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n-distributivity and n-modularity in lattices
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Abstract. In this paper we consider some forbidden sublattices for
n-distributive, but non-modular lattices. We define the new notion of
n-modularity (weaker than n-distributivity). We also consider some for-
bidden sublattice for an n-modular lattice. We prove that n-modularity
implies (n + 1)-modularity. The counter-examples for the inverse impli-
cation are shown.
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1. Introduction

We recall the n-distributivity notion, which was introduced by
G. M. Bergman (in [1]) and A. P. Huhn (in [4]) as a generalization of
the ordinary distributivity (for n = 1), for modular lattices:

A lattice (L,∨,∧) is n-distributive if for every x, y0, . . . , yn ∈ L the
condition is satisfied:

(Dn) x ∧∨n
i=0 yi =

∨n
j=0(x ∧∨n

i=0;j 6=i yi).
A lattice L is dually n-distributive if for every x, y0, . . . , yn ∈ L the

following equality is satisfied:

x ∨∧n
i=0 yi =

∧n
j=0(x ∨∧n

i=0;i6=j yi).

A lattice L is modular, if for every x, y, z ∈ L, x ≤ y implies x ∧ (y ∨
z) = x ∨ (x ∧ z).

The condition (Dn) is equivalent to the dual n-distributivity condi-
tion iff a lattice L is modular (see [4]).

It is easy to show that every n-distributive lattice (dually n-distribu-
tive) is also (n+1)-distributive (dually (n+1)-distributive, respectively).
For standard terminology, see [3].

We introduce two notions weaker than notion of n-distributivity and
dual n-distributivity, respectively:
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1) A lattice (L,∨,∧) is n-modular if for every x, y0, . . . , yn ∈ L the
following implication is true:

[
∨n−1
i=0 yi ≤ x] ⇒ [x ∧∨n

i=0 yi = (
∨n−1
i=0 yi) ∨

∨n−1
j=0 (x ∧∨n

i=0;i6=j yi)].
2) A lattice (L,∨,∧) is dually n-modular if for every x, y0, . . . , yn ∈ L

the implication:
[
∧n−1
i=0 yi ≥ x] ⇒ [x ∨∧n

i=0 yi = (
∧n−1
i=0 yi) ∧

∧n−1
j=0 (x ∨∧n

i=0;i6=j yi)]
is valid.
The 1-modular lattices and dually 1-modular lattices are exactly modular.

If P is a poset and for a, b, c ∈ P the conditions a < b, a ≤ c ≤ b
imply c = a or c = b, then we say, that b covers a in the set P (or a is
covered by b).

2. Some properties for n-distributive and n-modular lat-

tices; Characterization of an n-modular lattice by the

forbidden sublattice

In 1972 A. P. Huhn (see [4]) proved that a modular lattice L is not n-
distributive iff it contains a sublattice B isomorphic to the 2n+1-element
Boolean lattice and an element x such that x ∧ a =

∧
B, x ∨ a =

∨
B,

for every atom a of B. For n = 1, it is the well-known criterion of
distributivity.

The following proposition without the modularity assumption is some
partial generalization for the above Huhn’s result.

Proposition 1. A lattice (L,∨,∧) is not n-distributive whenever it con-
tains a sublattice B isomorphic to the 2n+1-element Boolean lattice and
an element x such that x > b, for some b ∈ B and

∨
B is the only

element in B, which covers x in L.

Proof. Let {y0, . . . , yn} be the set of atoms in the algebra B. Then

x ∧∨n
i=0 yi = x ∧∨B = x.

According to the assumption there is an element b0 ∈ B such that
x covers b0 in the poset B ∪ {x}. Hence, x ∧ ∨n

i=0;j 6=i yi ≤ b0 < x, for
0 ≤ j ≤ n and

∨n
j=0(x ∧ ∨n

i=0;j 6=i yi) ≤ b0 < x, which contradicts the
n-distributivity.

Corollary 1. A lattice (L,∨,∧) is not dually n-distributive whenever it
contains a sublattice B isomorphic to the 2n+1-element Boolean lattice
and an element x covering

∧
B in L such that x < b0, for some b0 ∈ B.

The inverse implication in the above theorem seems true, but it is
still an open problem.
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Proposition 2. A lattice (L,∨,∧) is n-modular iff for comparable ele-
ments x and

∨n−1
i=0 yi the following equality is satisfied:

(Mn) x ∧ [(x ∧∨n−1
i=0 yi) ∨ yn] =

∨n
j=0(x ∧∨n

i=0;i6=j yi).

Proof. Assuming
∨n−1
i=0 yi ≤ x in (Mn) we get x ∧∨n

i=0 yi = (
∨n−1
i=0 yi) ∨∨n−1

j=0 (x ∧ ∨n
i=0;i6=j yi), what gives n-modularity. Let

∨n−1
i=0 yi > x, then

we get n-modularity applying the absorbtion laws. Now, let
∨n−1
i=0 yi ≤ x

and assume that (Mn) fails, for some x, y0, . . . , yn ∈ L. Then
x ∧∨n

i=0 yi = x ∧ [(x ∧∨n−1
i=0 yi) ∨ yn] 6=

∨n
j=0(x ∧∨n

i=0; i6=j yi) =

= (
∨n−1
i=0 yi) ∨

∨n−1
j=0 (x ∧∨n

i=0; i6=j yi),
which contradicts the n-modularity.

Corollary 2. A lattice (L,∨,∧) is dually n-modular iff for comparable
elements x and

∧n−1
i=0 yi the following equality is valid:

x ∨ [(x ∨∧n−1
i=0 yi) ∧ yn] =

∧n
j=0(x ∨∧n

i=0;i6=j yi).

Proposition 3. Let n ≥ 1. Then:

(i) Every n-distributive (dually n-distributive) lattice is n-modular (du-
ally n-modular, respectively).

(ii) Every n-modular (dually n-modular) lattice is (n+ 1)-modular (du-
ally (n+ 1)-modular, respectively).

Proof. First implication is obvious. Now we prove that the usual mod-
ularity implies n-modularity for n > 1. Let

∨n−1
i=0 yi ≤ x. Then using

modularity, we get

x ∧∨n
i=0 yi = x ∧ (

∨n−1
i=0 yi ∨

∨n
i=0;j 6=i yi) =

∨n−1
i=0 yi ∨

(
x ∧∨n

i=0;j 6=i yi

)
,

for every 0 ≤ j ≤ n − 1. Hence, x ∧ ∨n
i=0 yi = (

∨n−1
i=0 yi) ∨

∨n−1
j=0 (x ∧∨n

i=0;i6=j yi), what gives n-modularity. Now, let x, y0, . . . , yn, yn+1 ∈ L,∨n
i=0 yi ≤ x and let 0 ≤ l, k ≤ n be fixed indices. Then assuming n-

modularity and treating yl ∨ yk as a single element we get the equality:
x ∧∨n+1

i=0 yi =
∨n
i=0 yi ∨ [

∨n
j=0;j 6=l,k(x ∧∨n+1

i=0;i6=j yi)] ∨ (x ∧∨n+1
i=0;i6=l,k yi).

The supremum over all 0 ≤ l, k ≤ n of the right-hand side of this equal-
ity is exactly equal to

∨n
i=0 yi ∨

∨n
j=0(x ∧ ∨n+1

i=0;i6=j yi). Hence we get
(n+ 1)-modularity. Analogously, inverting operations we prove the dual
theorem.

Remark. The inverse implications in the Proposition 3 are not always
true!

The lattices L1, L2, L3 (see Figure 1) are not modular;
L2, L3 are not 2-distributive, but they are 2-modular;
L1 is not 2-distributive and not 2-modular.
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Figure 1.

Proposition 4. A lattice (L,∨,∧) is not n-modular whenever it contains
a sublattice B isomorphic to the 2n+1-element Boolean lattice and an
element x such that c0 < x <

∨
B, for some coatom c0 of B. A lattice L

is not 2-modular if and only if it contains an isomorphic copy of L1 as
a poset (see Figure 1).

Proof. Let A = {y0, y1, . . . , yn} ⊆ B be the set of atoms of B. Since
c0 =

∨n−1
i=0 yi < x, hence x ∧ ∨n

i=0 yi = x. An element
∨n
i=0;j 6=i yi is a

coatom of B, for 0 ≤ j ≤ n. Hence x ∧ ∨n
i=0;j 6=i yi ≤ c0 < x, for every

0 ≤ j ≤ n and (
∨n−1
i=0 yi)∨ (

∨n−1
j=0 (x∧∨n

i=0;j 6=i yi)) =
∨n−1
i=0 yi = c0, which

contradicts the n-modularity.

Now, we prove the inverse implication, in the case n = 2. Assume that
L is not 2-modular. Then for some x, y1, y2, y3 ∈ L, y1∨y2 ≤ x we get the
inequality (*) x∧ (y1∨y2∨y3) > (y1∨y2)∨ [x∧ (y1∨y3)]∨ [x∧ (y2∨y3)].

Notice that comparability of every pair of elements y1, y2, y3 contra-
dicts this inequality. Now, let y1∨y2 = y1∨y3. Then (y1∨y2) ≥ (y2∨y3),
x∧ (y1 ∨ y2 ∨ y3) = y1 ∨ y2 and (y1 ∨ y2)∨ [x∧ (y1 ∨ y3)]∨ [x∧ (y2 ∨ y3)] =
(y1 ∨ y2) ∨ [x ∧ (y2 ∨ y3)] = (y1 ∨ y2).

If (y1 ∨ y3) = (y2 ∨ y3), then (y1 ∨ y2) ≤ (y2 ∨ y3), x∧ (y1 ∨ y2 ∨ y3) =
x ∧ (y1 ∨ y3) and (y1 ∨ y2) ∨ [x ∧ (y1 ∨ y3)] ∨ [x ∧ (y2 ∨ y3)] = (y1 ∨ y2) ∨
[x ∧ (y1 ∨ y3)] = x ∧ (y1 ∨ y3). Hence, elements y1 ∨ y2, y1 ∨ y3, y2 ∨ y3

must be different. Similarly, if any two of the following elements y1 ∨ y2,
y1 ∨ y3, y2 ∨ y3 are comparable, then it contradicts the inequality (*).
Three incomparable elements y1 ∨ y2, y1 ∨ y3, y2 ∨ y3 generate a lattice
isomorphic to the 23-element Boolean lattice (see. [3], p. 48).

Hence, L must contain L1.

Corollary 3. A lattice (L,∨,∧) is not dually n-modular whenever it
contains a sublattice B isomorphic to the 2n+1-element Boolean lattice
and an element x such that

∧
B < x < a0, for some atom a0 of B (the

inverse implication is true for n = 1 and n = 2).
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The inverse implication of Proposition 4 seems true also for n > 2,
but it is still an open problem (for n = 1 it is the well-known criterion of
modularity).

A. P. Huhn proved, that for a modular lattice L the equality:∧n+1
j=0

∨n+1
i=0;i6=j yi =

∨n+1
k=0

∧n+1
j=0;j 6=k

∨n+1
i=0;i6=j,k yi, for y0, ..., yn+1 ∈ L

is equivalent to (Dn) (see [4], [5]). The next proposition gives the equality
condition implying (Dn) without modularity assumption:

Proposition 5. A latticeL is n-distributive whenever for every
y0, ..., yn+1 ∈ L the following equality is satisfied:∧n+1

j=0

∨n+1
i=0;i6=j yi = (

∧n
i=0 yi) ∨

∨n
j=0(yn+1 ∧

∨n
i=0;j 6=i yi).

Proof. Denote the left-hand side of the above equality by a, and the
right-hand one by b. Assuming

∨n−1
i=0 yi ≤ yn+1 in a = b and using

the absorbtion laws we get yn+1 ∧ ∨n
i=0 yi = (

∨n−1
i=0 yi) ∨ (

∨n−1
j=0 (yn+1 ∧∨n

i=0;j 6=i yi)), what gives n-modularity. Notice, that yn+1 ∧ a = yn+1 ∧
(
∧n+1
j=0

∨n+1
i=0;i6=j yi) =

= yn+1 ∧
∨n
i=0 yi ∧

∧n
j=0(yn+1 ∨

∨n
i=0;j 6=i yi) = yn+1 ∧

∨n
i=0 yi.

Since L is n-modular and
∨n
j=0(yn+1 ∧

∨n
i=0;j 6=i yi) ≤ yn+1, hence

yn+1 ∧ b = yn+1 ∧ [(
∧n
i=0 yi) ∨

∨n
j=0(yn+1 ∧

∨n
i=0;j 6=i yi)] =

= [
∨n
j=0(yn+1∧

∨n
i=0;j 6=i yi)]∨

∨n
j=0{yn+1∧[(

∧n
i=0 yi)∨(yn+1∧

∨n
i=0;i6=j yi)]}.

Because of the inequality

{yn+1 ∧ [(
∧n
i=0 yi) ∨ (yn+1 ∧

∨n
i=0;i6=j yi)]} ≤ (yn+1 ∧

∨n
i=0;i6=j yi), 0 ≤

j ≤ n, which is valid for an arbitrary lattice, we deduce

yn+1 ∧ b =
∨n
j=0(yn+1 ∧

∨n
i=0;i6=j yi).

The equality yn+1 ∧ a = yn+1 ∧ b gives n-distributivity.

There are some useful applications for (Dn) condition in lattices of
closed sets with respect to a given closure operator. For example, the
n-distributivity property can be asocciated to the Carathéodory number,
which is some parameter describing a closure operator on a given set (see
[2], [6]–[8]).
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