Аннотация. Исследуется непрерывность решений нелинейных параболических уравнений вблизи негладкой границы цилиндрической области. Как частный случай можно рассмотреть параболическое уравнение с оператором p-Лапласа в главной части, p < 2. Доказано необходимое условие регулярности граничной точки в терминах p-ёмкости.

2000 MSC. 35K65, 35K35, 35Q35, 35G25, 35B45.

Ключевые слова и фразы. сингулярные параболические уравнения, условия Винера.

1. Введение

Целью работы является доказательство необходимого условия регулярности граничной точки для нелинейного параболического уравнения

$$\frac{\partial u}{\partial t} - \sum_{i=1}^{N} \frac{d}{dx_i} a_i \left(x, t, u, \frac{\partial u}{\partial x} \right) = a_0 \left(x, t, u, \frac{\partial u}{\partial x} \right), \quad (x, t) \in \Omega \times (0, T). \quad (1.1)$$

Рассматривается случай сингулярных уравнений (см. [1]), что означает сублинейность роста коэффициентов уравнения (1.1) относительно градиента решения. Достаточное условие регулярности граничной точки для таких уравнений доказано в [7].

Основной результат заключается в необходимости условия

$$\int_{0}^{1} \left\{ \frac{C_p(B(x_0, r) \setminus \Omega)}{r^{N-p}} \right\}^{\frac{1}{p-1}} \frac{dr}{r} = \infty$$
 (1.2)

Статья поступила в редакцию 15.05.2004

для регулярности точки $(x_0,t_0)\in\partial\Omega\times(0,T)$. Здесь p характеризует рост функций $a_i(x,t,u,\xi)$ относительно ξ , а, именно, предполагается выполненным неравенство

$$|a_i(x,t,u,\xi)| \le \nu_1(|\xi|^{p-1} + g_i(x,t)|u|^{p-1}) + h_i(x,t), \quad i = 1,\dots,n, \quad (1.3)$$

с $\frac{2n}{n+1} и формулируемыми ниже условиями на функции <math>g_i,\ h_i.$ Число N в (1.2) — размерность области $\Omega,\ C_p$ — p-емкость, $B(x_0,r)=\{x\in R^N:|x-x_0|< r\}.$

Условие (1.2) совпадает с полученным в [7] достаточным условием регулярности граничной точки для уравнения (1.1) и, тем самым, это условие является необходимым и достаточным.

В случае линейного роста коэффициентов уравнения относительно производных решения достаточность и необходимость условия (1.2) для регулярности граничной точки доказаны в работах В. П. Цимера [9] и И. В. Скрыпника [4] соответственно. Для уравнений с суперлинейным ростом коэффициентов эти же вопросы изучены в [5,6].

Отметим, что доказательства регулярности решений существенно различны для уравнений, соответствующих линейному, суперлинейному и сублинейному ростам коэффициентов относительно $\frac{\partial u}{\partial x}$. Возникающие здесь трудности хорошо известны (см. [1]) уже при доказательстве внутренней гельдеровости решений. Эти же трудности остаются и при изучении проблемы регулярности граничных точек.

Доказательство необходимости условия (1.2) для уравнения (1.1) основано на развитии для параболических уравнений метода работы [2], посвященной регулярности граничной точки в эллиптическом случае.

2. Формулировка предположений и основного результата

Далее Ω — ограниченное открытое множество в R^N . Предполагается, что выполнены следующие условия:

 $A_1)$ функции $a_i(x,t,u,\xi), \quad i=0,1,\ldots,n$ определены при $(x,t)\in\Omega_T=\Omega\times(0,T),\,u\in R^1,\,\xi\in R^n,$ непрерывны по u,ξ при почти всех x,t и измеримы по x,t при всех $u,\xi;$

 A_2) при $(x,t) \in \Omega_T$, $u \in R^1, \xi, \xi', \xi'' \in R^N$ выполнены неравенства

$$\sum_{i=1}^{N} \left[a_i(x, t, u, \xi') - a_i(x, t, u, \xi'') \right] (\xi_i' - \xi_i'') > 0 \quad \text{при} \quad \xi' \neq \xi'', \quad (2.1)$$

$$\sum_{i=1}^{N} a_i(x, t, u, \xi) \xi_i > \nu_1 |\xi|^p,$$

$$|a_i(x,t,u,\xi)| \le \nu_2 |\xi|^{p-1} + g_i(x,t)|u|^{p-1} + h_i(x,t),$$
 (2.2)

$$|a_0(x,t,u,\xi)| \le \nu_3(x,t)|\xi|^{p-1} + g_0(x,t)|u|^{p-1} + h_0(x,t)$$
(2.3)

и неравенство (1.3) с $\frac{2N}{N+1} , положительными постоянными <math>\nu_1, \nu_2$ и неотрицательными функциями $g_i(x,t), h_i(x,t), \nu_3(x,t)$, такими, что $F(x,t) \in L_r(0,T;L_q(\Omega))$,

$$F(x,t) = F_0(x,t) + [F_1(x,t)]^{\frac{p}{p-1}} + \nu_3^p(x,t),$$

где
$$F_0(x,t)=g_0(x,t)+h_0(x,t), \ F_1(x,t)=\sum\limits_{i=1}^Ng_i(x,t)+\sum\limits_{i=1}^Nh_i(x,t)$$
 $q,\ r\geqslant 1,\ \frac{N}{an}+\frac{1}{r}<1.$

В дальнейшем предполагаем, что $u(x,t) \in V_{2,p}(\Omega_T) \equiv C(0,T;L_2(\Omega))$ $\cap L_p(0,T;W^1_p(\Omega))$. Под решением уравнения (1.1) понимаем функцию $u(x,t) \in V_{2,p(\Omega_T)}$, удовлетворяющую интегральному тождеству

$$\int_{t_1}^{t_2} \int_{\Omega} \left\{ \frac{\partial}{\partial t} [u(x,t)]_h \varphi(x,t) + \sum_{i=1}^{N} \left[a_i \left(x, t, u, \frac{\partial u}{\partial x} \right) \right]_h \frac{\partial \varphi}{\partial x_i} - \left[a_0 \left(x, t, u, \frac{\partial u}{\partial x} \right) \right]_h \varphi(x,t) \right\} dx dt = 0 \quad (2.4)$$

при произвольной функции $\varphi(x,t)\in \overset{\circ}{V}_{2,p}(\Omega_T)=C(0,T;L_2(\Omega))\cap L_p(0,T;W_2^1(\Omega))$ и произвольных $h,t_1,t_2,$ таких, что $0< h< t_1< t_2< T-h.$ Здесь

$$[u(x,t)]_h = \frac{1}{h} \int_{t}^{t+h} u(x,s) ds$$

и аналогично определяются $\left[a_i\Big(x,t,u,\frac{\partial u}{\partial x}\Big)\right]_h,\ i=0,1,\ldots,N.$

Будем говорить, что $(x_0,t_0) \in S_T = \partial \Omega \times (0,T)$ — регулярная граничная точка уравнения (1.1), если для произвольного решения $u(x,t) \in V_{2,p}(\Omega_T)$ этого уравнения, удовлетворяющего условию

$$\varphi(x,t)[u(x,t) - f(x,t)] \in L_p(0,T; W_p^1(\Omega))$$
(2.5)

с некоторыми функциями $\varphi(x,t)$, f(x,t), такими, что $\varphi(x,t) \in C^1(R^{N+1})$, $\varphi(x,t) \equiv 1$ в некоторой окрестности точки (x_0,t_0) и $f(x,t) \in C(\overline{\Omega}_T) \cap V_{2,p}(\Omega_T)$, выполнено равенство

$$\lim_{R \to 0} \left\{ \text{ess sup} \left[u(x,t) : (x,t) \in \Omega_T \cap Q_R(x_0, t_0) \right] \right\} =$$

$$= \lim_{R \to 0} \left\{ \text{ess inf} \left[u(x,t) : (x,t) \in \Omega_T \cap Q_R(x_0, t_0) \right] \right\} = f(x_0, t_0). \quad (2.6)$$

Здесь $Q_R(x_0,t_0)=B(x_0,R)\times [t_0-R^p,\,t_0+R^p]$ и $B(x_0,R)$ — шар в R^N радиуса R с центром x_0 .

Основным результатом работы является следующая теорема.

Теорема 2.1. Предположим, что выполнены условия A_1 , A_2 . Для того, чтобы точка $(x_0, t_0) \in S_T$ была регулярной для уравнения (1.1), необходимо выполнение равенства (1.2).

Замечание 2.1. Из работы [7] и теоремы 2.1 следует, что условие (1.2) необходимо и достаточно для регулярности граничной точки $(x_0,t_0) \in S_T$.

3. Априорные оценки решения

Далее предполагается, что равенство (1.2) не выполнено, т.е.

$$\int_{0}^{1} \left\{ \frac{C_p(B(x_0, r) \setminus \Omega)}{r^{N-p}} \right\}^{\frac{1}{p-1}} \frac{dr}{r} < \infty, \tag{3.1}$$

и докажем существование решения уравнения (1.1), удовлетворяющего условию вида (2.5), для которого не выполнено равенство (2.6).

Методом Мозера просто устанавливается ограниченность вблизи (x_0, t_0) решения уравнения (1.1), удовлетворяющего условию (2.5). Поэтому далее, не ограничивая общности, можем считать, что $u(x,t) \in L_{\infty}(\Omega_T)$. В этом разделе u(x,t) — произвольное ограниченное решение уравнения (1.1) в Ω_T , и пусть $M = \text{ess sup}\{|u(x,t)|: (x,t) \in \Omega_T\}$.

Пусть δ , R — произвольные положительные числа, такие, что $(t_0 - \delta^{2-p} R^p, t_0 + \delta^{2-p} R^p) \subset (0,T), R < 1$ и обозначим

$$B = B(x_0, R), \quad Q = B \times (t_0 - \delta^{2-p} R^p, t_0 + \delta^{2-p} R^p).$$

Предполагаем, что $\xi(x), \eta(x), \zeta(x)$ — произвольные определенные в R^N функции, удовлетворяющие условиям:

- 1) $\xi(x), \eta(x), \zeta(x) \in W_p^1(B);$
- 2) $0 \le \xi(x) \le 1, \xi(x) = 1$ B $B(x_0, \frac{3R}{8}), \xi(x) = 0$ BHE $B, \left| \frac{\partial \xi}{\partial x} \right| \le \frac{6}{R}$;
- 3) $0 \le \eta(x) \le 1$, $[1 \eta(x)][1 \zeta(x)] \equiv 0$;
- 4) $0 \leqslant \zeta(x) \leqslant 1$, $\zeta(x) = 0$ при $x \in B \setminus \Omega$, $\int_B \left| \frac{\partial}{\partial x} (\xi \zeta) \right|^p dx \leqslant CR^{N-p}$.

Обозначим

$$\omega(x) = \xi(x)\zeta(x), \quad \sigma(x) = \xi(x)\zeta(x)\eta(x). \tag{3.2}$$

В дальнейшем будет указан конкретный выбор этих функций.

Определим $\theta(t) \in C^{\infty}(R^1)$, удовлетворяющую условиям: $0 \leq \theta(t)$ ≤ 1 , $\theta(t) = 1$ при $|t - t_0| \leq \frac{4}{9}\delta^{2-p}R^p$, $\theta(t) = 0$ при $|t - t_0| \geq \delta^{2-p}R^p$, $\operatorname{sign}(t - t_0)\frac{d\theta}{dt} \leq 0$, $\left|\frac{d\theta}{dt}\right| \leq 8\delta^{p-2}R^{-p}$.

Пусть 0 < l < M и определим

$$L = Q \cap \Omega_T \cap \{u > l\}, \quad L(\tau) = \{(x, t) \in L : t = \tau\},$$

$$E = L \cap \{\eta(x) < 1\}, \quad F = L \cap \{\eta(x) = 1\}.$$
(3.3)

Обозначим

$$\lambda = \min \left\{ p - 1, \frac{2[p + n(p - 2)]}{n(2p - 1)} \right\}, \quad \rho(\lambda) = \frac{2p}{2p - 2 - \lambda}.$$
(3.4)

Из условия на p следует, что λ — положительное число. Определим еще функцию

$$w(x,t) = \frac{1}{\delta} \left[\int_{l}^{u(x,t)} \left(1 + \frac{s-l}{\delta} \right)^{-\frac{1}{p} + \frac{\lambda}{2p}} \left(\frac{s-l}{\delta} \right)^{-\frac{\lambda}{p}} ds \right]_{+}, \tag{3.5}$$

где $[\cdot]_+$ обозначает положительную часть функции.

Будем понимать под известными параметрами $M,\ N,\ p,\ \nu_1,\ \nu_2,\ q,$ r норму функции F(x,t) в пространстве $L_r(0,T;L_q(\Omega)).$

Теорема 3.1. Предположим, что выполнены условия A_1 , A_2 и u(x,t) — решение уравнения (1.1) в Ω_T , удовлетворяющее неравенству $|u(x,t)| \leq M$. Тогда при произвольном $k \in \left(\frac{p}{p-1},\infty\right)$ справедлива оценка

$$\begin{split} \underset{0 < t < T}{ess \sup} \int\limits_{L(t)} G\left(\frac{u(x,t) - l}{\delta}\right) \omega^k(x) \theta^k(t) \, dx + \\ &+ \delta^{p-2} \iint\limits_{L} \left|\frac{\partial w(x,t)}{\partial x}\right|^p \omega^k(x) \theta^k(t) \, dx \, dt \leqslant \\ \leqslant K_1 \bigg\{ \delta^{p-2} R^{-p} \iint\limits_{E} \left[1 + \frac{u(x,t) - l}{\delta}\right]^{1 - \frac{\lambda}{2}(p-1)} \left[\frac{u(x,t) - l}{\delta}\right]^{\lambda(p-1)} \times \\ &\times \omega^{k-p}(x) \theta^{k-1}(t) \, dx \, dt + R^N \left[\delta^{1-p} R^{p-N} \int\limits_{R} \left|\frac{\partial \sigma}{\partial x}\right|^p dx + \right] \end{split}$$

$$+ \delta^{-1} \left(R^{p-N} \int_{B} \left| \frac{\partial \sigma}{\partial x} \right|^{p} dx \right)^{\frac{1}{p-1}} + R^{\alpha} \left(\delta^{\beta_{1}} + \delta^{\beta_{2}} + \delta^{\beta_{3}} \right) \right] \right\}, \quad (3.6)$$

где использованы обозначения (3.2)-(3.5), G(s)=s при $s\geqslant 1, G(s)=s^{2-\lambda}$ при $0\leqslant s\leqslant 1,$ K_1 — постоянная, зависящая лишь от известных параметров и k. Здесь $\alpha=\left(1-\frac{N}{pq}-\frac{1}{r}\right)(p-1),\ \beta_1=(1-p)\left(1+\frac{\lambda}{2}\right)+\frac{p-2}{r}$, $\beta_2=(1-p)\left(1+\frac{2-p}{pr}\right)+\frac{p-2}{r}$, $\beta_3=1-p+\frac{p-2}{r}$.

Доказательство. Подставим в интегральное тождество (2.4) пробную функцию

$$\varphi_1(x,t) = \left[\int_{l}^{[u(x,t)]_h} \left(1 + \frac{s-l}{\delta} \right)^{-1 + \frac{\lambda}{2}} \left(\frac{s-l}{\delta} \right)^{-\lambda} ds \right]_{+}^{-\lambda} \omega^k(x) \theta^k(t).$$

Преобразуя слагаемое полученного равенства, содержащее $\frac{\partial}{\partial t}[u(x,t)]_h$, переходя затем к пределу при $h\to 0$ и оценивая с использованием условий (1.3), (2.2), (2.3), получаем неравенство

$$\operatorname{ess \, sup}_{0 < t < T} \int_{L(t)} \left\{ \int_{l}^{u(x,t)} \int_{l}^{v} \left(1 + \frac{s - l}{\delta} \right)^{-1 + \frac{\lambda}{2}} \left(\frac{s - l}{\delta} \right)^{-\lambda} ds \, dv \right\} \times \\ \times \omega^{k}(x) \theta^{k}(t) \, dx + \iint_{L} \left(1 + \frac{u - l}{\delta} \right)^{-1 + \frac{\lambda}{2}} \left(\frac{u - l}{\delta} \right)^{-\lambda} \left| \frac{\partial u}{\partial x} \right|^{p} \times \\ \times \omega^{k}(x) \theta^{k}(t) \, dx \, dt \leqslant C_{1} \iint_{L} \left\{ \int_{l}^{u(x,t)} \int_{l}^{v} \left(1 + \frac{s - l}{\delta} \right)^{-1 + \frac{\lambda}{2}} \times \right. \\ \times \left(\frac{s - l}{\delta} \right)^{-\lambda} ds \, dv \, \theta^{-1}(t) \left| \frac{d\theta}{dt} \right| + \\ + \int_{l}^{u(x,t)} \left(1 + \frac{s - l}{\delta} \right)^{-1 + \frac{\lambda}{2}} \left(\frac{s - l}{\delta} \right)^{-\lambda} ds \times \\ \times \left[\left(\left| \frac{\partial u}{\partial x} \right|^{p-1} + F_{1}(x,t) \right) \omega^{-1}(x) \left| \frac{\partial \omega}{\partial x} \right| + \\ + \nu_{3}(x,t) \left| \frac{\partial u}{\partial x} \right|^{p-1} + F_{0}(x,t) \right\} \omega^{k}(x) \theta^{k}(t) \, dx \, dt. \quad (3.7)$$

Здесь и в ходе доказательства теоремы 3.1 через C_i обозначаются постоянные, зависящие от тех же параметров, что и K_1 в (3.6).

Отметим следующие просто проверяемые неравенства

$$\left[\int_{l}^{v} \left(1 + \frac{s - l}{\delta}\right)^{-1 + \frac{\lambda}{2}} \left(\frac{s - l}{\delta}\right)^{-\lambda} ds\right]_{+} \leqslant C_{2}\delta,$$

$$\int_{l}^{u} \int_{l}^{v} \left(1 + \frac{s - l}{\delta}\right)^{-1 + \frac{\lambda}{2}} \left(\frac{s - l}{\delta}\right)^{-\lambda} ds dv \geqslant C_{2}\delta^{2}G\left(\frac{u - l}{\delta}\right), \quad (3.8)$$

$$w(x, t) \leqslant C_{2} \left[\frac{u(x, t) - l}{\delta}\right]^{\frac{1}{\rho(\lambda)}}.$$

Используя эти неравенства, получаем из (3.7)

$$\operatorname{ess \, sup}_{0 < t < T} \int_{L(t)} G\left(\frac{u(x,t) - l}{\delta}\right) \omega^{k}(x) \theta^{k}(t) \, dx + \\ + \delta^{p-2} \iint_{L} \left|\frac{\partial w}{\partial x}\right|^{p} \omega^{k}(x) \theta^{k}(t) \, dx \, dt \leqslant \\ \leqslant C_{3} \delta^{-1} \iint_{L} \left\{\delta^{p-2} R^{-p} [u(x,t) - l] \theta^{-1}(t) + \\ + \left[\left(\left|\frac{\partial u}{\partial x}\right|^{p-1} + F_{1}(x,t)\right) \omega^{-1}(x) \left|\frac{\partial \omega}{\partial x}\right| + \\ + \nu_{3}(x,t) \left|\frac{\partial u}{\partial x}\right|^{p-1} + F_{0}(x,t)\right]\right\} \omega^{k}(x) \theta^{k}(t) \, dx \, dt. \quad (3.9)$$

Интеграл в правой части последнего неравенства представим в виде суммы интегралов по множествам E и F, принимая во внимание, что $L=E\cup F$.

Оценим вначале интегралы по E, учитывая, что при этом $\zeta(x) = 1$, $\omega(x) = \xi(x)$. Используя неравенство Юнга с $\varepsilon > 0$ и неравенство Гельдера для слагаемого, содержащего $\nu_3(x,t)$, имеем

$$\delta^{-1} \iint_{E} \left| \frac{\partial u}{\partial x} \right|^{p-1} \left[\omega^{-1}(x) \left| \frac{\partial \omega}{\partial x} \right| + \nu_{3}(x,t) \right] \omega^{k}(x) \theta^{k}(t) dx dt \le$$

$$\leq C_{4} \varepsilon \delta^{p-2} \iint_{E} \left| \frac{\partial w}{\partial x} \right|^{p} \omega^{k}(x) \theta^{k}(t) dx dt +$$

$$+ C_{4} \varepsilon^{1-p} \left\{ \delta^{\frac{p-2}{r} - (1 + \frac{\lambda}{2})(p-1)} R^{\frac{N}{q'} + \frac{p}{r'}} + \right\}$$

$$+ \delta^{p-2} R^{-p} \iint_{E} \left[1 + \frac{u(x,t) - l}{\delta} \right]^{1 - \frac{\lambda}{2}(p-1)} \times \left[\frac{u(x,t) - l}{\delta} \right]^{\lambda(p-1)} \xi^{k-p}(x) \theta^{k}(t) dx dt \right\}, \quad (3.10)$$

где $r'=\frac{r}{r-1},\ q'=\frac{q}{q-1}$ и $q,\ r$ определены в условии $A_2.$ Далее, в силу выбора λ и условия $A_2,$ имеем

$$\delta^{p-3}R^{-p} \iint_{E} [u(x,t) - l]\omega^{k}(x)\theta^{k-1}(t) dx dt \leqslant
\leqslant \delta^{p-2}R^{-p} \iint_{E} \left[1 + \frac{u(x,t) - l}{\delta}\right]^{1 - \frac{\lambda}{2}(p-1)} \times
\times \left[\frac{u(x,t) - l}{\delta}\right]^{\lambda(p-1)} \omega^{k}(x)\theta^{k-1}(t) dx dt, \qquad (3.11)$$

$$\delta^{-1} \iint_{E} \left\{F_{1}(x,t)\omega^{-1}(x) \left|\frac{\partial \omega}{\partial x}\right| + F_{0}(x,t)\right\} \omega^{k}(x)\theta^{k}(t) dx dt \leqslant
\leqslant C_{5} \left\{\delta^{1-p-\frac{2-p}{r}\cdot\frac{p-1}{p}} R^{(\frac{N}{q'} + \frac{p}{r'})\frac{p-1}{p} + \frac{N}{p}} + \delta^{1-p-\frac{2-p}{r}} R^{\frac{N}{q'} + \frac{p}{r'}}\right\}.$$

Подставим теперь в интегральное тождество (2.4) пробную функцию

$$\varphi_2(x,t) = [[u(x,t)]_h - l]_+ \sigma^k(x)\theta^k(t).$$

Повторяя преобразования, совершаемые при подстановке в (2.4) функции $\varphi_1(x,t)$ и оценивая с использованием условий (1.3), (2.2), (2.3), неравенства Юнга, получаем

$$\operatorname{ess sup}_{0 < t < T} \int_{L(t)} [u(x,t) - l]^{2} \sigma^{k}(x) \theta^{k}(t) \, dx + \\ + \iint_{L} \left| \frac{\partial u}{\partial x} \right|^{p} \sigma^{k}(x) \theta^{k}(t) \, dx \, dt \leqslant C_{6} \iint_{L} \left\{ [u(x,t) - l]^{2} \theta^{k-1}(t) \left| \frac{d\theta}{dt} \right| + \\ + [u(x,t) - l] \left[\left(\left| \frac{\partial u}{\partial x} \right|^{p-1} + F_{1}(x,t) \right) \sigma^{-1}(x) \left| \frac{\partial \sigma}{\partial x} \right| + \\ + \nu_{3}(x,t) \left| \frac{\partial u}{\partial x} \right|^{p-1} + F_{0}(x,t) \right] \right\} \sigma^{k}(x) \theta^{k}(t) \, dx \, dt \leqslant \\ \leqslant C_{6} \left\{ \delta^{2-p} R^{p} \int_{B} \left| \frac{\partial \sigma}{\partial x} \right|^{p} dx + \int_{B} \sigma^{k}(x) \, dx + \delta^{\frac{2-p}{p'}} R^{\frac{N}{q'} + \frac{p}{p'}} \right\}. \quad (3.12)$$

Оценим второй интеграл правой части (3.12), используя неравенства Гельдера и теорему вложения

$$\int_{B} \sigma^{k}(x) dx \leqslant \int_{B} [\sigma(x)]^{\frac{p}{p-1}} dx \leqslant$$

$$\leqslant C_{7}R^{N} \left\{ \frac{1}{R^{N}} \int_{B} [\sigma(x)]^{\frac{Np}{N-p}} dx \right\}^{\frac{N-p}{N(p-1)}} \leqslant$$

$$\leqslant C_{8}R^{N} \left\{ \frac{1}{R^{N-p}} \int_{B} \left| \frac{\partial \sigma}{\partial x} \right|^{p} dx \right\}^{\frac{1}{p-1}}. \quad (3.13)$$

Так как $\omega(x)=\sigma(x)$ на F, то, используя (3.12), (3.13) и неравенство Юнга, получаем

$$\delta^{-1} \iint_{F} \left| \frac{\partial u}{\partial x} \right|^{p-1} \left[\omega^{-1}(x) \left| \frac{\partial \omega}{\partial x} \right| + \nu_{3}(x, t) \right] \omega^{k}(x) \theta^{k}(t) dx dt \leqslant$$

$$\leqslant C_{9} \left\{ \delta^{1-p} R^{p} \iint_{B} \left| \frac{\partial \sigma}{\partial x} \right|^{p} dx + \delta^{-1} R^{N} \left[\frac{1}{R^{N-p}} \iint_{B} \left| \frac{\partial \sigma}{\partial x} \right|^{p} dx \right]^{\frac{1}{p-1}} + \delta^{1-p-\frac{2-p}{r}} R^{\frac{N}{q'} + \frac{p}{r'}} \right\}. \quad (3.14)$$

Аналогичную оценку имеет интеграл, получающийся заменой области интегрирования L на F в интеграле, содержащемся в правой части (3.9). Дополнительно к (3.13) нужно воспользоваться в остальных возникающих слагаемых неравенствами Юнга и (3.13). Из неравенств (3.9)–(3.11), (3.14) получаем при соответствующем выборе ε оценку (3.6), что и заканчивает доказательство теоремы 3.1.

Пемма 3.1. Предположим, что выполнены условия теоремы 3.1. Существует положительная постоянная K_2 , зависящая только от известных параметров, такая, что справедлива оценка

$$\operatorname{ess \, sup}_{0 < t < T} \int_{L(t)} [u(x, t) - l] \sigma^{p}(x) \theta^{p}(t) \, dx \leqslant K_{2} R^{N} \left\{ \frac{\delta^{2-p}}{R^{N-p}} \int_{B} \left| \frac{\partial \sigma}{\partial x} \right|^{p} dx + \left[\frac{1}{R^{N-p}} \int_{B} \left| \frac{\partial \sigma}{\partial x} \right|^{p} dx \right]^{\frac{1}{p-1}} + R^{\alpha} \delta^{\beta_{3}+1} \right\}, \quad (3.15)$$

где α, β_3 — постоянные, определенные в теореме 3.1.

Доказательство. Неравенство (3.15) доказывается в результате подстановки в (2.4) пробной функции $\varphi_3(x,t) = \left[[u(x,t)]_h - l \right]_+ \left\{ [u(x,t)]_h - l \right\}_+ \left\{$

4. Построение последовательностей $\{l_j\}$, $\{\delta_j\}$, $\{\xi_j(x)\}$, $\{\eta_j(x)\}$, $\{\zeta_j(x)\}$, $\{\theta_{jn}(t)\}$

Пусть $R_0 \in (0, \frac{1}{2})$ и такое, что $M^{2-p}R_0^p < \min\{t_0, T - t_0\}, \{R_j\},$ $j = 1, 2, \ldots$ — произвольная последовательность, удовлетворяющая условию $R_j \in \left[2^{-j-1+\frac{1}{p}}R_0, 2^{-j}R_0\right]$. Обозначим $B_j = B(x_0, R_j)$ при $j = 0, 1, 2, \ldots$ Выберем последовательность функций $\{\xi_j(x)\}$ так, что $\xi_j(x) \equiv 0$ вне $B_j, \ \xi_j(x) \equiv 1$ в $B_{j+1}; \ \left|\frac{\partial \xi_j}{\partial x}\right| \leqslant 2^{j+3}R_0^{-1}, \ 0 \leqslant \xi_j(x) \leqslant 1$ при $x \in B_j, \ \xi_j(x) \in C^\infty(R^N)$.

Определим функции $g_j(x)\in C^\infty(R^N)$ так, чтобы $g_j(x)\equiv 0$ при $x\notin B(x_0,1),\ g_j(x)\equiv 1$ при $x\in B_j\setminus \Omega$ и

$$\int_{B(x_0,1)} \left| \frac{\partial g_j(x)}{\partial x} \right|^p dx \leqslant C_0 C_p(B_j \setminus \Omega) + R_j^N. \tag{4.1}$$

Здесь C_0 — постоянная, зависящая лишь от p, n; $C_p(B_j \setminus \Omega)$ — p-емкость множества $B_j \setminus \Omega$. Обозначим $g_j'(x) = \min\{1, [g_j(x)]_+\}$ и определим последовательности $\eta_j(x)$, $\zeta_j(x)$, $\omega_j(x)$, $\sigma_j(x)$ равенствами

$$\eta_{j}(x) = \min \{1, 3g'_{j}(x) + 3g'_{j-1}(x)\},
\zeta_{j}(x) = \min \{1, [2 - 3g'_{j}(x)]_{+}\},
\omega_{j}(x) = \xi_{j}(x)\zeta_{j}(x), \quad \sigma_{j}(x) = \xi_{j}(x)\eta_{j}(x)\zeta_{j}(x).$$
(4.2)

Отметим, что так построенные последовательности $\xi_j(x)$, $\eta_j(x)$, $\zeta_j(x)$ удовлетворяют при каждом j сформулированным в начале предыдущего раздела условиям 1)–4).

Сейчас покажем способ выбора последовательностей $\{l_j\}$, $\{\delta_j\}$, $\{\theta_{j,n}(t)\}$ для $j=-1,0,1,2,\ldots,\ n=1,\ldots,M(j)$. При этом полагаем $l_{-1}=-C(t_0)$ с $C(t_0)$, определяемым равенством $[C(t_0)]^{2-p}=\min\{t_0,T-t_0\}$, l_0 выбираем равным нулю и при всех j

$$\delta_j = l_{j+1} - l_j.$$

При выбранном значении δ_i функции $\theta_{i,n}(t)$ определяются равенством

$$\theta_{i,n}(t) = \overline{\theta} \left(\delta_i^{p-2} R_i^{-p} (t - \tau_{in}) \right), \tag{4.3}$$

где $\overline{\theta}(s)$ — фиксированная функция, такая, что $\overline{\theta} \in C^{\infty}(R^1)$, $0 \le \overline{\theta}(s) \le 1$, $\overline{\theta}(s) \equiv 1$ при $|s| \le \frac{4}{9}$, $\overline{\theta}(s) \equiv 0$ при |s| > 1, $\frac{d\overline{\theta}(s)}{ds} \operatorname{sign} s \le 0$, $\left|\frac{d\overline{\theta}(s)}{ds}\right| \le 8$. Последовательность $\tau_{in}, n = 1, \ldots, M(i)$ определяем так, чтобы

$$1 \leqslant \sum_{n=1}^{M(i)} \theta_{in}(t) \leqslant 6 \quad \text{при} \quad |t - t_0| \leqslant (BM)^{2-p} R_i^p, \tag{4.4}$$

где B — число, определяемое далее в лемме 4.1, $B\geqslant 2,$ $BM\geqslant 1.$ Предполагаем R_0 зависящим от B так, чтобы выполнялось неравенство

$$(BM)^{2-p}R_0^p < \min[t_0, T - t_0]. \tag{4.5}$$

Предположим, что значения $l_i,\,i=-1,0,1,\ldots,j$ уже выбраны при некотором $j\geqslant 0$, и дадим определение $l_{j+1}.$ Пусть l — произвольное число из интервала $(l_j,BM]$ и обозначим $\delta_j(l)=l-l_j.$ Разобьем отрезок $[t_0-(BM)^{2-p}R_j^p,\ t_0+(BM)^{2-p}R_j^p]$ точками $\tau_{jm}^*,$ $m=1,\ldots,M^*(j)$ на интервалы равной длины так, чтобы $\frac{1}{4}\delta_{j-1}\leqslant \tau_{j,m+1}^*-\tau_{jm}^*<\frac{1}{2}\delta_{j-1}$ при $m=1,\ldots,M^*(j)-1.$

Обозначим

$$\theta_{jm}^*(t,l) = \overline{\theta}([\delta_j(l)]^{p-2}R_j^{-p}(t-\tau_{jm}^*)), \quad m = 1,\dots,M^*(j),$$

где $\overline{\theta}$ — та же функция, что и в (4.3).

Определим

$$A_j(l) = \max_{1 \leqslant m \leqslant M(j)} A_{jm}(l),$$

$$A_{jm}(l) = \frac{[\delta_{j}(l)]^{p-2}}{R_{j}^{N+p}} \iint_{\{u>l_{j}\}} \left[\frac{u(x,t)-l_{j}}{l-l_{j}} \right]^{1+\frac{\lambda}{2}(p-1)} \omega_{j}^{k-p}(x) [\theta_{jm}^{*}(t,l)]^{k-1} dx dt +$$

$$+ \underset{0< t< T}{\operatorname{ess sup}} \frac{1}{R_{j}^{N}} \int_{\{u(\cdot,t)>l_{j}\}} G\left(\frac{u(x,t)-l_{j}}{l-l_{j}}\right) \omega_{j}^{k}(x) [\theta_{jm}^{*}(t,l)]^{k} dx, \quad (4.6)$$

где $\{u(\cdot,t)>l_j\}=\{x\in\Omega:u(x,t)>l_j\},\,k>\frac{p}{p-1}$ и выбор числа k будет указан позже, G — функция, определенная в теореме 3.1.

Выбор l_{j+1} будет зависеть от значения нового положительного параметра a, который в дальнейшем будет зафиксирован. Рассмотрим уравнение

$$A_j(l) = a. (4.7)$$

Если существует решение l(a) этого уравнения на интервале $\left(l_j+C(t_0)R_{j+1}^{\frac{\alpha}{p-1}},\ BM\right]$, то полагаем $l_{j+1}=l(a)$. В противном случае $l_{j+1}=l_j+C(t_0)R_{j+1}^{\frac{\alpha}{p-1}}$. Здесь $C(t_0)$ — число, определенное при выборе $l_{-1},\ \alpha$ — число, определенное в теореме 3.1.

Лемма 4.1. Предположим, что выполнены условия теоремы 3.1. Тогда существует положительное число B, зависящее только от известных параметров, такое, что при выполнении неравенств

$$A_{j-1}(l_j) \leqslant a, \quad C_p(B_{j-1} \setminus \Omega) \leqslant \frac{1}{B} R_{j-1}^{N-p} a, \quad R_j^{\alpha} \leqslant \frac{1}{B} a$$
 (4.8)

справедлива оценка $A_i(l_{i+1}) \leq a$.

Доказательство. В силу определения l_{j+1} достаточно проверить, что $A_j(BM) \leqslant a$. Можем считать, что $l_j \leqslant M$, так как в противном случае $A_j(l) \equiv 0$ при $l > l_j$. Обозначим

$$\widetilde{\delta}_{j} = BM - l_{j}, \quad \widetilde{Q}_{jm} = B_{j} \times \left(\tau_{jm}^{*} - \widetilde{\delta}_{j}^{2-p} R_{j}^{p}, \tau_{jm}^{*} + \widetilde{\delta}_{j}^{2-p} R_{j}^{p}\right),$$

$$\widetilde{L}_{jm} = \widetilde{Q}_{jm} \cap \{u > l_{j}\}, \quad \widetilde{E}_{jm} = \widetilde{L}_{jm} \cap \{\eta_{j}(x) < 1\},$$

$$\widetilde{F}_{jm} = \widetilde{L}_{jm} \cap \{\eta_{j}(x) = 1\}, \quad \theta_{jm}^{*}(t, BM) = \widetilde{\theta}_{jm}(t).$$

Займемся оценкой слагаемых, содержащихся в $A_j(BM)$. Для заданного m, такого, что $1\leqslant m\leqslant M^*(j)$, определим, в силу неравенства (4.4), последовательность $n(i),\,i=1,\ldots,i(m,j),\,\,1\leqslant n(i)\leqslant M(j-1)$ так, чтобы

$$\sum_{i=1}^{i(m,j)} \theta_{j-1,n(i)}^{k}(t) \geqslant \widetilde{\theta}_{jm}^{k-1}(t), \quad i(m,j) \leqslant C_{10} \left(\frac{BM}{\delta_{j-1}}\right)^{2-p}. \tag{4.9}$$

Заметим также, что из определения функций $\eta_j(x), \zeta_j(x)$ следует равенство

$$\zeta_{j-1}(x) \equiv 1, \quad \text{если} \quad \eta_j(x) < 1.$$
 (4.10)

Представляя первый интеграл правой части (4.6) с l = BM в виде суммы интегралов \widetilde{E}_{jm} и \widetilde{F}_{jm} и используя (4.9), (4.10), первое неравенство в (4.8) и лемму 3.1, получаем

$$\begin{split} & \frac{\widetilde{\delta}_{j}^{p-2}}{R_{j}^{N+p}} \iint\limits_{\{u>l_{j}\}} \left[\frac{u(x,t)-l_{j}}{\widetilde{\delta}_{j}} \right]^{1+\frac{\lambda}{2}(p-1)} \omega_{j}^{k-p}(x) \, \widetilde{\theta}_{jm}^{k-1}(t) \, dx \, dt \leqslant \\ & \leqslant \frac{\widetilde{\delta}_{j}^{p-2}}{R_{j}^{N+p}} \sum_{i=1}^{i(m,j)} \iint\limits_{\{u>l_{j-1}\}} \left[\frac{u(x,t)-l_{j-1}}{\widetilde{\delta}_{j}} \right]^{1+\frac{\lambda}{2}(p-1)} \omega_{j-1}^{k-p}(x) \, \theta_{j-1,n(i)}^{k-1}(t) \, dx \, dt + \end{split}$$

$$+ C_{11} \underset{0 < t < T}{\text{ess sup}} \frac{1}{R_{j}^{N}} \int_{\widetilde{F}_{jm}(t)} [u(x,t) - l_{j}] \sigma_{j}^{p}(x) \widetilde{\theta}_{jm}^{p}(t) dx \leqslant$$

$$C_{12} \Big\{ B^{-1 - \frac{\lambda}{2}(p-1)} a + B^{2-p} R_{j-1}^{p-N} C_{p}(B_{j-1} \setminus \Omega) + B^{1+\beta_{3}} R_{j}^{\alpha} \Big\}, \quad (4.11)$$

где $\widetilde{F}_{jm}(t)=\{x:(x,t)\in\widetilde{F}_{jm}\}.$ При этом воспользовались оценкой

$$\int_{B_j} \left| \frac{\partial \sigma_j(x)}{\partial x} \right|^p dx \leqslant C_{13} \left\{ C_p(B_{j-1} \setminus \Omega) + R_j^N \right\}, \tag{4.12}$$

следующей из (4.1), (4.2) и неравенства Пуанкаре.

Для оценки второго интеграла в (4.6) при l=BM используем теорему 3.1 и получаем

$$\operatorname{ess \, sup}_{0 < t < T} \frac{1}{R_{j}^{N}} \int_{\{u(\cdot,t) > l_{j}\}} G\left(\frac{u(x,t) - l_{j}}{\widetilde{\delta}_{j}}\right) \omega_{j}^{k}(x) \, \widetilde{\theta}_{jm}^{k}(t) \, dx \leqslant$$

$$\leqslant C_{14} \left\{ C(\varepsilon) \widetilde{\delta}_{j}^{p-2} R_{j}^{-N-p} \iint_{\widetilde{E}_{jm}} \left[\frac{u(x,t) - l_{j}}{\widetilde{\delta}_{j}} \right]^{1 + \frac{\lambda}{2}(p-1)} \omega_{j}^{k-p}(x) \, \widetilde{\theta}_{j,m}^{k-1}(t) \, dx \, dt +$$

$$+ \varepsilon \widetilde{\delta}_{j}^{p-2} R_{j}^{-N-p} \iint_{\widetilde{E}_{jm}} \omega_{j}^{k-p}(x) \, \widetilde{\theta}_{j}^{k-1}(t) \, dx \, dt + \widetilde{\delta}_{j}^{1-p} R_{j}^{p-N} \iint_{B_{j}} \left| \frac{\partial \sigma_{j}}{\partial x} \right|^{p} dx +$$

$$+ \widetilde{\delta}_{j}^{-1} \left[R_{j}^{p-N} \iint_{B_{j}} \left| \frac{\partial \sigma_{j}}{\partial x} \right|^{p} dx \right]^{\frac{1}{p}} + R_{j}^{\alpha} \left(\delta_{j}^{\beta_{1}} + \delta_{j}^{\beta_{2}} + \delta_{j}^{\beta_{3}} \right) \right\}, \quad (4.13)$$

где ε — произвольное число из интервала (0,1), $C(\varepsilon)$ — постоянная, зависящая лишь от ε , λ , p.

Оценка первого слагаемого правой части (4.13) следует из (4.11). Используя (4.9), (4.10) и первое неравенство в (4.8), имеем

$$\widetilde{\delta}_{j}^{p-2} R_{j}^{-N-p} \iint_{\widetilde{E}_{jm}} \omega_{j}^{k-p}(x) \, \widetilde{\theta}_{j,m}^{k-1}(t) \, dx \, dt \leqslant C_{15} \widetilde{\delta}_{j}^{p-2} R_{j}^{-N-p} \times \\
\times \sum_{i=1}^{i(m,j)} \iint_{u>l_{j}} \left[\frac{u(x,t) - l_{j-1}}{\delta_{j-1}} \right]^{1+\frac{\lambda}{2}(p-1)} \omega_{j-1}^{k-p}(x) \theta_{j-1,n(i)}^{k-1}(t) \, dx \, dt \leqslant \\
\leqslant C_{15} \, \widetilde{\delta}_{j}^{p-2} R_{j}^{-N-p} \, \delta_{j-1}^{2-p} R_{j-1}^{N+p} \, i(m,j) a \leqslant C_{16} \, a. \quad (4.14)$$

Теперь из неравенств (4.11)–(4.14) и предположений (4.8) следует оценка

$$A_{j}(BM) \leqslant C_{17} \Big\{ C(\varepsilon) \Big[B^{-1 - \frac{\lambda}{2}(p-1)} + B^{1-p} + B^{\beta_{3}} \Big] + B^{\beta_{1} - 1} + B^{\beta_{2} - 1} + \varepsilon \Big\} a. \tag{4.15}$$

Выбирая далее достаточно малым число ε , а затем достаточно большим число B, получаем из (4.15) $A_j(BM) < a$, что и доказывает утверждение леммы 4.1.

Возвращаясь опять к определению числа l_{j+1} , мы видим, что могут представиться две возможности: $A_j \left(l_j + C(t_0) R_{j+1}^{\frac{\alpha}{p-1}}\right) \leqslant a$, $A_j \left(l_j + C(t_0) R_{j+1}^{\frac{\alpha}{p-1}}\right) \leqslant a$, $A_j \left(l_j + C(t_0) R_{j+1}^{\frac{\alpha}{p-1}}\right) \leqslant a$. Принимая во внимание, что функция $A_j(l)$ монотонно убывает и непрерывна, и предполагая выполнение условий леммы 4.1, получаем во втором случае существование решения l(a) уравнения (4.7) на интервале $\left[l_j + C(t_0) R_{j+1}^{\frac{\alpha}{p-1}}, BM\right]$. Следовательно, это решение и будет l_{j+1} . В первом случае мы выбрали $l_{j+1} = l_j + C(t_0) R_{j+1}^{\frac{\alpha}{p-1}}$. Отметим также ограниченность последовательности $\{l_j\}$.

Закончив с выбором l_{j+1} , вернемся к построению последовательности $\{\theta_{jn}(t)\}$, $n=1,\ldots,M(j)$. Она определяется равенством $\theta_{jn}(t)=\theta_{j,m(n)}^*(t,l_{j+1})$ и подпоследовательность $\{m(1),\ldots,m(M(j))\}$ последовательности $\{1,\ldots,M^*(j)\}$ выбирается так, чтобы выполнялись условия:

1)
$$\max \left\{ A_{j,m(1)}(l_{j+1}), \dots, A_{j,m(M(j))}(l_{j+1}) \right\} = A_j(l_{j+1}) = a,$$
 (4.16) если $l_{j+1} > l_j + C(t_0) R_{j+1}^{\frac{\alpha}{p-1}};$

2)
$$1 \leqslant \theta_{j_1}(t) + \dots + \theta_{j,M(j)}(t) \leqslant 6$$
 при $|t - t_0| \leqslant (BM)^{2-p} R_j^p$. (4.17)

5. Оценка сверху последовательности $\{l_j\}$

Теорема 5.1. Предположим, что выполнены условия теоремы 3.1, леммы $4.1\ u\ R_0$ удовлетворяет условию (4.5). Тогда существуют положительные числа $k,\ a,\ \alpha_1,\ K_3,\$ зависящие только от известных параметров, такие, что при всех j выполнена оценка

$$\delta_j \leqslant \frac{1}{2} \, \delta_{j-1} + K_3 \left\{ R_j^{\alpha_1} + \left[R_j^{p-N} \, C_p(B_{j-1} \setminus \Omega) \right]^{\frac{1}{p-1}} \right\}.$$
 (5.1)

Доказательство. Зафиксируем $j\geqslant 1$ и будем предполагать, что

$$\delta_j > \frac{1}{2} \, \delta_{j-1}, \quad \delta_j > C(t_0) R_j^{\frac{\alpha}{p-1}},$$
 (5.2)

так как в противном случае оценка (5.1) тривиальна. Второе неравенство в (5.2) показывает, что $l_{j+1} = l(a)$, где l(a) — решение уравнения (4.7).

Займемся оценкой слагаемых правой части (4.6) при $l=l_{j+1},$ m=m(n). Обозначим

$$L_{jn} = Q_{jn} \cap \{u > l_j\},$$

$$Q_{jn} = B_j \times (\tau_{j,m(n)}^* - \delta_j^{2-p} R_j^p, \ \tau_{j,m(n)}^* + \delta_j^{2-p} R_j^p),$$

$$E_{jn} = L_{jn} \cap \{\eta_j(x) < 1\}, \quad F_{jn} = L_{jn} \cap \{\eta_j(x) = 1\}$$

и представим $L_{jn} = L'_{jn} \cup L''_{jn}$, где

$$L'_{jn} = L_{jn} \cap \{u - l_j < \gamma \delta_j\}, \quad L''_{jn} = L_{jn} \cap \{u - l \geqslant \gamma \delta_j\}$$

с некоторым, выбираемым в дальнейшем, $\gamma \in (0,1)$. Имеем

$$\frac{\delta_{j}^{p-2}}{R_{j}^{N+p}} \iint_{L_{jn}} \left[\frac{u(x,t) - l_{j}}{\delta_{j}} \right]^{1 + \frac{\lambda}{2}(p-1)} \omega_{j}^{k-p}(x) \, \theta_{jn}^{k-1}(t) \, dx \, dt \leqslant \\
\leqslant \gamma^{\frac{\lambda}{2}(p-1)} \delta_{j}^{p-2} \, R_{j}^{-N-p} \left\{ \gamma \iint_{E_{jn}} \omega_{j}^{k-p}(x) \, \theta_{jn}^{k-1}(t) \, dx \, dt + \right. \\
+ \iint_{F_{jn}} \frac{u(x,t) - l_{j}}{\delta_{j}} \sigma_{j}^{k-p}(x) \, \theta_{jn}^{k-1}(t) \, dx \, dt \right\} + \\
+ \delta_{j}^{p-2} \, R_{j}^{-N-p} \iint_{L_{jn}^{\prime}} \left[\frac{u(x,t) - l_{j}}{\delta_{j}} \right]^{1 + \frac{\lambda}{2}(p-1)} \omega_{j}^{k-p}(x) \, \theta_{jn}^{k-1}(t) \, dx \, dt. \quad (5.3)$$

Первый интеграл правой части (5.3) оценивается аналогично неравенству (4.14)

$$\delta_j^{p-2} R_j^{-N-p} \iint_{E_{jn}} \omega_j^{k-p}(x) \,\theta_{jn}^{k-1}(t) \, dx \, dt \leqslant C_{18} \, a. \tag{5.4}$$

Следующая оценка получается в силу леммы 3.1 и неравенства (4.12)

$$\delta_{j}^{p-2} R_{j}^{-N-p} \iint_{F_{jn}} \frac{u(x,t) - l_{j}}{\delta_{j}} \sigma_{j}^{k-p}(x) \, \theta_{jn}^{k-1}(t) \, dx \, dt \leq$$

$$\leq C_{19} R_{j}^{-N} \, \delta_{j}^{-1} \underset{0 < t < T}{\text{ess sup}} \int_{\{u(\cdot,t) > l_{j}\}} \left[u(x,t) - l_{j} \right] \sigma_{j}^{p}(x) \, \theta_{jn}^{p}(t) \, dx \leq$$

$$\leq C_{20} \left\{ \delta_{j}^{1-p} R_{j}^{p-N} \, C_{p}(B_{j-1} \setminus \Omega) + \delta_{j}^{-1} \left[R_{j}^{p-N} \, C_{p}(B_{j-1} \setminus \Omega) \right]^{\frac{1}{p-1}} + C_{p}(B_{j-1} \setminus \Omega) \right\}$$

$$+\delta_{j}^{\beta_{3}}R_{j}^{\alpha}+\delta_{j}^{-1}R_{j}^{p}$$
. (5.5)

Определим функцию $w_j(x,t)$ равенством (3.5) при $l=l_j,\,\delta=\delta_j.$ Для нее выполнена оценка

$$w_j(x,t) \geqslant C_{21}(\gamma) \left(\frac{u-l_j}{\delta_j}\right)^{\frac{1}{\rho(\lambda)}}$$
 при $(x,t) \in L_{jn}''$ (5.6)

с постоянной $C_{21}(\gamma)$, зависящей от известных параметров и γ . В дальнейшем зависимость постоянных от дополнительных, к известным, параметров ε , γ указывается в виде $C_i(\varepsilon)$, $C_i(\gamma)$.

Обозначим $z_1 = \left(1 + \frac{\lambda}{2}(p-1)\right)\rho(\lambda)$ и оценим последний интеграл в (5.3) по неравенству Юнга

$$\iint_{L''_{jn}} \left[\frac{u(x,t) - l_{j}}{\delta_{j}} \right]^{1 + \frac{\lambda}{2}(p-1)} \omega_{j}^{k-p}(x) \, \theta_{jn}^{k-1}(t) \, dx \, dt \leqslant
\leqslant \varepsilon \, C_{22}(\gamma) \iint_{L''_{jn}} w_{j}^{\rho(\lambda)}(x,t) \left[\omega_{j}(x) \, \theta_{jn}(t) \right]^{p} \, dx \, dt +
+ C_{23}(\varepsilon) \iint_{L''_{jn}} \left[w_{j}(x,t) \right]^{(z_{1} - \rho(\lambda))z_{2} + \rho(\lambda)} \left[\omega_{j}(x) \, \theta_{jn}(t) \right]^{(k-2p)z_{2} + p} \, dx \, dt,$$
(5.7)

где ε — произвольное число из интервала (0,1), число z_2 находится из условия

$$(z_1 - \rho(\lambda))z_2 + \rho(\lambda) = p \frac{N + \rho(\lambda)}{N}.$$
 (5.8)

Условие на λ обеспечивает выполнение неравенства $z_2 > 1$.

В силу определения функции G в теореме 3.1 имеем

$$w_j^{\rho(\lambda)}(x,t) \leqslant C_{24}(\gamma) G\left(\frac{u(x,t)-l_j}{\delta_i}\right)$$
 при $(x,t) \in L_{jn}''$. (5.9)

Используя неравенства (4.4) и (5.2), определим последовательность $q(i), i = 1, \ldots, I_j(n), 1 \leqslant q(i) \leqslant M(j-1)$ так, чтобы

$$\sum_{i=1}^{I_j(n)} \theta_{j-1,q(i)}^k(t) \geqslant \theta_{jn}^p(t), \quad I_j(n) \leqslant C_{25} \left(\frac{\delta_j}{\delta_{j-1}}\right)^{2-p}.$$
 (5.10)

Обозначим $E''_{jn} = E_{jn} \cap L''_{jn}$, $F''_{jn} = F_{jn} \cap L''_{jn}$. Неравенства (5.9), (5.10), (5.2), равенство (4.10) и лемма 4.1 дают нам возможность получить

следующую оценку

$$\iint_{E''_{jn}} w_{j}^{\rho(\lambda)}(x,t) \left[\omega_{j}(x) \,\theta_{jn}(t)\right]^{p} dx \,dt \leqslant
\leqslant C_{26} (\gamma) \sum_{i=1}^{I_{j}(n)} \iint_{E''_{jn}} G\left(\frac{u(x,t) - l_{j}}{\delta_{j}}\right) \omega_{j-1}^{k}(x) \theta_{j-1,q(i)}^{k}(t) \,dx \,dt \leqslant
\leqslant C_{27} (\gamma) \delta_{j-1}^{2-p} R_{j-1}^{p} \sum_{i=1}^{I_{j}(n)} \operatorname{ess sup} \int_{\{u(\cdot,t) > l_{j-1}\}} G\left(\frac{u(x,t) - l_{j-1}}{\delta_{j-1}}\right) \times
\times \omega_{j-1}^{k}(x) \theta_{j-1,q(i)}^{k}(t) \,dx \,dt \leqslant C_{27} (\gamma) \delta_{j-1}^{2-p} R_{j-1}^{N+p} I_{j}(n) \,A_{j-1}(l_{j}) \leqslant
\leqslant C_{28} (\gamma) \delta_{j}^{2-p} R_{j}^{N+p} a. \quad (5.11)$$

Представляя второй интеграл в (5.7) в виде суммы интегралов по E''_{in} и F''_{in} и используя неравенства (5.5), (5.11), получаем

$$\iint_{L''_{jn}} w_j^{\rho(\lambda)}(x,t) \left[\omega_j(x) \,\theta_{jn}(t) \right]^p dx \, dt \leqslant
\leqslant C_{29} \left(\gamma \right) \delta_j^{2-p} R_j^{N+p} \left\{ a + \delta_j^{1-p} R_j^{p-N} \, C_p(B_{j-1} \setminus \Omega) +
+ \delta_j^{-1} \left[R_j^{p-N} \, C_p(B_{j-1} \setminus \Omega) \right]^{\frac{1}{p-1}} + \delta_j^{\beta_3} R_j^{\alpha} + \delta_j^{-1} R_j^p \right\}.$$
(5.12)

Второй интеграл правой части (5.7) оцениваем, применяя вначале неравенство Гельдера, затем теорему вложения, и получаем

$$\iint_{L_{jn}''} [w_{j}(x,t)]^{(z_{1}-\rho(\lambda))z_{2}+\rho(\lambda)} [\omega_{j}(x)\theta_{jn}(t)]^{(k-2p)z_{2}+p} dx dt \leqslant$$

$$\leqslant \left\{ \operatorname{ess sup} \int_{L_{jn}''(t)} w_{j}^{\rho(\lambda)}(x,t) [\omega_{j}(x)\theta_{jn}(t)]^{p} dx \right\}^{\frac{p}{N}} \times$$

$$\times \iint_{L_{in}} \left| \frac{\partial}{\partial x} \left\{ w_{j}(x,t) \left[\omega_{j}(x)\theta_{jn}(t) \right]^{\left(\frac{k}{p}-2\right)z_{2}+\frac{N-p}{N}} \right\} \right|^{p} dx dt. \quad (5.13)$$

Заметим, что аналогично неравенству (5.12) получается следующая оценка первого интеграла в правой части (5.13)

$$\operatorname{ess} \sup_{t} \iint_{L_{jn}''(t)} w_{j}^{\rho(\lambda)}(x,t) \left[\omega_{j}(x) \,\theta_{jn}(t)\right]^{p} dx \, dt \leqslant$$

$$\leqslant C_{30}(\gamma) R_j^N \left\{ a + \delta_j^{\beta_3} R_j^{\alpha} + \delta_j^{-1} R_j^p + \delta_j^{1-p} R_j^{p-N} C_p(B_{j-1} \setminus \Omega) + \delta_j^{-1} \left[R_j^{p-N} C_p(B_{j-1} \setminus \Omega) \right]^{\frac{1}{p-1}} \right\}.$$
(5.14)

Зафиксируем значение k

$$k = \max \left\{ 2p, \frac{p}{p-1}, \left(\frac{p^2}{N} + 2pz_2 \right) (z_2 - 1)^{-1} \right\} + 1.$$

В силу теоремы 3.1 и (4.12) последний интеграл в (5.13) оценивается следующим образом

$$\iint_{L_{jn}} \left| \frac{\partial}{\partial x} \left\{ w_{j}(x,t) \left[\omega_{j}(x) \theta_{jn}(t) \right]^{\left(\frac{k}{p}-2\right) z_{2} + \frac{N-p}{N}} \right\} \right|^{p} dx dt \leqslant
\leqslant C_{31} \left\{ I_{1} + I_{2} + \delta_{j}^{1-p} R_{j}^{p} C_{p}(B_{j-1} \setminus \Omega) +
+ \delta_{j}^{-1} R_{j}^{N} \left[R_{j}^{p-N} C_{p}(B_{j-1} \setminus \Omega) \right]^{\frac{1}{p-1}} + R_{j}^{N+\alpha} \delta_{j}^{\beta_{4}} \right\}, (5.15)$$

где $\beta_4 = \min\{-1, \beta_1, \beta_2, \beta_3 < 0\},$

$$I_{1} = \frac{1}{R_{j}^{p}} \iint_{E_{jn}} \left[1 + \frac{u(x,t) - l_{j}}{\delta_{j}} \right]^{1 + \frac{\lambda}{2}(p-1)} [\omega_{j}(x)\theta_{jn}(t)]^{k} dx dt,$$

$$I_{2} = \iint_{L_{in}} w_{j}^{p}(x,t) \left| \frac{\partial \omega_{j}(x)}{\partial x} \right|^{p} [\omega_{j}(x)\theta_{jn}(t)]^{k} dx dt.$$

Интеграл I_1 оцениваем, используя определение l_{j+1} и неравенство (5.4),

$$I_{1} \leqslant C_{32} \left\{ \delta_{j}^{2-p} R_{j}^{N} A_{j,m(n)}(l_{j+1}) + \frac{1}{R_{j}^{p}} \iint_{E_{jn}} [\omega_{j}(x)\theta_{jn}(t)]^{k} dx dt \right\} \leqslant C_{33} \delta_{j}^{2-p} R_{j}^{N} a. \quad (5.16)$$

Интеграл I_2 представим в виде суммы интегралов по E_{jn} и F_{jn} и оценим каждый из интегралов. Используя последнее неравенство в (3.8), ограниченность последовательности $\{\delta_j\}$ и оценки (4.12), (5.16), получаем

$$\iint_{L_{in}} w_j^p(x,t) \left| \frac{\partial w_j}{\partial x} \right|^p [\omega_j(x)\theta_{jn}(t)]^k dx dt \leqslant$$

$$\leqslant C_{34} \left\{ \iint_{L_{jn}} w_j^p(x,t) \left[\left| \frac{\partial \zeta_j}{\partial x} \right|^p + \left| \frac{\partial \sigma_j}{\partial x} \right|^p \right] [\omega_j(x)\theta_{jn}(t)]^k dx dt + \frac{1}{R_j^p} \iint_{E_{jn}} \left[\frac{u(x,t) - l_j}{\delta_j} \right]^{\frac{p}{\rho(\lambda)}} [\omega_j(x)\theta_{jn}(t)]^k dx dt \right\} \leqslant$$

$$\leqslant C_{35} \left\{ \delta_j^{3-2p} R_j^p \left[C_p(B_{j-1} \setminus \Omega) + R_j^N \right] + I_1 \right\} \leqslant$$

$$\leqslant C_{36} \delta_j^{2-p} R_j^N \left\{ a + \delta_j^{1-p} R_j^{p-N} \left[C_p(B_{j-1} \setminus \Omega) + R_j^N \right] \right\}. \quad (5.17)$$

Неравенства (5.3)–(5.5), (5.7), (5.12), (5.13)–(5.17) приводят к следующей оценке первого слагаемого в $A_{i,m(n)}(l_{j+1})$:

$$\delta_{j}^{p-2}R_{j}^{-N-p}\iint_{L_{jn}} \left[\frac{u(x,t) - l_{j}}{\delta_{j}} \right]^{1+\frac{\lambda}{2}(p-1)} \omega_{j}^{k-p}(x) \theta_{jn}^{k-p}(t) dx dt \leqslant$$

$$\leqslant C_{37} \left\{ \left[\gamma^{1+\frac{\lambda}{2}(p-1)} + \varepsilon C_{38}(\gamma) \right] a + \delta_{j}^{1-p} R_{j}^{p-N} C_{p}(B_{j-1} \setminus \Omega) + \right.$$

$$\left. + \delta_{j}^{-1} \left[R_{j}^{p-N} C_{p}(B_{j-1} \setminus \Omega) \right]^{\frac{1}{p-1}} + \delta_{j}^{\beta_{4}} R_{j}^{\alpha} \right\} + C_{39}(\varepsilon) C_{40}(\gamma) \left\{ a + \right.$$

$$\left. + \delta_{j}^{1-p} R_{j}^{p-N} C_{p}(B_{j-1} \setminus \Omega) + \delta_{j}^{-1} \left[R_{j}^{p-N} C_{p}(B_{j-1} \setminus \Omega) \right]^{\frac{1}{p-1}} + \delta_{j}^{\beta_{4}} R_{j}^{\alpha} \right\}^{1+\frac{p}{N}}. \tag{5.18}$$

Займемся теперь оценкой второго слагаемого в $A_{j,m(n)}(l_{j+1})$. Применяя теорему 3.1 и неравенство (4.12), получаем

$$\operatorname{ess \, sup}_{0 < t < T} \frac{1}{R_{j}^{N}} \int_{\{u(\cdot,t) > l_{j}\}} G\left(\frac{u(x,t) - l_{j}}{\delta_{j}}\right) \omega_{j}^{k}(x) \theta_{jn}^{k}(t) \, dx \leq$$

$$\leq C_{41} \left\{ I_{3} + \delta_{j}^{1-p} R_{j}^{p-N} C_{p}(B_{j-1} \setminus \Omega) + \right.$$

$$\left. + \delta_{j}^{-1} \left[R_{j}^{p-N} C_{p}(B_{j-1} \setminus \Omega) \right]^{\frac{1}{p-1}} + R_{j}^{\alpha} \delta_{j}^{\beta_{4}} \right\}, \quad (5.19)$$

где

$$\begin{split} I_3 &= \delta_j^{p-2} R_j^{-N-p} \iint\limits_{E_{jn}} \left[1 + \frac{u - l_j}{\delta_j} \right]^{1 - \frac{\lambda}{2}(p-1)} \times \\ &\qquad \times \left(\frac{u - l_j}{\delta_i} \right)^{\lambda(p-1)} \omega_j^{k-p}(x) \theta_{jn}^{k-1}(t) \, dx \, dt. \end{split}$$

Для оценки I_3 представим последний интеграл в виде суммы двух интегралов по E_{jn}' и E_{jn}'' и получаем

$$I_{3} \leqslant C_{42} \gamma^{\lambda(p-1)} \delta_{j}^{p-2} R_{j}^{-N-p} \iint_{E'_{jn}} \omega_{j}^{k-p}(x) \theta_{j}^{k-1}(t) dx dt +$$

$$+ C_{42} \gamma^{-1 + \frac{\lambda}{2}(p-1)} \delta_{j}^{p-2} R_{j}^{-N-p} \iint_{E''_{jn}} \left[\frac{u - l_{j}}{\delta_{j}} \right]^{1 + \frac{\lambda}{2}(p-1)} \omega_{j}^{k-p}(x) \theta_{jn}^{k-1}(t) dx dt.$$

$$(5.20)$$

Таким образом, из равенства $A_j(l_{j+1})=a,$ (4.16) и оценок (5.18)—(5.20) и (5.4) имеем

$$a \leq C_{43} \left\{ \left[\gamma^{1 + \frac{\lambda}{2}(p-1)} + \gamma^{\lambda(p-1)} + \varepsilon C_{44}(\gamma) \right] a + C_{44}(\gamma) \left\{ \delta_{j}^{1-p} R_{j}^{p-N} C_{p}(B_{j-1} \setminus \Omega) + \delta_{j}^{-1} \left[R_{j}^{p-N} C_{p}(B_{j-1} \setminus \Omega) \right]^{\frac{1}{p-1}} + \delta_{j}^{\beta_{4}} R_{j}^{\alpha} + C_{45}(\varepsilon) \left[a^{1+\frac{p}{n}} + \left(\delta_{j}^{1-p} R_{j}^{p-N} C_{p}(B_{j-1} \setminus \Omega) + \delta_{j}^{-1} \left[R_{j}^{p-N} C_{p}(B_{j-1} \setminus \Omega) \right]^{\frac{1}{p-1}} + \delta_{j}^{\beta_{4}} R_{j}^{\alpha} \right)^{1+\frac{p}{N}} \right] \right\}. \quad (5.21)$$

Далее, вначале фиксируем γ , удовлетворяющим равенству

$$(1 + C_{43}) \left[\gamma^{1 + \frac{\lambda}{2}(p-1)} + \gamma^{\lambda(p-1)} \right] = \frac{1}{5}, \tag{5.22}$$

затем выбираем ε из условия

$$\varepsilon (C_{43} C_{44}(\gamma) + 1) = \frac{1}{5}.$$
 (5.23)

После того, как зафиксированы значения γ и ε , определяем число a следующим равенством

$$a^{\frac{p}{N}} \left[C_{44}(\gamma) C_{45}(\varepsilon) + 1 \right] = \frac{1}{5}.$$
 (5.24)

Учитывая равенства (5.22)–(5.25), получаем из неравенства (5.21) следующую оценку

$$a \leqslant C_{46}\delta_{j}^{1-p}R_{j}^{p-N}C_{p}(B_{j-1}\setminus\Omega) + C_{46}\left[\delta_{j}^{1-p}R_{j}^{p-n}C_{p}(B_{j-1}\setminus\Omega)\right]^{\frac{1}{p-1}} +$$

$$+ C_{46}\delta_{j}^{\beta_{4}}R_{j}^{\alpha} + C_{46}\left[\delta_{j}^{1-p}R_{j}^{p-n}C_{p}(B_{j-1}\setminus\Omega)\right]^{1+\frac{p}{N}} +$$

$$+ C_{46}\left[\delta_{j}^{1-p}R_{j}^{p-N}C_{p}(B_{j-1}\setminus\Omega)\right]^{\frac{p+N}{N(p-1)}} + C_{46}\left[\delta_{j}^{\beta_{4}}R_{j}^{\alpha}\right]^{1+\frac{p}{N}}. \quad (5.25)$$

Окончательно следует, что хотя бы одно слагаемое правой части (5.25) превосходит $\frac{a}{6}$, что приводит к справедливости одной из оценок

$$\delta_j \leqslant C_{47} \left\{ R_j^{p-M} C_p(B_{j-1} \setminus \Omega) \right\}^{\frac{1}{p-1}}, \quad \delta_j \leqslant C_{47} R_j^{\frac{\alpha}{\beta_4}}. \tag{5.26}$$

Теперь неравенство (5.1) следует из (5.6) и доказательство теоремы 5.1 закончено.

Вернемся к проверке условий (4.8) леммы 4.1. Очевидно, что последнее неравенство в (4.8) обеспечивается выбором R_0 , подчиненным, дополнительно к (4.5), неравенству

$$R_0^{\alpha} < B^{-1}a,$$
 (5.27)

в котором справа стоит уже фиксированная постоянная. Второе неравенство в (4.8) обеспечивается выборами R_0 и последовательности $\{R_i\}$, но при этом уже будет использоваться неравенство (3.1).

Итак, предполагаем сейчас справедливым неравенство (3.1). Тогда можем выбрать R_0 так, чтобы

$$\int_{0}^{R_{0}} \left\{ \frac{C_{p}(B(x_{0}, r) \setminus \Omega)}{r^{N-p}} \right\}^{\frac{1}{p-1}} \frac{dr}{r} < \left(\frac{a}{B}\right)^{\frac{1}{p-1}} \frac{p-1}{p} \ln 2.$$
 (5.28)

Неравенство (5.28) влечет за собой следующее неравенство, справедливое при любом $j=1,2,\dots$

$$\int_{R'_{i}}^{R''_{j}} \left\{ \frac{C_{p}(B(x_{0}, r) \setminus \Omega)}{r^{N-p}} \right\}^{\frac{1}{p-1}} \frac{dr}{r} < \left(\frac{a}{B}\right)^{\frac{1}{p-1}} \frac{p-1}{p} \ln 2,$$

где $R'_j = 2^{-j-1+\frac{1}{p}} R_0$, $R''_j = 2^{-j} R_0$. Тогда можно выбрать $R_j \in [R'_j, R''_j]$ так, чтобы

$$\left\{ R_j^{p-N} C_p(B_j \setminus \Omega) \right\}^{\frac{1}{p-1}} \frac{p-1}{p} \ln 2 = \int_{R_j'}^{R_j''} \left\{ \frac{C_p(B(x_0, r) \setminus \Omega)}{r^{N-p}} \right\}^{\frac{1}{p-1}} \frac{dr}{r} \tag{5.29}$$

и, следовательно, удовлетворить второе неравенство в (4.8).

Для обеспечения выполнения при всех $j=1,2,\ldots$ первого неравенства (4.8) достаточно проверить справедливость неравенства

 $A_0(l_1) \leqslant a$. А для установления последнего неравенства достаточно выполнение оценки $A_0(BM) \leqslant a$. Непосредственно из (4.6) имеем

$$A_0(BM) \leqslant \frac{1}{M} \underset{0 < t < T}{\text{ess sup}} \frac{1}{R_0^N} \int_{\Omega} [u(x, t)]_+ dx.$$

M, следовательно, для выполнения первого условия в (4.8) при всех j достаточно выполнение неравенства

$$\frac{1}{M} \underset{0 < t < T}{\text{ess sup}} \frac{1}{R_0^N} \int_{\Omega} [u(x, t)]_+ dx \le a.$$
 (5.30)

Подводя сказанное, сформулируем следующую лемму.

Пемма 5.1. Предположим, что выполнены условия теоремы 3.1 и неравенство (3.1). Тогда существуют $R_0 > 0$ и последовательность $\{R_j\}$, $R_j \in [2^{-j-1-\frac{1}{p}}R_0, 2^{-j}R_0]$ такие, что для решения u(x,t), удовлетворяющего условию (5.30), выполнены неравенства (4.8) при всех $j=1,2,\ldots$

В дальнейшем считаем, что R_0 и R_j выбраны в соответствии с леммой 5.1.

Лемма 5.2. Предположим, что выполнены условия теоремы 3.1 и неравенства (3.1), (5.30). Тогда справедлива оценка

$$\bar{l} = \lim_{j \to \infty} l_j \leqslant K_4 \left\{ \left[\frac{1}{R_0^N} \operatorname{ess sup} \int_{\Omega} [u(x,t)]_+ dx \right]^{\alpha_2} + R_0^{\alpha_1} + \int_{0}^{2R_0} \left(\frac{C_p(B(x_0,r) \setminus \Omega)}{r^{N-p}} \right)^{\frac{1}{p-1}} \frac{dr}{r} \right\}$$
(5.31)

с α_1 , определенным в теореме 5.1, $\alpha_2 = \min{\{\frac{2}{2+\lambda(p-1)}, \frac{1}{2-\lambda}\}}$ и постоянной K_3 , зависящей лишь от известных параметров и t_0 .

Доказательство. Суммируя неравенства (5.1), получаем при любом $J\geqslant 1$

$$\sum_{j=1}^{J} \delta_{j} \leqslant \frac{1}{2} \sum_{j=1}^{J} \delta_{j-1} + K_{3} \sum_{j=1}^{J} \left\{ R_{j}^{\alpha_{1}} + \left[R_{j}^{p-N} C_{p}(B_{j-1} \setminus \Omega) \right]^{\frac{1}{p-1}} \right\}.$$

Отсюда и из (5.29) имеем

$$l_{J} \leqslant C_{48} \left\{ \delta_{0} + R_{0}^{\alpha_{1}} + \int_{0}^{R_{0}} \left[\frac{C_{p}(B(x_{0}, r) \setminus \Omega)}{r^{N-p}} \right]^{\frac{1}{p-1}} \frac{dr}{r} \right\}.$$
 (5.32)

Оценим теперь δ_0 . Если $l_1=C(t_0)R_1^{\frac{\alpha}{p-1}}$, то неравенство (5.31) непосредственно следует из (5.32). Если же l_1 определено равенством $A_1(l_1)=a$, то выполнено хотя бы одно из неравенств

$$\frac{\delta_0^{p-2}}{R_0^{N+p}} \iint\limits_{\Omega_T} \left(\frac{[u(x,t)]_+}{\delta_0} \right)^{1+\frac{\lambda}{2}(p-1)} dx dt \geqslant \frac{a}{3},$$

$$\operatorname{ess sup}_{0 < t < T} \frac{1}{R_0^N} \int\limits_{\Omega} \frac{[u(x,t)]_+}{\delta_0} dx \geqslant \frac{a}{3},$$

$$\operatorname{ess sup}_{0 < t < T} \frac{1}{R_0^N} \int\limits_{\Omega} \left(\frac{[u(x,t)]_+}{\delta_0} \right)^{2-\lambda} dx \geqslant \frac{a}{3}.$$

Отсюда, используя ограниченность u(x,t) и неравенство (5.30), получаем оценку

$$\delta_0 \leqslant C_{49} \left\{ \frac{1}{R_0^N} \underset{0 < t < T}{\text{ess sup}} \int_{\Omega} [u(x, t)]_+ dx \right\}^{\alpha_2},$$
(5.33)

что и доказывает (5.31).

Замечание 5.1. Отметим, что выбор последовательности $\{l_j\}$ зависит от выбора R_0 , так что и \bar{l} зависит от R_0 . Из доказательства леммы 5.1 и теоремы 5.2 следует, что оценка (5.31) остается справедливой при замене R_0 на произвольное число $R'_0 \in (0, R_0]$.

6. Доказательство теоремы 2.1

Определение 6.1. Определим для произвольного ограниченного множества $E \subset B(x_0, \frac{1}{2}) \times (0, T)$ параболическую р-емкость $\Gamma_p(E)$ равенством

$$\Gamma_p(E) = \inf_{\varphi \in \mathfrak{M}(E)} \left\{ \underset{0 < t < T}{\operatorname{ess sup}} \int_{B(x_0, 1)} |\varphi(x, t)|^p \, dx + \int_0^T \int_{B(x_0, 1)} \left| \frac{\partial \varphi(x, t)}{\partial x} \right|^p dx \, dt \right\},$$

где
$$\mathfrak{M}(E) = \{ \varphi(x,t) \in C(0,T; L_p(B(x_0,1)) \cap L_p(0,T; W_p^1(B(x_0,1)) : \varphi(x,t) \geqslant 1 \text{ npu } (x,t) \in E \}.$$

Заметим (см. [8]), что для произвольной функции $\psi(x) \in W^1_p(B(x_0, 1))$ имеет место неравенство

$$\int\limits_{B(x_0,r)} |\psi(x)|^p dx \leqslant C_{50} \, r^p \int\limits_{B(x_0,1)} \left| \frac{\partial \psi(x)}{\partial x} \right|^p dx \quad \text{при} \quad 0 < r < \frac{1}{2}, \quad (6.1)$$

из которого немедленно следует оценка

$$\operatorname{mes} E \leq C_{50} r^p \Gamma_p(E)$$
, если $E \subset B(x_0, r) \times (t_0 - r^p, t_0 + r^p)$. (6.2)

Будем предполагать, что решение u(x,t) уравнения (1.1) удовлетворяет условию

$$\xi_0(x) \ \theta_0(t) [u(x,t)-1] \in L_p(0,T; W_p^1(\Omega))$$
 (6.3)

с функцией $\xi_0(x)$, определенной в начале раздела 4, и функцией $\theta_0 \in C_0^\infty(0,T), \ \theta_0(t) \equiv 1$ при $t \in \left[\frac{t_0}{2}, \frac{T+t_0}{2}\right], \ 0 \leqslant \theta_0(t) \leqslant 1, \ \left|\frac{d\theta_0(t)}{dt}\right| \leqslant C_{51}(t_0).$ Обозначим $Q_r = B(x_0,r) \times (t_0 - r^p, \ t_0 + r^p), \ Q_r' = Q_r \cap \Omega_T.$

Теорема 6.1. Предположим, что выполнены условия теоремы $3.1\ u$ (3.1). Тогда для произвольного решения u(x,t) уравнения (1.1), удовлетворяющего условию (6.3) и неравенствам (5.30) и $\overline{l}<1$, выполнена оценка

$$\inf \left\{ l : \int_{0}^{r_0} \left[\frac{\Gamma_p(\overline{Q}'_r \cap \{u > l\})}{r^N} \right]^{\frac{1}{p-1}} \frac{dr}{r} < \infty \right\} \leqslant \overline{l}, \tag{6.4}$$

где \bar{l} определено в (5.3), $r_0 \leqslant \frac{1}{2}$, $r_0^p \leqslant \frac{1}{2} \min[t_0, T - t_0]$.

Доказательство. Нужно доказать неравенство

$$\int_{0}^{r_{0}} \left[\frac{\Gamma_{p}(\overline{Q}'_{r} \cap \{u > \overline{l} + \varepsilon\})}{r^{N}} \right]^{\frac{1}{p-1}} \frac{dr}{r} < \infty \tag{6.5}$$

для любого $\varepsilon \in (0, 1 - \overline{l})$.

Продолжим функцию u(x,t) на $\mathcal{D}_1 = B_1 \times \left(\frac{t_0}{2}, \frac{T+t_0}{2}\right)$, $B_1 = B(x_0, R_1)$, полагая ее равной единице вне Ω_T . В силу (6.3) так продолженная функция принадлежит $L_p\left(\frac{t_0}{2}, \frac{T+t_0}{2}; W_2^1(B_1)\right)$.

Определим функцию

$$w_{\varepsilon}(x,t) = rac{1}{arepsilon} \left[\int\limits_{\overline{l}+arepsilon}^{u(x,t)} \left(rac{s-\overline{l}}{arepsilon}
ight)^{-rac{1}{p}+rac{\lambda}{2p}} \left(rac{s-\overline{l}-arepsilon}{arepsilon}
ight)^{-rac{\lambda}{p}} ds
ight]_{+} \quad ext{при } (x,t) \in \mathcal{D}_{1}$$

и заметим, что

$$w_{\varepsilon}(x,t) \geqslant \left(1 - \frac{1}{p} - \frac{\lambda}{2p}\right)^{-1} \left[2^{1 - \frac{1}{p} - \frac{\lambda}{2p}} - 1\right] = C_{52} > 0$$

$$\operatorname{при}(x,t) \in \mathcal{D}_{1} \cap \{u > \overline{l} + 2\varepsilon\}. \quad (6.6)$$

Мы предполагаем, что при некотором $\varepsilon > 0$ множество $\mathcal{D} \cap \{u > \overline{l} + 2\varepsilon\}$ имеет положительную меру, ибо, в противном случае, неравенство (6.5) тривиально.

Далее $\{R_j\}$ — последовательность, выбранная при доказательстве леммы $5.1,\ B_j,\ \xi_j(x),\ \eta_j(x),\ \zeta_j(x)$ — множество и функции, определенные в п. 4. Пусть J — такое число, что $4R_j^p\leqslant \min(t_0,T-t_0),$ и предполагаем в дальнейшем $j\geqslant J.$ Разделим при каждом j отрезок $[t_0-R_j^p,t_0+R_j^p]$ точками $\tau(j,i),\ i=1,\ldots,I(\varepsilon)$ на интервалы длины $\frac{4}{9}\varepsilon^{2-p}R_j^p$ и определим функции

$$\overline{\theta}_{ji}(t) = \overline{\theta} \left(\varepsilon^{p-2} R_j^{-p}(t-\tau(j,i)) \right), \ j = J(1), \ J(1)+1, \ldots, \ i=1,\ldots,I(\varepsilon),$$
 где $\overline{\theta}$ — та же функция, что и в (4.3).

Обозначим $Q_j = B_j \times (t_0 - R_j^p, t_0 + R_j^p), \ Q_j' = Q_j \cap \Omega_T, Q_j'' = Q_j' \setminus G_j,$ $G_j = \{x \in B_j \cap \Omega : g_{j-1}(x) > \frac{1}{3}\} \times (t_0 - R_j^p, t_0 + R_j^p),$ где $g_{j-1}(x) -$ функция, удовлетворяющая условию (4.1).

Следующие два неравенства получаются из определений p-емкости Γ_p , функции $g_i(x)$ и оценки (6.6):

$$\Gamma_p(G_{j+1}) \leqslant C_{53} R_j^p \left[C_p(B_j \setminus \Omega) + R_j^N \right], \tag{6.7}$$

$$\Gamma_{p}\left(Q_{j+1}^{"}\cap\left\{u>\overline{l}+2\varepsilon\right\}\right) \leqslant \leqslant C_{52}^{-p} \sum_{i=1}^{I(\varepsilon)} \left\{ \underset{0< t< T}{\operatorname{ess sup}} \int_{B_{j}} w_{\varepsilon}^{p}(x,t) \,\omega_{j}^{k}(x) \,\overline{\theta}_{ji}^{k}(t) \,dx + \int \int \int_{Q_{ji}} \left| \frac{\partial}{\partial x} \left(w_{\varepsilon}(x,t) \left[\omega_{j}(x) \,\overline{\theta}_{ji}(t)\right]^{\frac{k}{p}}\right) \right|^{p} dx \,dt \right\}.$$
(6.8)

Для оценки второго интеграла в (6.8) воспользуемся теоремой 3.1 и оценкой (4.12). Получаем

$$\iint_{L_{ji}(\varepsilon)} \left| \frac{\partial w_{\varepsilon}(x,t)}{\partial x} \right|^{p} \omega_{j}^{k}(x) \, \overline{\theta}_{ji}^{k}(t) \, dx \, dt \leqslant x$$

$$\leqslant C_{54} \left\{ R_{j}^{-p} \iint_{E_{ji}(\varepsilon)} \left[\frac{u(x,t) - \overline{l}}{\varepsilon} \right]^{1 + \frac{\lambda}{2}(p-1)} \omega_{j}^{k-p}(x) \, \overline{\theta}_{ji}^{k-1}(t) \, dx \, dt + \right.$$

$$+ \varepsilon^{3-2p} R_{j}^{p} C_{p}(B_{j-1} \setminus \Omega) + \varepsilon^{1-p} \left[R_{j}^{p+N(p-2)} C_{p}(B_{j-1} \setminus \Omega) \right]^{\frac{1}{p-1}} +$$

$$+ \varepsilon^{\beta_{4}} R_{j}^{N+\alpha} \right\} \quad (6.9)$$

с тем же числом β_4 , что и в неравенстве (5.15). Здесь

$$L_{ji}(\varepsilon) = \{Q_{ji}(\varepsilon) \cap \Omega_T\} \cap \{u > \overline{l} + \varepsilon\},$$

$$Q_{ji}(\varepsilon) = B_j \times (\tau(j,i) - \varepsilon^{2-p} R_j^p, \tau(j,i) + \varepsilon^{2-p} R_j^p),$$

$$E_{ji}(\varepsilon) = L_{ji}(\varepsilon) \cap \{\eta_j(x) < 1\}, \ F_{ji}(\varepsilon) = L_{ji}(\varepsilon) \cap \{\eta_j(x) = 1\}.$$

Используя (4.4), можем выбрать подпоследовательность $\theta_{j,n(i,m)}(t)$, $m=1,\ldots,M(j,i)$, последовательности $\theta_{jn}(t),\ n=1,\ldots,M(j)$, определенной в п. 4, так, чтобы

$$\overline{\theta}_{ji}(t) \leqslant \sum_{m=1}^{M(j,i)} \theta_{j,n(i,m)}(t), \quad M(j,i) \leqslant C_{55} \delta_j^{p-2}.$$
 (6.10)

Оценивая $\overline{\theta}_{ji}(t)$ в силу неравенства (6.10) и применяя лемму 4.1, имеем

$$R_{j}^{-p} \iint_{E_{ji}(\varepsilon)} \left[\frac{u(x,t) - \overline{l}}{\varepsilon} \right]^{1 + \frac{\lambda}{2}(p-1)} \omega_{j}^{k-p}(x) \, \overline{\theta}_{ji}^{k-1}(t) \, dx \, dt \leqslant$$

$$\leqslant C_{56}(\varepsilon) \sum_{m=1}^{M(j,i)} \iint_{L_{j,n(i,m)}} [u(x,t) - l_{j}]^{1 + \frac{\lambda}{2}(p-1)} \omega_{j}^{k-p}(x) \, \theta_{j,n(i,m)}^{k-1}(t) \, dx \, dt \leqslant$$

$$\leqslant C_{56}(\varepsilon) \, M(j,i) \, \delta_{j}^{3-p+\frac{\lambda}{2}(p-1)} R_{j}^{N} \, A_{j}(l_{j+1}) \leqslant C_{57}(\varepsilon) \, \delta_{j} \, R_{j}^{N}. \quad (6.11)$$

Для получения двух следующих оценок заметим, что $u(x,t)-l_j \geqslant \varepsilon$ при $(x,t) \in L_{ji}(\varepsilon), w_\varepsilon(x,t) \leqslant C_{58}(\varepsilon)$. Используя (6.10), оценку $A_j(l_{j+1}) \leqslant a$, а во втором неравенстве и оценку (4.1), имеем

$$\int_{B_{j}} w_{\varepsilon}^{p}(x,t) \,\omega_{j}^{k}(x) \,\overline{\theta}_{ji}^{k}(t) \,dx \leqslant
\leqslant C_{59}(\varepsilon) \max_{1 \leqslant n \leqslant M(j)} \int_{L_{ji}(\varepsilon,t)} (u(x,t) - l_{j}) \omega_{j}^{k}(x) \,\theta_{jn}^{k}(t) \,dx \leqslant
\leqslant C_{59}(\varepsilon) \,\delta_{j} \,R_{j}^{N}, \quad (6.12)$$

$$\iint_{Q_{ji}} w_{\varepsilon}^{p}(x,t) \,\omega_{j}^{k-p}(x) \,\overline{\theta}_{ji}^{k}(t) \left| \frac{\partial \omega_{j}}{\partial x} \right|^{p} dx \,dt \leqslant$$

$$\leqslant C_{60}(\varepsilon) \left\{ \sum_{m=1}^{M(j,i)} \iint_{L_{ij}} [u(x,t) - l_{j}]^{1 + \frac{\lambda}{2}(p-1)} \omega_{j}^{k-p}(x) \,\theta_{j,n(i,m)}^{k}(t) \left| \frac{\partial \xi_{j}}{\partial x} \right|^{p} dx \,dt + \right\}$$

$$+R_i^p \int_{B_i} \left| \frac{\partial \zeta_j}{\partial x} \right|^p dx \right\} \leqslant C_{61}(\varepsilon) \left\{ \delta_j R_j^N + R_j^p [C_p(B_{j-1} \setminus \Omega) + R_j^N] \right\}. \quad (6.13)$$

Неравенства $C_p(B_{j-1}\setminus\Omega)\leqslant C_{62}R_j^{N-p},$ (6.8), (6.9)–(6.13) приводят к оценке

$$\Gamma_p(Q_{j+1}'' \cap \{u > \overline{l} + 2\varepsilon\}) \leqslant C_{62}(\varepsilon) \left\{ \delta_j R_j^N + R_j^p C_p(B_{j-1} \setminus \Omega) + R_j^{N+\alpha} \right\}.$$
(6.14)

Из определения Γ_p и из (6.7), (6.14) следует

$$\Gamma_p(Q'_{j+1} \cap \{u > \overline{l} + 2\varepsilon\}) \leqslant C_{63}(\varepsilon) \left\{ \delta_j R_j^N + R_j^p C_p(B_{j-1} \setminus \Omega) + R_j^{N+\alpha} \right\}.$$
(6.15)

Отсюда, из (5.29) и ограниченности последовательности $\{\delta_j\}$ получаем

$$\int_{0}^{R_{J}} \left\{ \frac{\Gamma_{p}(\left\{u > \overline{l} + 2\varepsilon\right\} \cap Q_{r})}{r^{N}} \right\}^{\frac{1}{p-1}} \frac{dr}{r} \leqslant C_{64}(\varepsilon) \left\{ \sum_{i=J}^{\infty} \delta_{j} + \int_{0}^{R_{J}} \left[\frac{C_{p}(B(x_{0}, r) \setminus \Omega)}{r^{N-p}} \right]^{\frac{1}{p-1}} \frac{dr}{r} + \sum_{i=J}^{\infty} R_{j}^{\frac{\alpha}{p-1}} \right\}.$$
(6.16)

Правая часть последнего неравенства конечна в силу условия (3.1) и теоремы 5.2. Тем самым доказано неравенство (6.5) и доказательство теоремы 6.1 завершено.

Доказательство теоремы 2.1. Пусть $f(x) \in C_0^{\infty}(\mathbb{R}^N)$, $f(x) \equiv 1$ в некоторой окрестности точки $x_0, 0 \leqslant f(x) \leqslant 1$,

$$\int_{BN} f^2(x) dx + \int_{BN} \left| \frac{\partial f}{\partial x} \right|^p dx < \gamma^2, \tag{6.17}$$

где γ — некоторое число из интервала (0,1). Будем предполагать, что носитель функции f(x) содержится в множестве $\mathcal D$ достаточно малой меры, так чтобы

$$\int_{0}^{T} \int_{\mathcal{D}} |F(x,t)| dx dt < \gamma^{2}, \tag{6.18}$$

где F(x,t) — функция, определенная в условии A_2 .

Найдем решение уравнения (1.1), удовлетворяющее условиям

$$u(x,t) = f(x) \theta_0(t), \quad (x,t) \in \partial\Omega \times (0,T)$$
(6.19)

$$u(x,0) = 0, \quad x \in \Omega. \tag{6.20}$$

Разрешимость задачи можно доказать методами теории монотонных операторов.

Подставим в интегральное тождество (2.4) пробную функцию $\varphi(x,t) = [u(x,t)]_h - f(x) \theta_0(t)$ и после стандартных преобразований получим оценку

$$\operatorname{ess \, sup}_{0 < t < T} \int_{\Omega} u^{2}(x, t) \, dx + \int_{0}^{T} \int_{\Omega} \left| \frac{\partial u}{\partial x} \right|^{p} \, dx \, dt \leqslant C_{65}(t_{0}) \left\{ \int_{\Omega} f^{2}(x) \, dx + \int_{0}^{T} \left| \frac{\partial f}{\partial x} \right|^{p} \, dx + \int_{0}^{T} \int_{\mathcal{D}} F(x, t) \, dx \, dt \right\} \leqslant C_{66}(t_{0}) \, \gamma^{2}. \quad (6.21)$$

Отсюда, в частности, получаем

$$\operatorname{ess \, sup}_{0 < t < T} \int_{\Omega} [u(x, t)]_{+} \, dx \leqslant C_{67}(t_{0}) \, \gamma. \tag{6.22}$$

Выбирая γ достаточно малым числом, обеспечиваем выполнение неравенства (5.30), и, следовательно, теорема 5.2 дает оценку

$$\overline{l} \leqslant C_{68}(t_0) \left\{ \left[\frac{\gamma}{R_0^N} \right]^{\alpha_2} + R_0^{\alpha_1} + \int_0^{2R_0} \left[\frac{C_p(B(x_0, r) \setminus \Omega)}{r^{N-p}} \right]^{\frac{1}{p-1}} \frac{dr}{r} \right\}.$$
 (6.23)

Уменьшением R_0 , а затем γ , можем обеспечить выполнение неравенства $\bar{l} \leqslant \frac{1}{2}$.

Из теоремы 6.1 получаем

$$\int_{0}^{r_{0}} \left[\frac{\Gamma_{p}(\overline{Q}'_{r} \cap \{u > l\})}{r^{N}} \right]^{\frac{1}{p-1}} \frac{dr}{r} < \infty$$
 (6.24)

при $l > \frac{1}{2}$. Используя неравенство (6.2), имеем из (6.24)

$$\int_{0}^{r_0} \left[\frac{\operatorname{mes}(Q_r' \cap \{u > l\})}{r^{N+p}} \right]^{\frac{1}{p-1}} \frac{dr}{r} < \infty.$$
 (6.25)

Отсюда, в частности, следует

$$\lim_{r \to 0} \left\{ r^{-N-p} \operatorname{mes} \left(Q_r' \cap \{u > l\} \right) \right\} = 0. \tag{6.26}$$

Аналогичные рассуждения и (3.1) приводят к равенству

$$\lim_{r \to 0} \left\{ r^{-N} \operatorname{mes} \left[B(x_0, r) \setminus \Omega \right] \right\} = 0.$$

Отсюда и из (6.26) следует

$$\lim_{r \to 0} \left\{ [\text{mes } Q_r]^{-1} \, \text{mes } [Q_r' \cap \{u \leqslant l\}] \right\} = 1 \tag{6.27}$$

при произвольном $l > \frac{1}{2}$. Равенство (6.27) обеспечивает оценку

$$\lim_{r\to 0}\,\left\{\text{ess inf }[u(x,t):(x,t)\in Q'_r]\right\}\leqslant \frac{1}{2}.$$

Таким образом, доказано, что равенство (2.6) не выполнено и, следовательно, точка (x_0, t_0) — нерегулярная. Этим закончено доказательство теоремы 2.1.

Литература

- E. Di Benedetto, Degenerate parabolic equations. Springer-Verlag, New York, 1993.
- [2] T. Kilpeläinen, J. Malý, The Wiener test and potential estimates for quasilinear elliptic equations // Acta Math. 172 (1994), 137–161.
- [3] О. А. Ладыженская, В. А. Солонников, Н. Н. Уральцева, Линейные и квазилинейные уравнения параболического типа. Наука, 1967.
- [4] И. В. Скрыпник, Необходимое условие регулярности граничной точки для квазилинейного параболического уравнения // Матем. сб. **183** (1992), №7, 3—22
- [5] И. И. Скрыпник, Регулярность граничной точки для вырождающихся квазилинейных параболических уравнений с измеримыми коэффициентами // Укр. Мат. Ж. **52** (2000), №11, 1550–1565.
- [6] И. И. Скрыпник, Необходимое условие регулярности граничной точки для вырождающихся параболических уравнений с измеримыми коэффициентами // Труды ИПММ НАН Украины. Вып. 8 (2003), 147–167.
- [7] И. И. Скрыпник, Регулярность граничной точки для сингулярных параболических уравнений с измеримыми коэффициентами // Укр. Мат. Ж. 56 (2004), №6,
- [8] И. В. Скрыпник, Методы исследования нелинейных эллиптических граничных задач. Наука, 1991.
- W. Zeimer, Behavior at the boundary of solutions of quasilinear parabolic equations // J. Diff. Equat. 35 (1980), №3, 291–305.

Сведения об авторах

И. И. Скрыпник

Институт прикладной математики и механики НАН Украины, ул. Р. Люксембург 74, Донецк 83114, Украина