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Abstract. In this paper we consider some forbidden sublattices for
n-distributive, but non-modular lattices. We define the new notion of
n-modularity (weaker than n-distributivity). We also consider some for-
bidden sublattice for an n-modular lattice. We prove that n-modularity
implies (n 4 1)-modularity. The counter-examples for the inverse impli-
cation are shown.
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1. Introduction

We recall the n-distributivity notion, which was introduced by
G. M. Bergman (in [1]) and A. P. Huhn (in [4]) as a generalization of
the ordinary distributivity (for n = 1), for modular lattices:

A lattice (L, V, A\) is n-distributive if for every z,yo,...,yn € L the
condition is satisfied:

(Dr) Aoy = Vijmo(x A Vilozi Yi)-

A lattice L is dually n-distributive if for every z,yg,...,yn € L the
following equality is satisfied:

VN ¥i = Nj—o(@ V Nilouizj ¥i)-

A lattice L is modular, if for every z,y,z € L, x <y implies x A (y V
z)=zV (T A=z).

The condition (D,,) is equivalent to the dual n-distributivity condi-
tion iff a lattice L is modular (see [4]).

It is easy to show that every n-distributive lattice (dually n-distribu-
tive) is also (n+1)-distributive (dually (n+ 1)-distributive, respectively).
For standard terminology, see [3].

We introduce two notions weaker than notion of n-distributivity and
dual n-distributivity, respectively:
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1) A lattice (L,V,A) is n-modular if for every z,yo,...,y, € L the
following implication is true:

Viso vi <] = [z AViZgw = (ViZg v:) v \/;:(} (@ A Visgne; i)l

2) A lattice (L, V, A) is dually n-modular if for every z,yo,...,yn € L
the implication:

NiZo vi = 2] = [2 v Ao wi = (NS0 i) A /\?;01 (@ V Ailojizj vi)l
is valid.
The 1-modular lattices and dually 1-modular lattices are exactly modular.

If P is a poset and for a, b, ¢ € P the conditions a < b, a <c<b
imply ¢ = a or ¢ = b, then we say, that b covers a in the set P (or a is
covered by b).

2. Some properties for n-distributive and n-modular lat-
tices; Characterization of an n-modular lattice by the
forbidden sublattice

In 1972 A. P. Huhn (see [4]) proved that a modular lattice L is not n-
distributive iff it contains a sublattice B isomorphic to the 2" !-element
Boolean lattice and an element z such that t Aa = A B, xVa =\ B,
for every atom a of B. For n = 1, it is the well-known criterion of
distributivity.

The following proposition without the modularity assumption is some
partial generalization for the above Huhn’s result.

Proposition 1. A lattice (L,V, N) is not n-distributive whenever it con-
tains a sublattice B isomorphic to the 2" -element Boolean lattice and
an element x such that x > b, for some b € B and \/ B is the only
element in B, which covers x in L.

Proof. Let {yo,...,yn} be the set of atoms in the algebra B. Then
tAViyyi=xAN\VB=uz.

According to the assumption there is an element by € B such that
 covers by in the poset B U {z}. Hence, z A Vi g,y < by < z, for
0 <j<mnand \/;-Z:D(ZL‘ A \/?:O;#i y;) < by < x, which contradicts the
n-distributivity. O

Corollary 1. A lattice (L,V,A) is not dually n-distributive whenever it
contains a sublattice B isomorphic to the 2"t -element Boolean lattice
and an element x covering \ B in L such that x < by, for some by € B.

The inverse implication in the above theorem seems true, but it is
still an open problem.
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Proposition 2. A lattice (L,V,A) is n-modular iff for comparable ele-
ments T and \/?701 y; the followmg equality is satisfied:
(M) 2 A (@ AV v) Yyl = Vi—o(@ AN s vi)-

Pmo{”. Assuming \/?:_01 yi <z in (M) we get z AV yi = (\/?:_01 yi) V
ViZo (@ A Vilo.zj¥i), what gives n-modularity. Let \/[Zy y; > @, then
we get n-modularity applying the absorbtion laws. Now, let /7", 0 Y <o
and assume that (M,,) fails, for some &, Yo,--.,Yn € L. Then

2 AVt =2 A (@ AV i) V gl # Vi—o(@ A Vilo, iz i) =

= (Vigo vi) v \/j:O (@ A Vizo; izj i)

which contradicts the n-modularity. O

Corollary 2. A lattice (L,V,A) is dually n-modular iff for comparable
elements x and /\1 o i the following equality is valid:

z V(@ Vv AN ) Yi) A Yn] = /\?:o(fﬁ v /\:’L:O;i;éj Yi)-
Proposition 3. Let n > 1. Then:

(i) Every n-distributive (dually n-distributive) lattice is n-modular (du-
ally n-modular, respectively).

(ii) Every n-modular (dually n-modular) lattice is (n + 1)-modular (du-
ally (n + 1)-modular, respectively).

Proof. First implication is obvious. Now we prove that the usual mod-
ularity implies n-modularity for n > 1. Let \/;-1:_01 y; < 2. Then using
modularity, we get
-1

e Ay =2 A (ViZg v V V- 0.2 i) = Vico ¥i V (95/\\/? Oj;éiyi> ,

for every 0 < j < n — 1. Hence, A Vi_qui = (V7 vi) V Vi (@A
Vi 0:i Yi), What gives n-modularity. Now, let @, yo,...,Yn,Ynt1 € L,
Vioyi < x and let 0 < [,k < n be fixed indices. Then assuming n-
modularity and treating y; V yr as a single element we get the equality

+1 +1

e AViZo ¥i = Vico Ui V [Vizoyjzin(@ A ViZoaz v V (@ A Vit itk Yi)-

The supremum over all 0 <[, k < n of the right-hand side of this equal-
ity is exactly equal to /Loy V Vj_o(z A V?+01Z 4jYi). Hence we get
(n + 1)-modularity. Analogously, inverting operations we prove the dual
theorem. O

Remark. The inverse implications in the Proposition 3 are not always
true!

The lattices L1, Lo, L3 (see Figure 1) are not modular;
Lo, L3 are not 2-distributive, but they are 2-modular;
L4 is not 2-distributive and not 2-modular.
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Figure 1.

Proposition 4. A lattice (L, V,A) is not n-modular whenever it contains
a sublattice B isomorphic to the 2" '-element Boolean lattice and an
element x such that co < x < \/ B, for some coatom ¢y of B. A lattice L
18 not 2-modular if and only if it contains an isomorphic copy of L1 as
a poset (see Figure 1).

Proof. Let A = {y0,91,-..,Yn} € B be the set of atoms of B. Since
co = \/?;01 yi < x, hence # A Vi gy, = . An element \/[_, ;v is a
coatom of B, for 0 < j < n. Hence x A \/?:0;#1- yi < ¢p < z, for every
0< j < mand (VIS 1)V (VIS (@ AV o)) = VIS s = co. which
contradicts the n-modularity.

Now, we prove the inverse implication, in the case n = 2. Assume that
L is not 2-modular. Then for some z,y1,y2,y3 € L, y1 Vys < = we get the
inequality (*) zA(y1Vy2Vys) > (y1Vy2) VIzA(yr Vys) VzA(y2 Vys)l.

Notice that comparability of every pair of elements y, y2, y3 contra-
dicts this inequality. Now, let y1 Vy2 = y1 Vys. Then (y1Vy2) > (y2Vys),
e A (Y1 Vy2Vys) =y1Vyz and (y1 Vy2) VIz Ay Vys) Ve A(y2 Vys)] =
(1 Vy2) VIzA(y2Vys) = (y1 V)

If (y1 Vys) = (y2 Vys), then (y1 Vy2) < (y2Vys), TA (Y1 VY2 Vys) =
A (y1Vys) and (y1 Vy2) Vg A V)] VA2 V)] = (1 V)V
[z A (y1 Vys)] =2 A (y1Vys). Hence, elements y1 V y2, y1 V y3, y2 V y3
must be different. Similarly, if any two of the following elements 31 V yo,
y1 V y3, Y2 V y3 are comparable, then it contradicts the inequality (*).
Three incomparable elements y; V y2, y1 V y3, y2 V y3 generate a lattice
isomorphic to the 23-element Boolean lattice (see. [3], p. 48).

Hence, L must contain L;. O

Corollary 3. A lattice (L,V,N) is not dually n-modular whenever it
contains a sublattice B isomorphic to the 2"t -element Boolean lattice
and an element x such that \ B < x < ag, for some atom ay of B (the
inverse implication is true forn =1 and n = 2).
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The inverse implication of Proposition 4 seems true also for n > 2,
but it is still an open problem (for n = 1 it is the well-known criterion of
modularity).

A. P. Huhn proved, that for a modular lattice L the equality:

/\n+1 \/;H_Oll;é] Yi= \/n+1 ?iol;j;ék \/ZH_Olz;éj kYi> for yo, ..., Yn+1 € L
is equlvalent to (Dy,) (see [4], [5]). The next proposition gives the equality
condition implying (D,,) without modularity assumption:

Proposition 5. A lattice L is n-distributive whenever for every
Y0y --s Ynt1 € L the following equality is satisfied:

1 1
/\n+ Vido: iz Vi = (N0 i) V Vi—o(Wn1 A Vio,jzi Yi)-

Proof. Denote the left-hand side of the above equality by a, and the
right-hand one by b. Assuming \/Z —0 Y% =< Yny1 in a = b and using
-1 -1
the absorbtion laws we get yn+1 A Visgyi = (ViZo vi) V (Vo (Unt1 A
Viso. j#iYi)), what gives n-modularity. Notice, that ynt1 Aa = yn+1 A
1 1
(Ao V?%zfﬂh)_
n n n
= Yn+1 A Vico¥i A Nj—o(¥n+1V Vilo, iz Vi) = Ynt1 A Vig ¥i.
Since L is n-modular andn\/?:0 (yn+711 AViso, i y;l) < Yn1, hence
Yn+1 A0 = Yni1r AN(Nizo ¥i) V Vo Unt1 A Vizo,jz ¥i)] =
n n n n n
= [VicoWn1AViZo,j2i Yi)IVVi—odun+ 1A L(NAiZo ¥)V (Un+1AV 0.5 ¥i)]}-
Because of the inequality
{yns1 AANZ %) V Un1 A Vg ¥l < Wna1 A ViZggiz; 9), 0 <
J < n, which is valid for an arbitrary lattice, we deduce
Yn+1 ANb = Vo(Ynt1 A Visg.izj Vi)-
The equality yn+1 A @ = yny1 A b gives n-distributivity. U

There are some useful applications for (D,,) condition in lattices of
closed sets with respect to a given closure operator. For example, the
n-distributivity property can be asocciated to the Carathéodory number,
which is some parameter describing a closure operator on a given set (see

2], [6]-8]).
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